engine JEEP LIBERTY 2002 KJ / 1.G Workshop Manual
[x] Cancel search | Manufacturer: JEEP, Model Year: 2002, Model line: LIBERTY, Model: JEEP LIBERTY 2002 KJ / 1.GPages: 1803, PDF Size: 62.3 MB
Page 602 of 1803

NOTE: Individual channels cannot be erased. Eras-
ing the transmitter codes will erase ALL pro-
grammed codes.
STANDARD PROCEDURE - SETTING
TRANSMITTER CODES
(1) Turn off the engine.
(2) Erase the factory test codes by pressing but-
tons 1 and 3. Release the buttons when the two
green lights begin to flash (about 20 seconds).
(3) Choose one of the three buttons to train. Place
the hand-held transmitter within one inch of the uni-
versal transmitter and push the buttons on both
transmitters. The green dot below the house symbol
will begin to flash slowly.
(4) When the red light on the universal transmit-
ter begins to flash rapidly (this may take as long as
60 seconds), release both buttons. Your universal
transmitter is now ªtrainedº. To train the other but-
tons, repeat Step 3 and Step 4. Be sure to keep your
hand-held transmitter in case you need to retrain the
universal transmitter.
AMBIENT TEMP SENSOR
DESCRIPTION
Ambient air temperature is monitored by the Com-
pass Mini-Trip Computer (CMTC) through ambient
temperature sensor messages received from the Body
Control Module (BCM) over the Programmable Com-
munications Interface (PCI) data bus network. The
BCM receives a hard wired input from the ambient
temperature sensor. The ambient temperature sensor
(Fig. 8) is a variable resistor mounted in front the
radiator, behind the grille, near the center of the
vehicle.
Refer toBody Control Modulein Electronic Con-
trol Modules. For complete circuit diagrams, refer to
the appropriate wiring information. The ambient
temperature sensor cannot be adjusted or repaired
and, if faulty or damaged, it must be replaced.
OPERATION
The ambient temperature sensor is a variable
resistor that operates on a five-volt reference signal
sent to it by the BCM. The resistance in the sensor
changes as temperature changes, changing the tem-
perature sensor signal circuit voltage to the BCM.
Based upon the resistance in the sensor, the BCM
senses a specific voltage on the temperature sensor
signal circuit, which it is programmed to correspond
to a specific temperature. The BCM then sends the
proper ambient temperature messages to the CMTC
over the PCI data bus.
The thermometer function is supported by the
ambient temperature sensor, a wiring circuit, the
Body Control Module (BCM), the Programmable
Communications Interface (PCI) data bus, and a por-
tion of the Compass Mini-Trip Computer module.
The ambient temperature sensor circuit can also be
diagnosed by referring toDiagnosis and Testing -
Ambient Temperature Sensor, and Diagnosis
and Testing - Ambient Temperature Sensor Cir-
cuit. If the temperature sensor and circuit are con-
firmed to be OK, but the temperature display is
inoperative or incorrect, refer toDiagnosis and
Testing - Compass Mini-Trip Computerin this
section. For complete circuit diagrams, refer to the
appropriate wiring information.
DIAGNOSIS AND TESTING
DIAGNOSIS AND TESTING - AMBIENT
TEMPERATURE SENSOR
(1) Turn the ignition switch to the Off position.
Disconnect and isolate the battery negative cable.
Disconnect the ambient temperature sensor wire har-
ness connector.
(2) Measure the resistance of the ambient temper-
ature sensor. At ±40É C (±40É F), the sensor resis-
tance is 336 kilohms. At 55É C (140É F), the sensor
resistance is 2.488 kilohms. The sensor resistance
should read between these two values. If OK, refer to
Diagnosis and Testing - Ambient Temperature
Sensor Circuitin this group. If not OK, replace the
faulty ambient temperature sensor.
DIAGNOSIS AND TESTING - AMBIENT
TEMPERATURE SENSOR CIRCUIT
(1) Turn the ignition switch to the Off position.
Disconnect and isolate the battery negative cable.
Disconnect the ambient temperature sensor wire har-
ness connector and the Body Control Module wire
harness connector.
(2) Connect a jumper wire between the two termi-
nals in the body half of the ambient temperature sen-
sor wire harness connector.
Fig. 8 Ambient Temperature Sensor
KJMESSAGE SYSTEMS 8M - 9
UNIVERSAL TRANSMITTER (Continued)
Page 648 of 1803

FRONT IMPACT SENSOR
DESCRIPTION
Two front impact sensors are used on this model,
one each for the left and right sides of the vehicle
(Fig. 17). These sensors are mounted remotely from
the impact sensor that is internal to the Airbag Con-
trol Module (ACM). Each front sensor is secured with
two screws to the backs of the right and left vertical
members of the radiator support within the engine
compartment. The sensor housing has an integral
connector receptacle and two integral mounting
points each with a metal sleeve to provide crush pro-
tection.
