Anti JEEP LIBERTY 2002 KJ / 1.G Owner's Manual
[x] Cancel search | Manufacturer: JEEP, Model Year: 2002, Model line: LIBERTY, Model: JEEP LIBERTY 2002 KJ / 1.GPages: 1803, PDF Size: 62.3 MB
Page 265 of 1803

ENGINE
TABLE OF CONTENTS
page page
COOLANT
DESCRIPTION
DESCRIPTION - HOAT COOLANT.........18
DESCRIPTION - ENGINE COOLANT.......19
OPERATION...........................20
COOLANT RECOVERY PRESS CONTAINER
DESCRIPTION.........................20
OPERATION...........................20
ENGINE BLOCK HEATER - 2.4L
DESCRIPTION.........................20
OPERATION...........................20
REMOVAL - 2.4L........................20
INSTALLATION - 2.4L....................20
ENGINE COOLANT TEMPERATURE SENSOR
DESCRIPTION.........................21
OPERATION...........................21
REMOVAL.............................21
INSTALLATION.........................22
ENGINE COOLANT THERMOSTAT
REMOVAL - 2.4L ENGINE.................22
INSTALLATION - 2.4L ENGINE.............22
RADIATOR
DESCRIPTION.........................22REMOVAL.............................22
CLEANING............................24
INSPECTION..........................24
INSTALLATION.........................24
RADIATOR PRESSURE CAP
DESCRIPTION.........................25
OPERATION...........................25
DIAGNOSIS AND TESTING - RADIATOR
PRESSURE CAP......................25
CLEANING............................25
INSPECTION..........................25
RADIATOR FAN - ELECTRIC
DESCRIPTION.........................26
OPERATION...........................26
REMOVAL.............................26
INSTALLATION.........................27
WATER PUMP - 2.4L
DESCRIPTION.........................27
OPERATION...........................27
REMOVAL - 2.4L ENGINE.................27
INSPECTION..........................28
INSTALLATION - 2.4L ENGINE.............28
COOLANT
DESCRIPTION
DESCRIPTION - HOAT COOLANT
WARNING: ANTIFREEZE IS AN ETHYLENE GLYCOL
BASE COOLANT AND IS HARMFUL IF SWAL-
LOWED OR INHALED. IF SWALLOWED, DRINK
TWO GLASSES OF WATER AND INDUCE VOMIT-
ING. IF INHALED, MOVE TO FRESH AIR AREA.
SEEK MEDICAL ATTENTION IMMEDIATELY. DO NOT
STORE IN OPEN OR UNMARKED CONTAINERS.
WASH SKIN AND CLOTHING THOROUGHLY AFTER
COMING IN CONTACT WITH ETHYLENE GLYCOL.
KEEP OUT OF REACH OF CHILDREN. DISPOSE OF
GLYCOL BASE COOLANT PROPERLY, CONTACT
YOUR DEALER OR GOVERNMENT AGENCY FOR
LOCATION OF COLLECTION CENTER IN YOUR
AREA. DO NOT OPEN A COOLING SYSTEM WHEN
THE ENGINE IS AT OPERATING TEMPERATURE OR
HOT UNDER PRESSURE, PERSONAL INJURY CAN
RESULT. AVOID RADIATOR COOLING FAN WHENENGINE COMPARTMENT RELATED SERVICE IS
PERFORMED, PERSONAL INJURY CAN RESULT.
CAUTION: Use of Propylene Glycol based coolants
is not recommended, as they provide less freeze
protection and less corrosion protection.
The cooling system is designed around the coolant.
The coolant must accept heat from engine metal, in
the cylinder head area near the exhaust valves and
engine block. Then coolant carries the heat to the
radiator where the tube/fin radiator can transfer the
heat to the air.
The use of aluminum cylinder blocks, cylinder
heads, and water pumps requires special corrosion
protection. MopartAntifreeze/Coolant, 5 Year/100,000
Mile Formula (MS-9769), or the equivalent ethylene
glycol base coolant with organic corrosion inhibitors
(called HOAT, for Hybrid Organic Additive Technology)
is recommended. This coolant offers the best engine
cooling without corrosion when mixed with 50% Eth-
ylene Glycol and 50% distilled water to obtain a freeze
point of -37ÉC (-35ÉF). If it loses color or becomes con-
taminated, drain, flush, and replace with fresh prop-
erly mixed coolant solution.
7s - 18 ENGINEKJ
Page 266 of 1803

CAUTION: MoparTAntifreeze/Coolant, 5
Year/100,000 Mile Formula (MS-9769) may not be
mixed with any other type of antifreeze. Mixing of
coolants other than specified (non-HOAT or other
HOAT), may result in engine damage that may not
be covered under the new vehicle warranty, and
decreased corrosion protection.
COOLANT PERFORMANCE
The required ethylene-glycol (antifreeze) and water
mixture depends upon climate and vehicle operating
conditions. The coolant performance of various mix-
tures follows:
Pure Water-Water can absorb more heat than a
mixture of water and ethylene-glycol. This is for pur-
pose of heat transfer only. Water also freezes at a
higher temperature and allows corrosion.
100 percent Ethylene-Glycol-The corrosion
inhibiting additives in ethylene-glycol need the pres-
ence of water to dissolve. Without water, additives
form deposits in system. These act as insulation
causing temperature to rise to as high as 149ÉC
(300ÉF). This temperature is hot enough to melt plas-
tic and soften solder. The increased temperature can
result in engine detonation. In addition, 100 percent
ethylene-glycol freezes at -22ÉC (-8ÉF).
