Isc SUZUKI SWIFT 2000 1.G SF310 Service Repair Manual
[x] Cancel search | Manufacturer: SUZUKI, Model Year: 2000, Model line: SWIFT, Model: SUZUKI SWIFT 2000 1.GPages: 557, PDF Size: 14.35 MB
Page 102 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-51
Fig. 1 for Step 2 Fig. 2 for Step 3 Fig. 3 for Step 4
Scan tool
“Lg” “Lg/W”
“3”“4”
“1”
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE”
performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check TP Sensor and Its Circuit.
1) Connect scan tool to DLC with ignition
switch OFF and then turn ignition switch
ON.
2) Check throttle valve opening percentage
displayed on scan tool. See Fig. 1.
Is it displayed 2% or less?
3) Check throttle valve opening percentage
displayed on scan tool while opening
throttle valve from idle position to full open
position. See Fig. 1.
Is it displayed 96% or higher?Go to Step 3.Intermittent trouble.
Check for intermittent
referring to “Intermittent
and Poor Connection” in
Section 0 A.
3Check Wire Harness.
1) Disconnect connector from TP sensor
with ignition switch OFF.
2) Check for proper connection to TP sensor
at “Lg”, “Lg/W” and “G” wire terminal.
3) If OK, then with ignition switch ON, check
voltage at each of “Lg” and “Lg / W” wire
terminals. See Fig. 2.
Is voltage about 4 – 6 V at each terminal?Go to Step 4.“Lg” wire open, “Lg”
wire shorted to ground
circuit or power circuit or
“G” wire, “Lg / W” wire
open or shorted to ground
circuit or poor C01-1 or
C01-6 connection.
If wire and connection are
OK, substitute a known-
good ECM (PCM) and
recheck.
4Check TP Sensor.
1) Check resistance between terminals of
TP sensor. See Fig. 3.
Between 1 and 4: 2.87 – 5.33 kΩ
Between 1 and 3: 100 Ω – 20 kΩ, varying
according to throttle valve opening.
Are measured values within specifications?“G” wire open or poor
C01–9 connection.
If wire and connection are
OK, substitute a known-
good ECM (PCM) and
recheck.Replace TP sensor.
Page 104 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-53
Fig. 1 for Step 2 Fig. 2 for Step 2
Fig. 3 for Step 3
Closed
(condition “A”)Fully open
Throttle Opening
Condition “A”
Clearance between throttle lever and
throttle stop screw is less than 0.35 mm
(0.014 in.).
clearance
“1”“3”“4”
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Check TP Sensor and Its Circuit.
1) Turn ignition switch OFF and connect SUZUKI scan tool to
DLC.
2) Turn ignition switch ON and check TP sensor output
voltage when throttle valve is at idle position and fully
opened. See Fig. 1 and 2.
Dose voltage vary within specified value linearly as shown in
figure?If voltmeter was
used, check
terminal C01-6 for
poor connection.
If OK, substitute a
known-good ECM
(PCM) and
recheck.Go to Step 3.
3Check TP Sensor.
1) Turn ignition switch OFF.
2) Disconnect TP sensor connector.
3) Check for proper connection to TP sensor at each terminal.
4) If OK, then measure resistance between terminals and
check if each measured value is as specified below.
See Fig. 3.
Between 1 and 4: 2.87 – 5.33 kΩ
Between 1 and 3: 100 Ω – 20 kΩ, varying according to
throttle valve opening.
Are measured values as specified?High resistance in
“Lg”, “Lg / W” or
“G” circuit.
If wire and
connection are
OK, substitute a
known-good ECM
(PCM) and
recheck.Replace TP
sensor.
Page 109 of 557

6-58 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Fig. 1 for Step 2 Fig. 2 for Step 3
C01-8
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check Heater for Operation.
1) Check voltage at terminal C01-8. See Fig. 1.
2) Warm up engine to normal operating temperature.
3) Stop engine.
4) Turn ignition switch ON and Check voltage atIntermittent trouble
Check for intermittent
referring to
“Intermittent and
Poor Connection”Go to Step 3.
terminal C01-8. See Fig. 1. Voltage should be
over 10 V.
5) Start engine, run it at idle and check voltage at the
same terminal. Voltage should be below 1.9 V.
Are check results are specified?in Section 0A.
3Check Heater of Sensor-1.
1) Disconnect HO2S-1 coupler with ignition switch
OFF.
2) Check for proper connection to HO2S-1 at “B/W”
and “P/B” wire terminals.
3) If OK, then check heater resistance. See Fig. 2.