The right and left front impact sensors are identi-
cal in construction and calibration with two excep-
tions:
²On models equipped with an optional 2.4L gaso-
line engine, the left front impact sensor includes a
shim that moves the sensor three millimeters toward
the rear of the vehicle on the left vertical member of
the radiator support for additional clearance that is
required for that application.
²On models equipped with an optional diesel
engine, the left front impact sensor includes a
stamped metal mounting bracket that rotates theconnector receptacle end of the sensor toward the
outboard side of the vehicle for additional clearance
that is required for that application.
A cavity in the center of the molded black plastic
impact sensor housing contains the electronic cir-
cuitry of the sensor which includes an electronic com-
munication chip and an electronic impact sensor.
Potting material fills the cavity to seal and protect
the internal electronic circuitry and components. The
front impact sensors are each connected to the vehi-
cle electrical system through a dedicated take out
and connector of the headlamp and dash wire har-
ness.
The impact sensors cannot be repaired or adjusted
and, if damaged or faulty, they must be replaced. The
mounting bracket for the left front impact sensor on
models with a diesel engine is serviced as a unit with
that sensor.
OPERATION
The front impact sensors are electronic accelerom-
eters that sense the rate of vehicle deceleration,
which provides verification of the direction and sever-
ity of an impact. Each sensor also contains an elec-
tronic communication chip that allows the unit to
communicate the sensor status as well as sensor
fault information to the microprocessor in the Airbag
Control Module (ACM). The ACM microprocessor con-
tinuously monitors all of the front passive restraint
system electrical circuits to determine the system
readiness. If the ACM detects a monitored system
fault, it sets a Diagnostic Trouble Code (DTC) and
controls the airbag indicator operation accordingly.
The impact sensors each receive battery current and
ground through dedicated left and right sensor plus and
minus circuits from the ACM. The impact sensors and
the ACM communicate by modulating the voltage in the
sensor plus circuit. The hard wired circuits between the
front impact sensors and the ACM may be diagnosed
and tested using conventional diagnostic tools and pro-
cedures. However, conventional diagnostic methods will
not prove conclusive in the diagnosis of the ACM or the
impact sensors. The most reliable, efficient, and accu-
rate means to diagnose the impact sensors, the ACM,
and the electronic message communication between the
sensors and the ACM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic informa-
tion.
Fig. 17 Front Impact Sensor
1 - SENSOR
2 - CONNECTOR RECEPTACLE
KJRESTRAINTS 8O - 21
Page 649 of 1803

REMOVAL
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: THE FRONT IMPACT SENSOR ENABLES
THE SYSTEM TO DEPLOY THE FRONT SUPPLE-
MENTAL RESTRAINTS. NEVER STRIKE OR DROP
THE FRONT IMPACT SENSOR, AS IT CAN DAMAGE
THE IMPACT SENSOR OR AFFECT ITS CALIBRA-
TION. IF AN IMPACT SENSOR IS ACCIDENTALLY
DROPPED DURING SERVICE, THE SENSOR MUST
BE SCRAPPED AND REPLACED WITH A NEW UNIT.
FAILURE TO OBSERVE THIS WARNING COULD
RESULT IN ACCIDENTAL, INCOMPLETE, OR
IMPROPER FRONT SUPPLEMENTAL RESTRAINT
DEPLOYMENT AND POSSIBLE OCCUPANT INJU-
RIES.
(1) Disconnect and isolate the battery negative
cable. Wait two minutes for the system capacitor to
discharge before further service.
(2) Remove the two screws that secure the right or
left front impact sensor, left impact sensor and shim
(2.4L engine only), or left impact sensor and bracket
unit (diesel engine only) to the back of the right or
left radiator support vertical member (Fig. 18).
(3) Disconnect the headlamp and dash wire har-
ness connector for the front impact sensor from the
sensor connector receptacle.
(4) Remove the right or left front impact sensor,
left impact sensor and shim (2.4L engine only), or left
impact sensor and bracket unit (diesel engine only)
from the engine compartment.
INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: THE FRONT IMPACT SENSOR ENABLES
THE SYSTEM TO DEPLOY THE FRONT SUPPLE-
MENTAL RESTRAINTS. NEVER STRIKE OR DROP
THE FRONT IMPACT SENSOR, AS IT CAN DAMAGE
THE IMPACT SENSOR OR AFFECT ITS CALIBRA-
TION. IF AN IMPACT SENSOR IS ACCIDENTALLY
DROPPED DURING SERVICE, THE SENSOR MUST
BE SCRAPPED AND REPLACED WITH A NEW UNIT.