50/50 Ethylene-Glycol and Water-Is the recom-
mended mixture, it provides protection against freez-
ing to -37ÉC (-34ÉF). The antifreeze concentration
must alwaysbe a minimum of 44 percent, year-
round in all climates. If percentage is lower, engine
parts may be eroded by cavitation. Maximum protec-
tion against freezing is provided with a 68 percent
antifreeze concentration, which prevents freezing
down to -67.7ÉC (-90ÉF). A higher percentage will
freeze at a warmer temperature. Also, a higher per-
centage of antifreeze can cause the engine to over-
heat because specific heat of antifreeze is lower than
that of water.
CAUTION: Richer antifreeze mixtures cannot be
measured with normal field equipment and can
cause problems associated with 100 percent ethyl-
ene-glycol.
COOLANT SELECTION AND ADDITIVES
The use of aluminum cylinder blocks, cylinder
heads and water pumps requires special corrosion
protection. Only MopartAntifreeze/Coolant, 5
Year/100,000 Mile Formula (glycol base coolant with
corrosion inhibitors called HOAT, for Hybrid Organic
Additive Technology) is recommended. This coolant
offers the best engine cooling without corrosion when
mixed with 50% distilled water to obtain to obtain a
freeze point of -37ÉC (-35ÉF). If it loses color or
becomes contaminated, drain, flush, and replace with
fresh properly mixed coolant solution.CAUTION: Do not use coolant additives that are
claimed to improve engine cooling.
DESCRIPTION - ENGINE COOLANT
ETHYLENE-GLYCOL MIXTURES
CAUTION: Richer antifreeze mixtures cannot be
measured with normal field equipment and can
cause problems associated with 100 percent ethyl-
ene-glycol.
The required ethylene-glycol (antifreeze) and water
mixture depends upon the climate and vehicle oper-
ating conditions. The recommended mixture of 50/50
ethylene-glycol and water will provide protection
against freezing to -37 deg. C (-35 deg. F). The anti-
freeze concentrationmust alwaysbe a minimum of
44 percent, year-round in all climates.If percentage
is lower than 44 percent, engine parts may be
eroded by cavitation, and cooling system com-
ponents may be severely damaged by corrosion.
Maximum protection against freezing is provided
with a 68 percent antifreeze concentration, which
prevents freezing down to -67.7 deg. C (-90 deg. F). A
higher percentage will freeze at a warmer tempera-
ture. Also, a higher percentage of antifreeze can
cause the engine to overheat because the specific
heat of antifreeze is lower than that of water.
Use of 100 percent ethylene-glycol will cause for-
mation of additive deposits in the system, as the cor-
rosion inhibitive additives in ethylene-glycol require
the presence of water to dissolve. The deposits act as
insulation, causing temperatures to rise to as high as
149 deg. C (300) deg. F). This temperature is hot
enough to melt plastic and soften solder. The
increased temperature can result in engine detona-
tion. In addition, 100 percent ethylene-glycol freezes
at 22 deg. C (-8 deg. F ).
PROPYLENE-GLYCOL MIXTURES
It's overall effective temperature range is smaller
than that of ethylene-glycol. The freeze point of 50/50
propylene-glycol and water is -32 deg. C (-26 deg. F).
5 deg. C higher than ethylene-glycol's freeze point.
The boiling point (protection against summer boil-
over) of propylene-glycol is 125 deg. C (257 deg. F )
at 96.5 kPa (14 psi), compared to 128 deg. C (263
deg. F) for ethylene-glycol. Use of propylene-glycol
can result in boil-over or freeze-up on a cooling sys-
tem designed for ethylene-glycol. Propylene glycol
also has poorer heat transfer characteristics than
ethylene glycol. This can increase cylinder head tem-
peratures under certain conditions.
KJENGINE7s-19
COOLANT (Continued)
Page 295 of 1803

A chime warning system is standard factory-in-
stalled equipment on this model. The chime warning
system uses a single chime tone generator that is sol-
dered onto the electronic circuit board that is integral
to the ElectroMechanical Instrument Cluster (EMIC)
to provide an audible indication of various vehicle
conditions that may require the attention of the vehi-
cle operator or occupants (Fig. 1). The microproces-
sor-based EMIC utilizes electronic chime request
messages received from other electronic modules in
the vehicle over the Programmable Communications
Interface (PCI) data bus network along with hard
wired inputs to the cluster microprocessor to monitor
many sensors and switches throughout the vehicle.
In response to those inputs, the integrated circuitry
and internal programming of the EMIC allow it to
control audible outputs that are produced through its
on-board chime tone generator.
The EMIC circuitry and its chime tone generator
are capable of producing each of the four following
audible outputs:
²Fixed Duration Beep- A short, sharp, single
tactile ªbeep-likeº tone that is about 150 milliseconds
in duration.
²Single Chime Tone- A single ªbong-likeº chime
tone.
²Slow Rate Repetitive Chime- Repeated
chime tones that are issued at a slow rate of about
50 ªbong-likeº tones per minute.
²Fast Rate Repetitive Chime- Repeated chime
tones that are issued at a fast rate of about 180
ªbong-likeº tones per minute.