Is it 11.7 – 14.3 Ω at 20C, 68F?“P/B” wire open or
shorted to ground or
poor connection at
C01-8. If wire and
connection are OK,
substitute a
known-good ECM
(PCM) and recheck.Replace HO2S-1.
Page 114 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-63
Fig. 1 for Step 2
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check HO2S-2 Heater and Its Circuit.
1) Warm up engine to normal operating temperature.
2) Stop engine.
3) Turn ignition switch ON and check voltage at
terminal C02-19 See Fig. 1. Voltage should be
over 10 V.
4) Start engine, run it at idle and check voltage at the
same terminal after 1 min. from engine start.
Voltage should be below 1.9 V.
Are check result as specified?Intermittent trouble.
Check for intermittent
referring to
“Intermittent and
Poor Connection”
in Section 0A.Go to Step 3.
3Check Heater or Sensor-2.
1) Disconnect HO2S-2 coupler with ignition switch
OFF.
2) Check for proper connection to HO2S-2 at “B/W”
and “Lg / B” wire terminals.
3) If OK, then check heater resistance.
Is it 11.7 – 14.3 Ω at 20C, 68F?“Lg / B” wire open or
shorted to ground or
poor connection at
C02-19. If wire and
connection are OK,
substitute a known-
good ECM (PCM)
and recheck.Replace HO2S-2.
Page 117 of 557

6-66 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Is there DTC(s) other than fuel system
(DTC P0171 / P0172)?Go to applicable
DTC Diag. Flow
Table.Go to Step 3.
3Check HO2S-1 Output Voltage.
1) Connect scan tool to DLC with ignition switch OFF.
2) Warm up engine to normal operating temperature and keep
it at 2000 r / min. for 60 sec.
3) Repeat racing engine (Repeat depressing accelerator pedal
5 to 6 times continuously and take foot off from pedal to
enrich and enlean A / F mixture). See Fig. 1.
Does HO2S-1 output voltage deflect between below 0.3 V and
over 0.6 V repeatedly?Go to Step 4.Go to DTC
P0130 Diag.
Flow Table
(HO2S-1 circuit
check).
4Check Fuel Pressure (Refer to section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure. See Fig. 2.
With fuel pump operating
and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi.
At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg / cm
2,
12.8 – 20.0 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 Fuel
Pressure Check.
5Check Fuel Injectors and Circuit.
1) Turn ignition switch OFF and disconnect fuel injector
connector.
2) Check for proper connection to fuel injector at each terminals.
3) If OK, then check injector resistance. See Fig. 3.
Injector resistance: 0.5 – 1.5 Ω at 20C (68F)Go to Step 6.Check injector
circuit or replace
fuel injector.
4) Connect injector, connector.
5) Check that fuel is injected out in conical shape from fuel
injector when running engine.
6) Check injector for fuel leakage after engine stop.
Fuel leakage: Less than 1 drop / min.
Is check result satisfactory?
6Check EVAP Canister Purge Valve.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there when engine is cool and
running at idle. See Fig. 4.
Is vacuum felt?Check EVAP
control system
(See Section
6E1).Go to Step 7.
7Check intake manifold absolute pressure sensor for
performance (See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 8.Repair or
replace.
Page 121 of 557

6-70 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE“.
2Is there DTC other than Fuel system (DTC P0171 / P0172)
and misfire (DTC P0300-P0303)?Go to applicable
DTC Diag.
Flow Table.Go to Step 3.
3Check Ignition System.
1) Remove spark plugs and check them for;
Air gap: 1.0 – 1.1 mm (0.040 – 0.043 in.) See Fig. 1.
Carbon deposits
Insulator damage
Plug type
If abnormality is found, adjust, clean or replace.
2) Disconnect injector connector. See Fig. 2.
3) Connect spark plugs to high tension cords and then
ground spark plugs.
4) Crank engine and check that each spark plug sparks.
Are above check results satisfactory?Go to Step 4.Check ignition
system parts
(Refer to Section
6F).
4Check Fuel Pressure (Refer to Section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge. See Fig. 3.
3) Check fuel pressure.
With fuel pump operating
and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi.
At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg / cm
2,
12.8 – 20.0 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 fuel
pressure check.
5Check Fuel Injector and Circuit.
1) Turn ignition switch OFF and disconnect fuel injector
connector.
2) Check for proper connection to fuel injector at each terminal.
3) If OK, then check injector resistance. See Fig. 4.
Injector resistance: 0.5 – 1.5 Ω at 20C (68F).
4) Connect injector connector.
5) Check that fuel is injected out in conical shape from fuel
injector when running engine.
6) Check injector for fuel leakage after engine stop.
Fuel leakage: Less than 1 drop / min.
Is check result satisfactory?Go to Step 6.Check injector
circuit or replace
fuel injector.