FAILURE TO OBSERVE THIS WARNING COULD
RESULT IN ACCIDENTAL, INCOMPLETE, OR
IMPROPER FRONT SUPPLEMENTAL RESTRAINT
DEPLOYMENT AND POSSIBLE OCCUPANT INJU-
RIES.
(1) Position the right or left front impact sensor,
left impact sensor and shim (2.4L engine only), or left
Fig. 18 Front Impact Sensor Remove/Install
1 - RADIATOR SUPPORT
2 - IMPACT SENSOR OR LEFT IMPACT SENSOR & SHIM (2.4L
ENGINE ONLY)
3 - SCREW (4)
4 - WIRE HARNESS CONNECTOR
5 - LEFT IMPACT SENSOR & BRACKET (DIESEL ENGINE ONLY)
8O - 22 RESTRAINTSKJ
FRONT IMPACT SENSOR (Continued)
Page 650 of 1803

impact sensor and bracket unit (diesel engine only)
into the engine compartment (Fig. 18).
(2) Reconnect the headlamp and dash wire harness
connector for the front impact sensor to the sensor
connector receptacle.
(3) Position the right or left front impact sensor,
left impact sensor and shim (2.4L engine only), or left
impact sensor and bracket unit (diesel engine only)
onto the back of the right or left radiator support
vertical member.
(4) Loosely install the upper screw that secures
the right or left front impact sensor, left impact sen-
sor and shim (2.4L engine only), or left impact sensor
and bracket unit (diesel engine only) to the back of
the right or left radiator support vertical member.
(5)
Install and tighten the lower screw that secures
the right or left front impact sensor, left impact sensor
and shim (2.4L engine only), or left impact sensor and
bracket unit (diesel engine only) to the back of the right
or left radiator support vertical member. Tighten the
screw to 7 N´m (65 in. lbs.).
(6) Tighten the upper screw that secures the right
or left front impact sensor, left impact sensor and
shim (2.4L engine only), or left impact sensor and
bracket unit (diesel engine only) to the back of the
right or left radiator support vertical member.
Tighten the screw to 7 N´m (65 in. lbs.).
(7) Do not reconnect the battery negative cable at
this time. The airbag system verification test proce-
dure should be performed following service of any
airbag system component. (Refer to 8 - ELECTRI-
CAL/RESTRAINTS - STANDARD PROCEDURE -
VERIFICATION TEST).
FRONT SEAT BELT &
RETRACTOR
REMOVAL
WARNING: ON VEHICLES EQUIPPED WITH AIRBAGS,
DISABLE THE SUPPLEMENTAL RESTRAINT SYSTEM
BEFORE ATTEMPTING ANY STEERING WHEEL,
STEERING COLUMN, DRIVER AIRBAG, PASSENGER
AIRBAG, SEAT BELT TENSIONER, FRONT IMPACT
SENSORS, SIDE CURTAIN AIRBAG, OR INSTRUMENT
PANEL COMPONENT DIAGNOSIS OR SERVICE. DIS-
CONNECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE SUP-
PLEMENTAL RESTRAINT SYSTEM. FAILURE TO TAKE
THE PROPER PRECAUTIONS COULD RESULT IN
ACCIDENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: DURING AND FOLLOWING ANY SEAT
BELT SERVICE, CAREFULLY INSPECT ALL SEAT
BELTS, BUCKLES, MOUNTING HARDWARE, AND
RETRACTORS FOR PROPER INSTALLATION,
OPERATION, OR DAMAGE. REPLACE ANY BELT
THAT IS CUT, FRAYED, OR TORN. STRAIGHTEN
ANY BELT THAT IS TWISTED. TIGHTEN ANY
LOOSE FASTENERS. REPLACE ANY BELT THAT
HAS A DAMAGED OR INOPERATIVE BUCKLE OR
RETRACTOR. REPLACE ANY BELT THAT HAS A
BENT OR DAMAGED LATCH PLATE OR ANCHOR
PLATE. NEVER ATTEMPT TO REPAIR A SEAT BELT
COMPONENT. ALWAYS REPLACE DAMAGED OR
FAULTY SEAT BELT COMPONENTS WITH THE COR-
RECT, NEW AND UNUSED REPLACEMENT PARTS
LISTED IN THE MOPAR PARTS CATALOG.
(1) Adjust the front seat to its most forward posi-
tion for easiest access to the front seat belt lower
anchor and the B-pillar trim.
(2) Disconnect and isolate the battery negative
cable. Wait two minutes for the system capacitor to
discharge before further service.
(3) Using a trim stick or another suitable wide
flat-bladed tool, gently pry the plug that covers the
front seat belt lower anchor screw to remove it from
the rear of the outboard seat side shield (Fig. 19).