Hard wired circuitry connects the EMIC and the
various chime warning system switch and sensor
inputs to their electronic modules and to each other
through the electrical system of the vehicle. These
hard wired circuits are integral to numerous wire
harnesses, which are routed throughout the vehicle
and retained by many different methods. These cir-
cuits may be connected to each other, to the vehicle
electrical system and to the chime warning system
through the use of a combination of soldered splices,
splice block connectors, and many different types of
wire harness terminal connectors and insulators.
Refer to the appropriate wiring information. The wir-
ing information includes wiring diagrams, proper
wire and connector repair procedures, further details
on wire harness routing and retention, as well as
pin-out and location views for the various wire har-
ness connectors, splices and grounds.
The EMIC chime warning system circuitry and
integral chime tone generator cannot be adjusted or
repaired. If the EMIC or the chime tone generator
are damaged or faulty, the EMIC unit must be
replaced.OPERATION
The chime warning system is designed to provide
an audible output as an indication of various condi-
tions that may require the attention or awareness of
the vehicle operator or occupants. The chime warning
system components operate on battery current
received through a fused B(+) fuse in the Junction
Block (JB) on a non-switched fused B(+) circuit so
that the system may operate regardless of the igni-
tion switch position. However, the chime warning
system also monitors the ignition switch position so
that some chime features will only occur with igni-
tion switch in the On position, while others occur
regardless of the ignition switch position.
The chime warning system provides an audible
indication to the vehicle operator or occupants under
the following conditions:
²Airbag Indicator Warning- The ElectroMe-
chanical Instrument Cluster (EMIC) chime tone gen-
erator will generate one, short, ªbong-likeº chime
tone when the ignition switch is in the On position,
and an electronic message is received over the Pro-
grammable Communications Interface (PCI) data bus
from the Airbag Control Module (ACM) requesting
ªAirbagº indicator illumination. This warning will
only occur following completion of the ªAirbagº indi-
cator bulb test, and will only occur once during an
ignition cycle. The ACM uses internal programming,
hard wired inputs from the front Supplemental
Restraint System (SRS) components and, on vehicles
so equipped, electronic messages received over the
PCI data bus from each Side Impact Airbag Control
Module (SIACM) to determine the proper ªAirbagº
indicator messages to send to the EMIC.
²Anti-Lock Brake Indicator Warning- The
EMIC chime tone generator will generate one, short,
ªbong-likeº chime tone when the ignition switch is in
the On position, and an electronic message is
received over the PCI data bus from the Controller
Anti-lock Brake (CAB) requesting ªAntilock Brake
System (ABS)º indicator illumination. This warning
will only occur following completion of the ªABSº
indicator bulb test, and will only occur once during
an ignition cycle. The CAB uses internal program-
ming, hard wired inputs from the Antilock Brake
System (ABS) components, and electronic messages
received over the PCI data bus from the Powertrain
Control Module (PCM) to determine the proper
ªABSº indicator messages to send to the EMIC.
²Compass Mini-Trip Computer Reset- The
EMIC chime tone generator will generate one, short,
fixed duration ªbeep-likeº chime tone when the igni-
tion switch is in the On position, and an electronic
message is received over the PCI data bus from the
optional Compass Mini-Trip Computer (CMTC)
requesting that the CMTC elapsed time, average fuel
8B - 2 CHIME/BUZZERKJ
CHIME WARNING SYSTEM (Continued)
Page 298 of 1803

ever occurs first. The overspeed warning feature is
only enabled on a BCM that has been programmed
with a Middle East Gulf Coast Country (GCC) coun-
try code.
²No Airbag Indicator Message Warning- The
EMIC chime tone generator will generate one, short,
ªbong-likeº chime tone and turn on the ªAirbagº indi-
cator when the ignition switch is in the On position,
and a PCI data bus ªAirbagº indicator on or off mes-
sage is not received from the ACM for six consecutive
seconds.
²No Antilock Brake Indicator Message Warn-
ing- The EMIC chime tone generator will generate
one, short, ªbong-likeº chime tone and turn on the
ªABSº indicator when the ignition switch is in the On
position, and a PCI data bus ªABSº indicator on or
off message is not received from the CAB for six con-
secutive seconds.
²No Fuel Level Message Warning- The EMIC
chime tone generator will generate one, short, ªbong-
likeº chime tone and turn on the ªLow Fuelº indica-
tor when the ignition switch is in the On position,
and a PCI data bus fuel level message is not received
from the PCM for twelve consecutive seconds.
²Remote Keyless Entry Transmitter Pro-
gramming- On vehicles so equipped, the EMIC
chime tone generator will generate a single ªbong-
likeº chime tone when an electronic message is
received over the PCI data bus from the BCM indi-
cating that a Remote Keyless Entry (RKE) transmit-
ter has been successfully programmed by the
customer into the RKE module memory.
²Sentry Key Immobilizer System Transpon-
der Programming- On vehicles so equipped, the
EMIC chime tone generator will generate a single
ªbong-likeº chime tone when an electronic message is
received over PCI data bus message from the Sentry
Key Immobilizer Module (SKIM) indicating that the
Sentry Key Immobilizer System (SKIS) has been
placed in the ªCustomer Learnº programming mode,
and again each time a new SKIS transponder has
been successfully programmed by the customer.