Page 122 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-71
1. Throttle body
2. Fuel feed hose
GoodNo good1. Injector connector
STEPACTIONYESNO
6Check PCV valve for clogging (See Section 6E1).
Is it in good condition?Go to Step 7.Replace PCV valve.
7Check EVAP Canister Purge Valve for Closing.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there, when engine is
cool and running at idle. See Fig. 5.
Is vacuum felt?Check EVAP
control system
(See Section 6E1).Go to Step 8.
8Check intake manifold pressure sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 9.Repair or replace.
9Check engine coolant temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 10.Replace engine
coolant temp.
sensor.
10Check parts or system which can cause engine rough
idle or poor performance.
–Engine compression (See Section 6A).
–Valve lash (See Section 6A).
–Valve timing (Timing belt installation. See Section 6A).
Are they in good condition?Check wire harness
and connection of
ECM (PCM) ground,
ignition system and
fuel injector for
intermittent open
and short.Repair or replace.
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 4
Fig. 4 for Step 5 Fig. 5 for Step 7
Page 124 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-73
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check CKP Sensor for Resistance.
1) Disconnect CKP sensor connector with ignition
switch OFF.
2) Then check for proper connection to CKP sensor
at “W/B” and “W/R” wire terminals.
3) If OK, measure sensor resistance between
terminals. See Fig. 1.
CKP sensor resistance: 360 – 460 Ω
at 20C, (68F)
4) Measure resistance between each terminal and
ground.
Insulation resistance: 1 MΩ or more.
Were measured resistance valves in step 3) and 4)
as specified?Go to Step 3.Replace CKP sensor.
3Check visually CKP sensor and pulley for the
following. See Fig. 2.
Damage
No foreign material attached.
Correct installation.
Are they in good condition?“W/B” or “W/R” wire
open or shorted to
ground, or poor
connection at C01-3
or C01-11.
If wire and connection
are OK, intermittent
trouble or faulty ECM
(PCM).
Recheck for
intermittent referring
to “Intermittent and
Poor Connection” in
Section 0A.Clean, repair or
replace.
Fig. 1 for Step 2 Fig. 2 for Step 3
Page 126 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-75
Fig. 1 for Step 3 Fig. 2 for Step 5
“a”: Air gap
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Is DTC P1500 (Engine starter signal circuit
malfunction) detected?Go to DTC P1500
Diag. Flow Table.Go to Step 3.
3Check CMP Sensor for Resistance.
1) Measure resistance of CMP sensor by referring to
“CMP SENSOR (PICK UP COIL) RESISTANCE”
in SECTION 6F.
Is resistance within specified value?Go to Step 4.Faulty CMP sensor.
4Check Wire Harness.
1) With ignition switch at OFF position, disconnect
ECM (PCM) electrical connectors.
2) Measure resistance from terminal “C01-2” to
“C01-10” of ECM (PCM) connector. See Fig. 1.
Is resistance within 185 – 275 Ω at 20C (68F)?Go to Step 5.“W” or “Or” wire open
or short.
Poor connection of
CMP sensor
connector terminal.
5Check Air Gap Between Rotor Tooth and Sensor. See
Fig. 2.
1) Remove Distributor cap.
2) Visually inspect CMP sensor signal rotor for
damage.
3) Measure air gap by referring “SIGNAL ROTOR
AIR GAP” in Section 6F.
Was any damage found?Faulty CMP sensor
signal rotor.Poor connection of
ECM (PCM)
connector terminal.
If OK, substitute a
known-good ECM
(PCM) and recheck
CMP.
Page 130 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-79
Main
fuseMain relay
To other valves
EVAP canister
purge valve
EVAP canister
purge valveSurge
tank
Tank pressure
control valveFuel vapor separator
Fuel filter cap
Fuel
level
sensor
Fuel tank EVAP
canister
DTC P0443 PURGE CONTROL VALVE CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Canister Purge control valve circuit is opened
or shorted.“R/G” circuit open or short
“W/BI” circuit open
Canister purge valve malfunction
DTC CONFIRMATION PROCEDURE
1) Clear DTC with ignition switch ON.
2) Select “DTC” mode on scan tool and check DTC.
INSPECTION
STEPACTIONYESNO
1Check EVAP canister purge valve operation
1) With ignition switch OFF, disconnect coupler
from canister purge valve.
2) Check resistance of EVAP canister purge
valve. See Fig. 1.
Resistance between
two terminals : 30 – 34 Ω at 20C (68F)
Resistance between
terminal and body : 1M Ω or higher
Is it as specified?“R/G” circuit open or
short.Replace EVAP canister
purge valve.