Fig. 19 Front Seat Belt Lower Anchor Remove/
Install
1 - FRONT SEAT
2 - LOWER ANCHOR
3 - SCREW
4 - PLUG
KJRESTRAINTS 8O - 23
FRONT IMPACT SENSOR (Continued)
Page 674 of 1803

SPEED CONTROL
TABLE OF CONTENTS
page page
SPEED CONTROL
DESCRIPTION..........................1
OPERATION............................1
DIAGNOSIS AND TESTING - ROAD TEST.....2
SPECIFICATIONS
TORQUE - SPEED CONTROL.............2
CABLE
DESCRIPTION..........................3
OPERATION............................3
REMOVAL - 3.7L.........................3
INSTALLATION - 3.7L.....................4
SERVO
DESCRIPTION..........................4
OPERATION............................4REMOVAL.............................4
INSTALLATION..........................5
SWITCH
DESCRIPTION..........................5
OPERATION............................5
REMOVAL.............................6
INSTALLATION..........................6
VACUUM RESERVOIR
DESCRIPTION..........................7
OPERATION............................7
DIAGNOSIS AND TESTING - VACUUM
RESERVOIR..........................7
REMOVAL.............................7
INSTALLATION..........................8
SPEED CONTROL
DESCRIPTION
The speed control system is electronically con-
trolled and vacuum operated. Electronic control of
the speed control system is integrated into the Pow-
ertrain Control Module (PCM). The controls consist
of two steering wheel mounted switches. The
switches are labeled: ON/OFF, RES/ACCEL, SET,
COAST, and CANCEL.
The system is designed to operate at speeds above
30 mph (50 km/h).
WARNING: THE USE OF SPEED CONTROL IS NOT
RECOMMENDED WHEN DRIVING CONDITIONS DO
NOT PERMIT MAINTAINING A CONSTANT SPEED,
SUCH AS IN HEAVY TRAFFIC OR ON ROADS THAT
ARE WINDING, ICY, SNOW COVERED, OR SLIP-
PERY.
OPERATION
When speed control is selected by depressing the
ON switch, the PCM allows a set speed to be stored
in PCM RAM for speed control. To store a set speed,
depress the SET switch while the vehicle is moving
at a speed between 35 and 85 mph. In order for the
speed control to engage, the brakes cannot be
applied, nor can the gear selector be indicating the
transmission is in Park or Neutral.
The speed control can be disengaged manually by:
²Stepping on the brake pedal
²Depressing the OFF switch²Depressing the CANCEL switch.
²Depressing the clutch pedal (if equipped).
NOTE: Depressing the OFF switch or turning off the
ignition switch will erase the set speed stored in
the PCM.
For added safety, the speed control system is pro-
grammed to disengage for any of the following condi-
tions:
²An indication of Park or Neutral
²A rapid increase rpm (indicates that the clutch
has been disengaged)
²Excessive engine rpm (indicates that the trans-
mission may be in a low gear)
²The speed signal increases at a rate of 10 mph
per second (indicates that the coefficient of friction
between the road surface and tires is extremely low)
²The speed signal decreases at a rate of 10 mph
per second (indicates that the vehicle may have
decelerated at an extremely high rate)
Once the speed control has been disengaged,
depressing the RES/ACCEL switch (when speed is
greater than 30 mph) restores the vehicle to the tar-
get speed that was stored in the PCM.
While the speed control is engaged, the driver can
increase the vehicle speed by depressing the RES/AC-
CEL switch. The new target speed is stored in the
PCM when the RES/ACCEL is released. The PCM
also has a9tap-up9feature in which vehicle speed
increases at a rate of approximately 2 mph for each
momentary switch activation of the RES/ACCEL
switch.
KJSPEED CONTROL 8P - 1
Page 677 of 1803

(6) Slide speed control cable plastic mount towards
right of vehicle to remove cable from throttle body
bracket (Fig. 4).
(7) Remove servo cable from servo. Refer to Servo
Removal/Installation.
INSTALLATION - 3.7L
(1) Install end of cable to speed control servo.
Refer to Servo Removal/Installation.
(2) Slide speed control cable plastic mount into
throttle body bracket.
(3) Install speed control cable connector onto throt-
tle body bellcrank pin (push rearward to snap into
location).
(4) Slide throttle (accelerator) cable plastic mount
into throttle body bracket. Continue sliding until
cable release tab is aligned to hole in throttle body
mounting bracket.
(5) While holding throttle to wide open position,
place throttle cable pin into throttle body bellcrank.
(6) Install air filter resonator box to throttle body.
(7) Connect negative battery cable at battery.
(8) Before starting engine, operate accelerator
pedal to check for any binding.