²Turn Signal Cancel Warning- The EMIC
chime tone generator will generate repetitive ªbong-
likeº chime tones at a slow rate when the vehicle is
driven for a distance of about 3.2 kilometers (about
two miles) with a turn signal indicator flashing. The
EMIC uses an electronic message received over the
PCI data bus from the PCM, and a hard wired input
from the turn signal switch circuitry of the multi-
function switch to determine when to sound the turn
signal cancel warning. The PCM uses internal pro-
gramming and distance pulse information received
over a hard wired vehicle speed pulse input from the
BCM to determine the proper vehicle speed messages
to send to the EMIC. The BCM uses an internallyprogrammed electronic pinion factor and a hard
wired input from the rear wheel speed sensor to cal-
culate the proper distance pulse information to send
to the PCM. The electronic pinion factor represents
the proper tire size and axle ratio information for the
vehicle. These chimes will continue to sound until
the turn signal is turned Off, until the hazard warn-
ing system is turned On, or until the ignition switch
is turned to the Off position, whichever occurs first.
²Water-In-Fuel Warning- On vehicles equipped
with a diesel engine, each time the ignition switch is
turned to the On position, the EMIC chime tone gen-
erator will generate a single ªbong-likeº chime tone
the first time an electronic message is received over
the PCI data bus from the PCM requesting ªWater-
in-Fuelº indicator illumination. The PCM uses inter-
nal programming and a hard wired input from the
water-in-fuel sensor to determine the proper water-
in-fuel messages to send to the EMIC. This warning
will only occur once during an ignition cycle.
The EMIC provides chime service for all available
features in the chime warning system. The EMIC
relies upon its internal programming and hard wired
inputs from the turn signal (multi-function) switch,
the washer fluid level switch, and the engine coolant
level sensor (diesel engine only) to provide chime ser-
vice for the turn signal cancel warning, the low
washer fluid warning, and the low coolant warning
respectively. The EMIC relies upon electronic mes-
sage inputs received from other electronic modules
over the PCI data bus network to provide chime ser-
vice for all of the remaining chime warning system
features. Upon receiving the proper inputs, the EMIC
activates the integral chime tone generator to pro-
vide the audible chime warning to the vehicle opera-
tor. The internal programming of the EMIC
determines the priority of each chime request input
that is received, as well as the rate and duration of
each chime tone that is to be generated. See the own-
er's manual in the vehicle glove box for more infor-
mation on the features provided by the chime
warning system.
The hard wired chime warning system inputs to
the EMIC, as well as other hard wired circuits for
this system may be diagnosed and tested using con-
ventional diagnostic tools and procedures. However,
conventional diagnostic methods may not prove con-
clusive in the diagnosis of the EMIC, the PCI data
bus network, or the electronic message inputs used
by the EMIC to provide chime warning system ser-
vice. The most reliable, efficient, and accurate means
to diagnose the EMIC, the PCI data bus network,
and the electronic message inputs for the chime
warning system requires the use of a DRBIIItscan
tool. Refer to the appropriate diagnostic information.
KJCHIME/BUZZER 8B - 5
CHIME WARNING SYSTEM (Continued)
Page 300 of 1803

ELECTRONIC CONTROL MODULES
TABLE OF CONTENTS
page page
ELECTRONIC CONTROL MODULES
STANDARD PROCEDURE - PCM/SKIM
PROGRAMMING.......................1
BODY CONTROL MODULE
DESCRIPTION..........................2
OPERATION............................5
DIAGNOSIS AND TESTING - BODY CONTROL
MODULE.............................7
REMOVAL.............................7
INSTALLATION..........................7
COMMUNICATION
DESCRIPTION..........................8
OPERATION............................8
CONTROLLER ANTILOCK BRAKE
REMOVAL.............................10
INSTALLATION.........................10
DATA LINK CONNECTOR
DESCRIPTION - DATA LINK CONNECTOR....10
OPERATION - DATA LINK CONNECTOR......10
POWERTRAIN CONTROL MODULE
DESCRIPTION
DESCRIPTION - PCM..................11
DESCRIPTION - MODES OF OPERATION . . . 11
DESCRIPTION - 5 VOLT SUPPLIES.......13
DESCRIPTION - IGNITION CIRCUIT SENSE . 13DESCRIPTION - POWER GROUNDS......13
DESCRIPTION - SENSOR RETURN.......14
OPERATION
OPERATION - PCM....................14
OPERATION - 5 VOLT SUPPLIES.........15
OPERATION - IGNITION CIRCUIT SENSE . . . 15
REMOVAL.............................15
INSTALLATION.........................15
SENTRY KEY IMMOBILIZER MODULE
DESCRIPTION.........................15
OPERATION...........................16
REMOVAL.............................17
INSTALLATION.........................18
TRANSMISSION CONTROL MODULE
DESCRIPTION.........................18
OPERATION...........................18
STANDARD PROCEDURE - TCM QUICK
LEARN..............................21
HEATED SEAT MODULE
DESCRIPTION.........................21
OPERATION...........................21
DIAGNOSIS AND TESTING - HEATED SEAT
MODULE............................22
REMOVAL.............................24
INSTALLATION.........................24
ELECTRONIC CONTROL
MODULES
STANDARD PROCEDURE - PCM/SKIM
PROGRAMMING
NOTE: Before replacing the PCM for a failed driver,
control circuit, or ground circuit, be sure to check
the related component/circuit integrity for failures
not detected due to a double fault in the circuit.
Most PCM driver/control circuit failures are caused
by internal component failures (i.e. relays and sole-
noids) and shorted circuits (i.e. pull-ups, drivers,
and switched circuits). These failures are difficult to
detect when a double fault has occurred and only
one DTC has been set.
When a PCM (JTEC) and the SKIM are replaced
at the same time, perform the following steps in
order:
(1) Program the new PCM (JTEC).(2) Program the new SKIM.
(3) Replace all ignition keys and program them to
the new SKIM.
PROGRAMMING THE PCM (JTEC)
The SKIS Secret Key is an ID code that is unique
to each SKIM. This code is programmed and stored
in the SKIM, the PCM, and the ignition key tran-
sponder chip(s). When replacing the PCM, it is nec-
essary to program the secret key into the new PCM
using the DRBIIItscan tool. Perform the following
steps to program the secret key into the PCM.
(1) Turn the ignition switch to the On position
(transmission in Park/Neutral).
(2) Use the DRBIIItand select THEFT ALARM,
SKIM, then MISCELLANEOUS.
(3) Select PCM REPLACED (GAS ENGINE).
(4) Enter secured access mode by entering the
vehicle four-digit PIN.
(5) Select ENTER to update PCM VIN.
KJELECTRONIC CONTROL MODULES 8E - 1
Page 303 of 1803

²Fog Lamp Control- The premium BCM pro-
vides fog lamp control for front fog lamps (optional),
and rear fog lamps (in required markets only).
²Front Wiper System Status- The BCM moni-
tors the status of the front wiper motor park switch.
²Fuel Economy and Distance to Empty Cal-
culations- The BCM calculates and transmits the
fuel economy and Distance To Empty (DTE) data.
²Headlamp Time Delay- The BCM provides a
headlamp time delay feature with the ignition switch
in the Off position.
²Heated Rear Glass Control- The BCM pro-
vides control and timer functions for the heated rear
glass feature and transmits the system status.
²Ignition On/Off Timer- The BCM monitors
and transmits the elapsed ignition On timer data
and monitors the ignition Off time.
²Ignition Switch Position Status- The BCM
monitors and transmits the status of the ignition
switch.
²Instrument Panel Dimming- The BCM mon-
itors and transmits the selected illumination inten-
sity level of the panel lamps dimmer switch.
²Interior Lamp Load Shedding- The BCM
provides a battery saver feature which will automat-
ically turn off all interior lamps that remain on after
a timed interval.
²Interior Lighting Control- The BCM moni-
tors inputs from the interior lighting switch, the door
ajar switches, the flip-up glass ajar switch, the tail-
gate ajar switch, the cargo lamp switch, the reading
lamp switches, and the Remote Keyless Entry (RKE)
module to provide courtesy lamp control. This
includes support for timed illuminated entry with
theater-style fade-to-off and courtesy illumination
defeat features.
²Intermittent Wipe and Front Wiper System
Control- The BCM monitors inputs from the front
wiper and washer switch and the front wiper motor
park switch to provide front wiper system control
through the wiper on/off and high/low relays. This
includes support for adjustable intermittent wipe,
mist wipe (also known as pulse wipe), and wipe-after-
wash features.
²Key-In-Ignition Switch Status- The BCM
monitors and transmits the status of the key-in-igni-
tion switch.
²Panic Mode- The BCM provides support for
the Remote Keyless Entry (RKE) system panic mode
feature.
²Parade Mode- The BCM provides a parade
mode (also known as funeral mode) that allows the
interior Vacuum Fluorescent Displays (VFD) to be
illuminated at full intensity while driving in daylight
with the exterior lamps On.²Power Locks- The BCM monitors inputs from
the power lock switches and the Remote Keyless
Entry (RKE) module (optional) to provide control of
the power lock motors through outputs to the lock,
unlock, and driver unlock (RKE only) relays. This
includes support for rolling door locks (also known as
automatic door locks) and a door lock inhibit mode.
²Programmable Features- The BCM provides
support for several standard and optional program-
mable features, including: rolling door locks, head-
lamp time delay interval, Remote Keyless Entry
(RKE) driver-door-only or unlock-all-doors, RKE opti-
cal chirp, and RKE audible chirp.
²Remote Keyless Entry- The premium BCM
provides the optional Remote Keyless Entry (RKE)
system features, including support for the RKE Lock,
Unlock (with optional driver-door-only unlock, and
unlock-all-doors), rear flip-up glass control, Panic,
audible chirp, optical chirp, and illuminated entry
modes, as well as the ability to be programmed to
recognize up to four RKE transmitters.
²Rolling Door Locks- The BCM provides sup-
port for the power lock system rolling door locks fea-
ture (also known as automatic door locks).
²Tailgate and Flip-Up Glass Ajar Status- The
BCM monitors and transmits the status of the tail-
gate and rear flip-up glass ajar switches.
²Remote Radio Switch Interface- The pre-
mium BCM monitors and transmits the status of the
optional remote radio switches.
²Self-Diagnostics- The BCM provides support
for diagnostics through communication with the
DRBIIItscan tool over the PCI data bus network.
Each analog and digital input can be verified, and
each output can be actuated through the use of this
diagnostic protocol. The BCM also stores Diagnostic
Trouble Codes (DTCs) to assist in troubleshooting
this unit.
²Vacuum Fluorescent Display Synchroniza-
tion- The BCM transmits panel lamp intensity data
which allows modules with Vacuum Fluorescent Dis-
plays (VFD) to coordinate their illumination inten-
sity.