SERVO
DESCRIPTION
The servo unit consists of a solenoid valve body,
and a vacuum chamber. The solenoid valve body con-
tains three solenoids:²Vacuum
²Vent
²Dump
The vacuum chamber contains a diaphragm with a
cable attached to control the throttle linkage.
OPERATION
The Powertrain Control Module (PCM) controls the
solenoid valve body. The solenoid valve body controls
the application and release of vacuum to the dia-
phragm of the vacuum servo. The servo unit cannot
be repaired and is serviced only as a complete assem-
bly.
Power is supplied to the servo's by the PCM
through the brake switch. The PCM controls the
ground path for the vacuum and vent solenoids.
The dump solenoid is energized anytime it receives
power. If power to the dump solenoid is interrupted,
the solenoid dumps vacuum in the servo. This pro-
vides a safety backup to the vent and vacuum sole-
noids.
The vacuum and vent solenoids must be grounded
at the PCM to operate. When the PCM grounds the
vacuum servo solenoid, the solenoid allows vacuum
to enter the servo and pull open the throttle plate
using the cable. When the PCM breaks the ground,
the solenoid closes and no more vacuum is allowed to
enter the servo. The PCM also operates the vent sole-
noid via ground. The vent solenoid opens and closes a
passage to bleed or hold vacuum in the servo as
required.
The PCM duty cycles the vacuum and vent sole-
noids to maintain the set speed, or to accelerate and
decelerate the vehicle. To increase throttle opening,
the PCM grounds the vacuum and vent solenoids. To
decrease throttle opening, the PCM removes the
grounds from the vacuum and vent solenoids. When
the brake is released, if vehicle speed exceeds 30
mph to resume, 35 mph to set, and the RES/ACCEL
switch has been depressed, ground for the vent and
vacuum circuits is restored.
REMOVAL
(1) Disconnect negative battery cable at battery.
(2) Disconnect vacuum line at servo (Fig. 5).
(3) Disconnect electrical connector at servo (Fig. 5).
(4) Remove coolant bottle nuts/bolts. Position bot-
tle forward a few inches.
(5) Disconnect servo cable at throttle body. Refer to
servo Cable Removal/Installation.
(6) Remove servo bracket mounting nuts (Fig. 5).
(7) Remove 2 mounting nuts holding servo cable
sleeve to bracket (Fig. 6).
(8) Pull speed control cable sleeve and servo away
from servo mounting bracket to expose cable retain-
ing clip (Fig. 6) and remove clip. Note: The servo
Fig. 4 SPEED CONTROL CABLE AT BRACKET
1 - THROTTLE CABLE BRACKET
2 - PLASTIC CABLE MOUNT
3 - SPEED CONTROL CABLE
8P - 4 SPEED CONTROLKJ
CABLE (Continued)
Page 678 of 1803

mounting bracket displayed in (Fig. 6) is a typical
bracket and may/may not be applicable to this model
vehicle.
(9) Remove servo from mounting bracket. While
removing, note orientation of servo to bracket.INSTALLATION
(1) Position servo to mounting bracket.
(2) Align hole in cable connector with hole in servo
pin. Install cable-to-servo retaining clip.
(3) Insert servo mounting studs through holes in
servo mounting bracket.
(4) Install servo-to-mounting bracket nuts and
tighten. Refer to torque specifications.
(5) Install servo mounting bracket-to-body nuts
and tighten. Refer to torque specifications.
(6) Connect vacuum line at servo.
(7) Connect electrical connector at servo.
(8) Connect servo cable to throttle body. Refer to
servo Cable Removal/Installation.
(9) Install coolant bottle.
(10) Connect negative battery cable to battery.
(11) Before starting engine, operate accelerator
pedal to check for any binding.
SWITCH
DESCRIPTION
There are two separate switch pods that operate
the speed control system. The steering-wheel-
mounted switches use multiplexed circuits to provide
inputs to the PCM for ON, OFF, RESUME, ACCEL-
ERATE, SET, DECEL and CANCEL modes. Refer to
the owner's manual for more information on speed
control switch functions and setting procedures.
The individual switches cannot be repaired. If one
switch fails, the entire switch module must be
replaced.
OPERATION
When speed control is selected by depressing the
ON, OFF switch, the PCM allows a set speed to be
stored in its RAM for speed control. To store a set
speed, depress the SET switch while the vehicle is
moving at a speed between approximately 35 and 85
mph. In order for the speed control to engage, the
brakes cannot be applied, nor can the gear selector
be indicating the transmission is in Park or Neutral.
The speed control can be disengaged manually by:
²Stepping on the brake pedal
²Depressing the OFF switch
²Depressing the CANCEL switch.
The speed control can be disengaged also by any of
the following conditions:
²An indication of Park or Neutral
²The VSS signal increases at a rate of 10 mph
per second (indicates that the co-efficient of friction
between the road surface and tires is extremely low)
²Depressing the clutch pedal.