²Vehicle Speed System- The BCM monitors a
vehicle speed input from the vehicle speed sensor
(without Antilock Brake System [ABS]) or from the
Controller Antilock Brake (CAB)(with ABS), calcu-
lates the vehicle speed based upon a programmed
axle ratio/tire size (electronic pinion factor), and
transmits the vehicle speed information to the Pow-
ertrain Control Module (PCM) on a hard wired out-
put circuit.
²Vehicle Theft Security System- The pre-
mium BCM monitors inputs from the door cylinder
lock switches, the tailgate cylinder lock switch, the
door ajar switches, the tailgate ajar switch, the
8E - 4 ELECTRONIC CONTROL MODULESKJ
BODY CONTROL MODULE (Continued)
Page 309 of 1803

CONTROLLER ANTILOCK
BRAKE
REMOVAL
(1) Install the prop rod on the brake pedal to keep
pressure on the brake system.
(2) Remove the negative battery cable from the
battery.
(3) Pull up on the CAB harness connector release
(Fig. 4)and remove connector.
(4) Remove the pump connector from the CAB.
(5) Remove the CAB mounting bolts (Fig. 5).
(6) Remove the CAB from the HCU (Fig. 6).
INSTALLATION
(1) Install CAB to the HCU (Fig. 6).
(2) Install mounting bolts. Tighten to 2 N´m (16 in.
lbs.).
(3) Install the pump electircal connector to the
CAB (Fig. 6).
(4) Install the wiring harness connector to the
CAB and push down on the release to secure the con-
nector.
(5) Install negative battery cable to the battery.
(6) Remove the pushrod from the vehicle.
DATA LINK CONNECTOR
DESCRIPTION - DATA LINK CONNECTOR
The data link connector is located at the lower
edge of the instrument panel near the steering col-
umn (Fig. 7).
OPERATION - DATA LINK CONNECTOR
The 16±way data link connector (diagnostic scan
tool connector) links the Diagnostic Readout Box
(DRB) scan tool or the Mopar Diagnostic System
(MDS) with the Powertrain Control Module (PCM).
Fig. 4 CAB HARNESS CONNECTOR RELEASE
1 - ABS MODULE
2 - ELECTRICAL CONNECTOR
Fig. 5 HCU/CAB MOUNTING
1 - HCU
2 - CAB
3 - HCU/CAB BRACKET
4 - MOUNTING NUTS AND STUDS
5 - MOTOR
Fig. 6 CONTROLLER AND HCU
1 - CONTROLLER ANTILOCK BRAKE MODULE
2 - HYDRAULIC CONTROL UNIT (H.C.U)
3 - ELECTRICAL CONNECTOR
8E - 10 ELECTRONIC CONTROL MODULESKJ
Page 406 of 1803

perform its many functions. The EMIC module incor-
porates a blue-green digital Vacuum Fluorescent Dis-
play (VFD) for displaying odometer and trip
odometer information, as well as several warning
messages and certain diagnostic information. In addi-
tion to instrumentation and indicators, the EMIC has
the hardware and software needed to provide the fol-
lowing features:
²Chime Warning Service- A chime tone gener-
ator on the EMIC electronic circuit board provides
audible alerts to the vehicle operator and eliminates
the need for a separate chime module. (Refer to 8 -
ELECTRICAL/CHIME WARNING SYSTEM -
DESCRIPTION).
²Panel Lamps Dimming Service- The EMIC
provides a hard wired 12-volt Pulse-Width Modulated
(PWM) output that synchronizes the dimming level
of the radio display, gear selector indicator, heater-air
conditioner control, and all other dimmable lighting
on the panel lamps dimmer circuit with that of the
cluster illumination lamps and VFD.
The EMIC houses four analog gauges and has pro-
visions for up to twenty-four indicators (Fig. 2). The
EMIC includes the following analog gauges:
²Coolant Temperature Gauge
²Fuel Gauge
²Speedometer
²Tachometer
Some of the EMIC indicators are automatically
configured when the EMIC is connected to the vehi-
cle electrical system for compatibility with certain
optional equipment or equipment required for regula-
tory purposes in certain markets. While each EMIC
may have provisions for indicators to support every
available option, the configurable indicators will not
be functional in a vehicle that does not have the
equipment that an indicator supports. The EMIC
includes provisions for the following indicators (Fig.
2):
²Airbag Indicator (with Airbag System only)
²Antilock Brake System (ABS) Indicator
(with ABS only)
²Brake Indicator
²Charging Indicator
²Coolant Low Indicator (with Diesel Engine
only)
²Cruise Indicator (with Speed Control Sys-
tem only)
²Four-Wheel Drive Full Time Indicator (with
Selec-Trac Transfer Case only)
²Four-Wheel Drive Low Mode Indicator
²Four-Wheel Drive Part Time Indicator
²Front Fog Lamp Indicator (with Front Fog
Lamps only)
²High Beam Indicator
²Low Fuel Indicator²Low Oil Pressure Indicator
²Malfunction Indicator Lamp (MIL)
²Overdrive-Off Indicator (with Automatic
Transmission only)
²Rear Fog Lamp Indicator (with Rear Fog
Lamps only)
²Seatbelt Indicator
²Security Indicator (with Vehicle Theft
Security System only)
²Sentry Key Immobilizer System (SKIS)
Indicator (with SKIS only)
²Transmission Overtemp Indicator (with
Automatic Transmission only)
²Turn Signal (Right and Left) Indicators
²Wait-To-Start Indicator (with Diesel Engine
only)
²Water-In-Fuel Indicator (with Diesel Engine
only)
Each indicator in the EMIC is illuminated by a
dedicated Light Emitting Diode (LED) that is sol-
dered onto the EMIC electronic circuit board. The
LEDs are not available for service replacement and,
if damaged or faulty, the entire EMIC must be
replaced. Cluster illumination is accomplished by
dimmable incandescent back lighting, which illumi-
nates the gauges for visibility when the exterior
lighting is turned on. Each of the incandescent bulbs
is secured by an integral bulb holder to the electronic
circuit board from the back of the cluster housing.