²Excessive engine rpm (indicates that the trans-
mission may be in a low gear)
Fig. 5 SPEED CONTROL SERVO
1-9T9FITTING
2 - VACUUM LINE
3 - SERVO BRACKET MOUNTING NUTS
4 - SERVO MOUNTING BRACKET
5 - SERVO
6 - SERVO ELECTRICAL CONNECTOR
Fig. 6 SERVO CABLE CLIP REMOVE/INSTALL
TYPICAL
1 - SERVO MOUNTING NUTS (2)
2 - SERVO
3 - CABLE RETAINING CLIP
4 - SERVO CABLE AND SLEEVE
KJSPEED CONTROL 8P - 5
SERVO (Continued)
Page 680 of 1803

VACUUM RESERVOIR
DESCRIPTION
The vacuum reservoir is a plastic storage tank con-
nected to an engine vacuum source by vacuum lines.
OPERATION
The vacuum reservoir is used to supply the vac-
uum needed to maintain proper speed control opera-
tion when engine vacuum drops, such as in climbing
a grade while driving. A one-way check valve is used
in the vacuum line between the reservoir and the
vacuum source. This check valve is used to trap
engine vacuum in the reservoir. On certain vehicle
applications, this reservoir is shared with the heat-
ing/air-conditioning system. The vacuum reservoir
cannot be repaired and must be replaced if faulty.
DIAGNOSIS AND TESTING - VACUUM
RESERVOIR
(1) Disconnect vacuum hose at speed control servo
and install a vacuum gauge into the disconnected
hose.
(2) Start engine and observe gauge at idle. Vac-
uum gauge should read at least ten inches of mer-
cury.
(3) If vacuum is less than ten inches of mercury,
determine source of leak. Check vacuum line to
engine for leaks. Also check actual engine intake
manifold vacuum. If manifold vacuum does not meet
this requirement, check for poor engine performance
and repair as necessary.
(4) If vacuum line to engine is not leaking, check
for leak at vacuum reservoir. To locate and gain
access to reservoir, refer to Vacuum Reservoir Remov-
al/Installation in this group. Disconnect vacuum line
at reservoir and connect a hand-operated vacuum
pump to reservoir fitting. Apply vacuum. Reservoir
vacuum should not bleed off. If vacuum is being lost,
replace reservoir.
(5) Verify operation of one-way check valve and
check it for leaks.Certain models may be
equipped with 2 check-valves.
(a) Locate one-way check valve. The valve is
located in vacuum line between vacuum reservoir
and engine vacuum source. Disconnect vacuum
hoses (lines) at each end of valve.
(b) Connect a hand-operated vacuum pump to
reservoir end of check valve. Apply vacuum. Vac-
uum should not bleed off. If vacuum is being lost,
replace one-way check valve.
(c) Connect a hand-operated vacuum pump to
vacuum source end of check valve. Apply vacuum.
Vacuum should flow through valve. If vacuum is
not flowing, replace one-way check valve. Seal thefitting at opposite end of valve with a finger and
apply vacuum. If vacuum will not hold, diaphragm
within check valve has ruptured. Replace valve.
REMOVAL
The vacuum reservoir is located behind, and at the
outer end of the instrument panel (Fig. 8). To gain
access for testing or removal, remove glovebox assem-
bly. Also remove fuse box access cover panel at end of
instrument panel. On vehicles equipped with LHD
(Left Hand Drive), this fuse access panel is located at
right end of instrument panel. On vehicles equipped
with RHD (Right Hand Drive), this access panel is
located at left end of instrument panel.
(1) Remove glovebox assembly. Access to reservoir
vacuum line and fitting can now be made.
(2) Remove vacuum line at reservoir.
(3) Remove fuse access cover panel at end of
instrument panel.
(4) Through fuse access opening, remove 2 horizon-
tally mounted screws (Fig. 8).
(5) From bottom of instrument panel, remove 1
vertically mounted screw (Fig. 9).
(6) Remove reservoir from instrument panel.
Fig. 8 VACUUM RESERVOIR LOCATION
1 - VACUUM RESERVOIR
2 - HORIZONTAL MOUNTING SCREWS
3 - OUTBOARD END OF I.P.
KJSPEED CONTROL 8P - 7
Page 684 of 1803

²Combination Flasher- An electronic combina-
tion flasher is integral to the hazard switch located
in the center of the instrument panel above the
radio. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/COMBINATION FLASHER -
DESCRIPTION).
²Door Ajar Switch- A door ajar switch is inte-
gral to the latch of each door in the vehicle. (Refer to
8 - ELECTRICAL/LAMPS/LIGHTING - INTERIOR/
DOOR AJAR SWITCH - DESCRIPTION).