The incandescent bulb/bulb holder units are available
for service replacement.
Hard wired circuitry connects the EMIC to the
electrical system of the vehicle. These hard wired cir-
cuits are integral to several wire harnesses, which
are routed throughout the vehicle and retained by
many different methods. These circuits may be con-
nected to each other, to the vehicle electrical system
and to the EMIC through the use of a combination of
soldered splices, splice block connectors, and many
different types of wire harness terminal connectors
and insulators. Refer to the appropriate wiring infor-
mation. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
further details on wire harness routing and reten-
tion, as well as pin-out and location views for the
various wire harness connectors, splices and grounds.
The EMIC modules for this model are serviced only
as complete units. The EMIC module cannot be
adjusted or repaired. If a gauge, an LED indicator,
the VFD, the electronic circuit board, the circuit
board hardware, the cluster overlay, or the EMIC
housing are damaged or faulty, the entire EMIC mod-
ule must be replaced. The cluster lens, hood and
mask unit and the individual incandescent lamp
bulbs with holders are available for service replace-
ment.
KJINSTRUMENT CLUSTER 8J - 3
INSTRUMENT CLUSTER (Continued)
Page 409 of 1803

eter/trip odometer switch button that extends
through the lower edge of the cluster lens, just right
of the speedometer. Actuating this switch momen-
tarily with the ignition switch in the On position will
toggle the VFD between the odometer and trip odom-
eter modes. Depressing the switch button for about
two seconds while the VFD is in the trip odometer
mode will reset the trip odometer value to zero. Hold-
ing this switch depressed while turning the ignition
switch from the Off position to the On position will
initiate the EMIC self-diagnostic actuator test. The
VFD will also display the cluster software version
level near the completion of the EMIC self-diagnostic
actuator test. Refer to the appropriate diagnostic
information for additional details on this VFD func-
tion.
The VFD is diagnosed using the EMIC self-diag-
nostic actuator test. (Refer to 8 - ELECTRICAL/IN-
STRUMENT CLUSTER - DIAGNOSIS AND
TESTING). Proper testing of the PCI data bus and
the electronic data bus message inputs to the EMIC
that control some of the VFD functions requires the
use of a DRBIIItscan tool. Refer to the appropriate
diagnostic information. Specific operation details for
the odometer, the trip odometer, and the various
warning message functions of the VFD may be found
elsewhere in this service information.
INDICATORS Indicators are located in various
positions within the EMIC and are all connected to
the EMIC circuit board. The turn signal indicators,
security indicator, washer fluid indicator, and coolant
low indicator (diesel engine only) use hard wired
inputs to the EMIC. The brake indicator is controlled
by PCI data bus messages from the Controller
Antilock Brake (CAB) as well as by hard wired park
brake switch and brake fluid level switch inputs to
the EMIC. The Malfunction Indicator Lamp (MIL) is
normally controlled by PCI data bus messages from
the Powertrain Control Module (PCM); however, if
the EMIC loses PCI data bus communication, the
EMIC circuitry will automatically turn the MIL on
until PCI data bus communication is restored. The
EMIC uses PCI data bus messages from the Body
Control Module (BCM), the PCM, the Airbag Control
Module (ACM), and the CAB to control all of the
remaining indicators.
The various indicators are controlled by different
strategies; some receive fused ignition switch output
from the EMIC circuitry and have a switched ground,
others are grounded through the EMIC circuitry and
have a switched battery feed, while still others are
completely controlled by the EMIC microprocessor
based upon various hard wired and electronic mes-
sage inputs. Some indicators are illuminated at a
fixed intensity, while the illumination intensity ofothers is synchronized with that of the EMIC general
illumination lamps.
In addition, certain indicators in this instrument
cluster are automatically configured or self-config-
ured. This feature allows the configurable indicators
to be enabled by the EMIC circuitry for compatibility
with certain optional equipment. The ABS indicator,
airbag indicator, SKIS indicator are automatically
configured by PCI data bus messages received by the
EMIC from the CAB, ACM, or Sentry Key Immobi-
lizer Module (SKIM) after the EMIC is installed in
the vehicle. Once these configuration settings are
learned by the EMIC, the DRBIIItscan tool must be
used to remove these settings from the EMIC non-
volatile memory. The self-configured indicators
remain latent in each EMIC at all times and will be
activated only when the EMIC receives the appropri-
ate PCI message inputs for the optional system or
equipment.