²Door Cylinder Lock Switch- For North
American vehicles only, a door cylinder lock switch is
located on the back of the lock cylinder of each front
door. (Refer to 8 - ELECTRICAL/VEHICLE THEFT
SECURITY/DOOR CYLINDER LOCK SWITCH -
DESCRIPTION).
²Flip-Up Glass Ajar Switch- A flip-up glass
ajar switch is integral to the rear flip-up glass latch,
located on the top of the tailgate near the center.
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
INTERIOR/FLIP-UP GLASS AJAR SWITCH -
DESCRIPTION).
²Hood Ajar Switch- A hood ajar switch is
located beneath the hood panel on the right inner
fender side shield of vehicles built for sale in certain
markets where it is required equipment. (Refer to 8 -
ELECTRICAL/VEHICLE THEFT SECURITY/HOOD
AJAR SWITCH - DESCRIPTION).
²Horn Relay- A horn relay is located on the
Junction Block (JB) under the driver side outboard
end of the instrument panel. (Refer to 8 - ELECTRI-
CAL/HORN/HORN RELAY - DESCRIPTION).
²Intrusion Transceiver Module- An Intrusion
Transceiver Module (ITM) is located near the center
of the headliner in the passenger compartment of
vehicles built for sale in certain markets where it is
required equipment. (Refer to 8 - ELECTRICAL/VE-
HICLE THEFT SECURITY/UK SECURITY SYSTEM
MODULE - DESCRIPTION).
²Security Indicator- A security indicator is
located in the ElectroMechanical Instrument Cluster
(EMIC) on the instrument panel in front of the driver
side front seat. (Refer to 8 - ELECTRICAL/INSTRU-
MENT CLUSTER/SECURITY INDICATOR -
DESCRIPTION).
²Siren- An alarm siren is located on the front
extension of the right front wheel house panel in the
engine compartment of vehicles built for sale in cer-
tain markets where it is required equipment. (Refer
to 8 - ELECTRICAL/VEHICLE THEFT SECURITY/
SIREN - DESCRIPTION).
²Tailgate Ajar Switch- A tailgate ajar switch is
integral to the latch for the tailgate in the vehicle.
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
INTERIOR/TAILGATE AJAR SWITCH - DESCRIP-
TION).SENTRY KEY IMMOBILIZER SYSTEM The Sen-
try Key Immobilizer System (SKIS) is available as a
factory-installed option on this model. Vehicles
equipped with the Vehicle Theft Alarm (VTA) are also
equipped with SKIS. The SKIS provides passive vehi-
cle protection by preventing the engine from operat-
ing unless a valid electronically encoded key is
detected in the ignition lock cylinder. The SKIS
includes the following major components, which are
described in further detail elsewhere in this service
information:
²Powertrain Control Module- The Powertrain
Control Module (PCM) is located on the left inner
fender shield in the engine compartment near the
dash panel. (Refer to 8 - ELECTRICAL/ELEC-
TRONIC CONTROL MODULES/POWERTRAIN
CONTROL MODULE - DESCRIPTION).
²Sentry Key Immobilizer Module- The Sentry
Key Immobilizer Module (SKIM) is located beneath
the steering column shrouds on the right side of the
steering column near the ignition lock cylinder hous-
ing. (Refer to 8 - ELECTRICAL/ELECTRONIC CON-
TROL MODULES/SENTRY KEY IMMOBILIZER
MODULE - DESCRIPTION).
²Sentry Key Transponder- The Sentry Key
transponder is molded into the head of the ignition
key, and concealed by a gray molded rubber cap.
(Refer to 8 - ELECTRICAL/VEHICLE THEFT SECU-
RITY/TRANSPONDER KEY - DESCRIPTION).
²SKIS Indicator- The SKIS indicator is located
in the ElectroMechanical Instrument Cluster (EMIC)
on the instrument panel in front of the driver side
front seat. (Refer to 8 - ELECTRICAL/INSTRU-
MENT CLUSTER/SPEED CONTROL INDICATOR -
DESCRIPTION).
OPERATION
The Vehicle Theft Security System (VTSS) is
divided into two basic subsystems: Vehicle Theft
Alarm (VTA) and Sentry Key Immobilizer System
(SKIS). Following are paragraphs that briefly
describe the operation of each of these two sub-
systems.
VEHICLE THEFT ALARM The Body Control Mod-
ule (BCM) is used on this model to control and inte-
grate many of the electronic functions and features
included in the Vehicle Theft Alarm (VTA). The BCM
receives hard wired inputs indicating the status of
the door ajar switches, the door cylinder lock
switches, the ignition switch, the tailgate ajar switch,
the tailgate cylinder lock switch, the flip-up glass
ajar switch, the power lock switches and, in vehicles
built for certain markets where it is required, the
hood ajar switch. The programming in the BCM
allows it to process the information from all of these
inputs and send control outputs to energize or de-en-
KJVEHICLE THEFT SECURITY 8Q - 3
VEHICLE THEFT SECURITY (Continued)
Page 686 of 1803

these outputs vary by the requirements of the mar-
ket for which the vehicle is manufactured. In all
cases, the visual output will be a flashing on and off
of the exterior lamps. For vehicles equipped with the
North American or the ROW base version of the
VTA, the audible output will be a pulsing of the horn.
For vehicles with the ROW premium version of the
VTA, the audible output will be a cycling of the
alarm siren. See the owner's manual in the vehicle
glove box for details of the alarm output require-
ments of the specific market for which the vehicle
was manufactured. The inputs that will trigger the
alarm include the door ajar switches, the tailgate
ajar switch, the flip-up glass ajar switch, and in vehi-
cles built for certain markets where they are
required, the hood ajar switch and the Intrusion
Transceiver Module (ITM).
²TAMPER ALERT- The VTA tamper alert fea-
ture will pulse the horn (or the alarm siren for the
ROW premium version of the VTA) three times upon
VTA disarming, if the alarm was triggered and has
since timed-out. This feature alerts the vehicle oper-
ator that the VTA alarm was activated while the
vehicle was unattended.
²INTRUSION ALARM- The intrusion alarm is
an exclusive feature of the ROW premium version of
the VTA, which is only available in certain markets
where it is required. When the VTA is armed, a
motion sensor in the Intrusion Transceiver Module
(ITM) monitors the interior of the vehicle for move-
ment. If motion is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus to
invoke the visual alarm feature, and sends an elec-
tronic message to the alarm siren in the engine com-
partment over a dedicated serial bus to invoke the
audible alarm feature. The motion detect feature of
the ITM can be disabled by depressing the ªLockº
button on the RKE transmitter three times within
fifteen seconds during VTA arming, while the secu-
rity indicator is still flashing rapidly. The VTA pro-
vides a single short siren ªchirpº as an audible
confirmation that the motion detect disable request
has been received. The ITM must be electronically
enabled in order for the intrusion alarm to perform
as designed. The logic in the ITM keeps its intrusion
alarm function dormant until it is enabled using a
DRBIIItscan tool. The intrusion alarm function of
the ITM is enabled on vehicles equipped with thisoption at the factory, but a service replacement ITM
must be configured and enabled by the dealer using a
DRBIIItscan tool. Refer to the appropriate diagnos-
tic information.
SENTRY KEY IMMOBILIZER SYSTEM The Sen-
try Key Immobilizer System (SKIS) is designed to
provide passive protection against unauthorized vehi-
cle use by disabling the engine after about two sec-
onds of running, whenever any method other than a
valid Sentry Key is used to start the vehicle. The
SKIS is considered a passive protection system
because it is always active when the ignition system
is energized and does not require any customer inter-
vention. The SKIS uses Radio Frequency (RF) com-
munication to obtain confirmation that the key in the
ignition switch is a valid key for operating the vehi-
cle. The microprocessor-based SKIS hardware and
software also use electronic messages to communi-
cate with other electronic modules in the vehicle over
the Programmable Communications Interface (PCI)
data bus. (Refer to 8 - ELECTRICAL/ELECTRONIC
CONTROL MODULES/COMMUNICATION - OPER-
ATION).
Pre-programmed Sentry Key transponders are pro-
vided with the vehicle from the factory. Each Sentry
Key Immobilizer Module (SKIM) will recognize a
maximum of eight Sentry Keys. If the customer
would like additional keys other than those provided
with the vehicle, they may be purchased from any
authorized dealer. These additional keys must be pro-
grammed to the SKIM in the vehicle in order for the
system to recognize them as valid keys. This can be
done by the dealer using a DRBIIItscan tool or, if
Customer Learn programming is an available SKIS
feature in the market where the vehicle was pur-
chased, the customer can program the additional
keys, as long as at least two valid Sentry Keys are
already available. (Refer to 8 - ELECTRICAL/VEHI-
CLE THEFT SECURITY - STANDARD PROCE-
DURE - TRANSPONDER PROGRAMMING).
The SKIS performs a self-test each time the igni-
tion switch is turned to the On position, and will
store fault information in the form of Diagnostic
Trouble Codes (DTC's) if a system malfunction is
detected. The SKIS can be diagnosed, and any stored
DTC's can be retrieved using a DRBIIItscan tool.
Refer to the appropriate diagnostic information.
KJVEHICLE THEFT SECURITY 8Q - 5
VEHICLE THEFT SECURITY (Continued)