The hard wired indicators are diagnosed using con-
ventional diagnostic methods. The EMIC and PCI
bus message controlled indicators are diagnosed
using the EMIC self-diagnostic actuator test. (Refer
to 8 - ELECTRICAL/INSTRUMENT CLUSTER -
DIAGNOSIS AND TESTING). Proper testing of the
PCI data bus and the electronic data bus message
inputs to the EMIC that control each indicator
require the use of a DRBIIItscan tool. Refer to the
appropriate diagnostic information. Specific details of
the operation for each indicator may be found else-
where in this service information.
CLUSTER ILLUMINATION The EMIC has several
illumination lamps that are illuminated when the
exterior lighting is turned on with the headlamp
(multi-function) switch. The illumination intensity of
these lamps is adjusted by a 12-volt Pulse Width
Modulated (PWM) output of the EMIC when the
interior lighting control ring on the left control stalk
of the multi-function switch is rotated (down to dim,
up to brighten) to one of six available minor detent
positions. The BCM provides electronic dimming
level messages based upon internal programming
and inputs it receives from the control knob and con-
trol ring on the left (lighting) control stalk of the
multi-function switch on the steering column, then
provides a control output to energize or de-energize
the park lamp relay as appropriate. The energized
park lamp relay provides battery current to the
EMIC on the hard wired fused park lamp relay out-
put circuit, and the BCM provides the electronic dim-
ming level message to the EMIC over the PCI data
bus. The EMIC electronic circuitry provides the
proper PWM output to the cluster illumination lamps
and the VFD on the EMIC circuit board, then pro-
vides a synchronized PWM output on the hard wired
8J - 6 INSTRUMENT CLUSTERKJ
INSTRUMENT CLUSTER (Continued)
Page 414 of 1803

(2) With the bulb holder fully seated against the
cluster electronic circuit board, turn the bulb holder
clockwise about sixty degrees to lock it into place.
(3) Reinstall the instrument cluster onto the
instrument panel. (Refer to 8 - ELECTRICAL/IN-
STRUMENT CLUSTER - INSTALLATION).
(4) Reconnect the battery negative cable.
CLUSTER LENS, HOOD, AND MASK
(1) Position the cluster lens, hood, and mask unit
over the face of the instrument cluster (Fig. 5). Be
certain that the odometer/trip odometer switch but-
ton is inserted through the proper clearance holes in
the mask and the lens.
(2) From the back of the instrument cluster, install
and tighten the six screws that secure the rear cover
and the lens, hood, and mask unit to the cluster
housing. Tighten the screws to 1 N´m (10 in. lbs.).
(3) Reinstall the instrument cluster onto the
instrument panel. (Refer to 8 - ELECTRICAL/IN-
STRUMENT CLUSTER - INSTALLATION).
(4) Reconnect the battery negative cable.
INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
(1) Position the instrument cluster to the instru-
ment panel.
(2) Reconnect the instrument panel wire harness
connector for the cluster to the cluster connector
receptacle.
(3) Position the instrument cluster into the instru-
ment panel.
(4) Install and tighten the four screws that secure
the instrument cluster to the instrument panel (Fig.
3). Tighten the screws to 2 N´m (17 in. lbs.).
(5) Reinstall the cluster bezel onto the instrument
panel. (Refer to 23 - BODY/INSTRUMENT PANEL/
CLUSTER BEZEL - INSTALLATION).
(6) Reconnect the battery negative cable.NOTE: Some of the indicators in this instrument
cluster are self configured or automatically config-
ured when the cluster is connected to the vehicle
electrical system. This feature allows those indica-
tors to be enabled for compatibility with certain
optional equipment. However, if an instrument clus-
ter was previously connected to another vehicle
with different equipment options than the current
vehicle, some of the automatically configured indi-
cator settings may have to be disabled using a
DRBIIITscan tool. Refer to the appropriate diagnos-
tic information.
ABS INDICATOR
DESCRIPTION
An Antilock Brake System (ABS) indicator is stan-
dard equipment on all instrument clusters. However,
the instrument cluster is programmed to automati-
cally enable this indicator only on vehicles equipped
with the optional antilock brake system. The ABS
indicator is located above the engine temperature
gauge and to the right of the speedometer in the
instrument cluster. The ABS indicator consists of a
stencil-like cutout of the International Control and
Display Symbol icon for ªFailure of Anti-lock Braking
Systemº in the opaque layer of the instrument clus-
ter overlay. The dark outer layer of the overlay pre-
vents the indicator from being clearly visible when it
is not illuminated. An amber Light Emitting Diode
(LED) behind the cutout in the opaque layer of the
overlay causes the icon to appear in amber through
the translucent outer layer of the overlay when it is
illuminated from behind by the LED, which is sol-
dered onto the instrument cluster electronic circuit
board. The ABS indicator is serviced as a unit with
the instrument cluster.
OPERATION
The ABS indicator gives an indication to the vehi-
cle operator when the ABS system is faulty or inop-
erative. This indicator is controlled by a transistor on
the instrument cluster circuit board based upon clus-
ter programming and electronic messages received by
the cluster from the Controller Antilock Brake (CAB)
over the Programmable Communications Interface
(PCI) data bus. The ABS indicator Light Emitting
Diode (LED) is completely controlled by the instru-
ment cluster logic circuit, and that logic will only
allow this indicator to operate when the instrument
cluster receives a battery current input on the fused
ignition switch output (run-start) circuit. Therefore,
the LED will always be off when the ignition switch
is in any position except On or Start. The LED only
KJINSTRUMENT CLUSTER 8J - 11
INSTRUMENT CLUSTER (Continued)