airbag off ASTON MARTIN DB7 1997 User Guide
Page 206 of 421
Electrics
Airbag System =2?
Airbag DM Fault Code 24
Safing sensor output - battery feed/return open
circuit.
Normal Operation
The diagnostic module measures the voltage on
diagnostic module pins 2-5 and 2-6 the voltage
varies with the vehicle charge level
as
shown in the
table below:
in 2-5
2.3V
2.4 V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2V
3.4V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Pin 2-6
2.3V
2.4V
2.5V
2.7V
2.8V
3.0V
3.1V
3.2V
3.4V
3.5V
3.7V
3.8V
4.0V
4.1V
4.3V
Cliarge Volts
9.0V
9.5V
10.0V
10.5V
11.0V
11.5V
12.0V
12.5V
13.0V
13.5V
14.0V
14.5V
15.0V
15.5V
16.0V
The diagnostic module also measures the voltage at
pin 1-7 (battery input). Using the battery input
voltage, the system can predict the expected voltage
level on pins 2-5 and 2-6. If the voltage on pins 2-
5 or 2-6 is higher or lower than expected, a fault
code 24 will be declared.
Possible Causes
• Open circuit or high resistance in the wiring
harness or safing sensor.
• Intermittent battery voltage on pin 1-7
• The resistance of the pin 2-5 to 2-6 circuit to
ground.
This circuit should be open to ground at
all times.
Fault Analysis
WARNING: Read and adhere to all warnings and
safety procedures at the start of
this
section when
working on the airbag system.
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Probe the battery input voltage terminal
1
-7. Start
the engine and monitor the charge voltage level
using a digital multimeter. Run the engine at idle
speed and look for any instability in the voltage
level.
Run the engine at a constant medium speed
and then at a constant high speed and repeat the
observation for voltage instability.
If the voltage levels are stable, go to step 3.
If instability of the voltage level is observed,
Investigate and rectify the problem in the charging
circuit.
3. Switch off the ignition. Disconnect the diagnostic
module and check for OQ continuity from pins 2-5
to 2-6.
If no resistance is detected, go to step 4.
If any resistance is detected between pins 2-5 and
2-6,
service the wiring or safing sensor to achieve
Ofi continuity.
4.
Measure the resistance to ground from pins 2-5 and
2-6.
If no short circuit is detected, replace the diagnostic
monitor. Rearm the airbags (6.4.21.4).
If
a
short to grou
nd
is detected, service the wiring or
safing sensor as necessary. Rearm the airbags
(6.4.21.4).
6-90 September 1996
Page 211 of 421
Electrics
Airbag System
Airbag DM Fault Code 41
Right hand crash sensor feed or return open circuit.
Airbag DM Fault Code 42
Left hand crash sensor feed or return open circuit.
Normal Operation
The diagnostic module constantly measures the
voltage at pins
1
-2 and
1-11.
The voltage should be
10±1 volt. The two wires are connected together
within the right hand crash sensor. If the voltage at
1-2 falls below that at 1-11, an open circuit has
occurred.
Fault code 41 will be declared and the
airbag lamp will be illuminated.
Normal Operation
The diagnostic module constantly measures the
voltage at pins
1
-6 and
1
-12.
The voltage should be
10±1 volt. The two wires are connected together
within the left hand crash sensor. If the voltage at
1
-
5 falls below that at 1-12, an open circuit has
occurred.
Fault code 42 will be declared and the
airbag lamp will be illuminated.
Possible Causes
• Open circuit in the wires from diagnostic module
pins
1
-2 or
1 -11
to the right hand crash sensor.
• An open circuit within the right hand crash
sensor across pins 1 and 2 of the sensor
connector.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnect the diagnostic module and check
continuity between pins 1-2 and 1-11.
If the resistance is significantly greater than OQ, go
to step 3.
If the circu it resistance
is
OQ.,
the
fau It
is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
3. Check the right hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
If the resistance is
h igh
or
an
open circuit
is
detected,
replace the crash sensor.
If the sensor continuity is good (0^2), service the
crash sensor loom or bu Ikhead harness
as
necessary
to remove the high resistance or open circuit.
4.
With the airbag simulators in circuit and all
connectors in place, clear the code
41.
Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
5. Switch off and rearm the airbags (6.4.21.4)
3.
Possible Causes
• Opencircuitinthewiresfromdiagnosticmodule
pins
1
-6 or
1
-12 to the left hand crash sensor.
• An open circuit within the left hand crash sensor
across pins 1 and 2 of the sensor connector.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic module and check
continuity between pins 1-6 and 1-12.
If the resistance is significantly greater than OQ, go
to step 3.
If the circu it resistance
isO£2,
the fault is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
Check the left hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
If the resistance is high or
an
open circuit is
detected,
replace the crash sensor.
If the sensor continuity is good (OQ), service the
crash sensor harness or bulkhead harness as
necessary to remove the high resistance or open
circuit.
With the airbag simulators in circuit and all
connectors in place, clear the code 42. Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
Switch off and rearm the airbags (6.4.21.4).
September 1996 6-95
Page 212 of 421
Electrics
Airbag System o
--i.
D^?
Airbag DM Fault Code 44
Right hand crash sensor incorrectly mounted.
Normal Operation
The diagnostic module constantly measures the
resistance between pins 2-8 (RH crash sensor
ground) and
1
-3 (airbag DM system ground). If the
resistance rises above 2Q, fault code 44 is declared
and the airbag warning lamp is illuminated.
Possible Causes
• Loose sensor mounting or an accumulation of
dirt or corrosion at the sensor mountings.
• An open circuit or loose wire from DM pin 2-8
to the sensor.
• An open circuit wire or loose rivet within the
sensor.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Disconnect the diagnostic module and check
continuity between pins 1-3 and 2-8.
If the resistance is significantly greater than
OQ,,
go
to step 3.
Ifthe circuit resistance
is
OQ,thefault is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
Check the right hand crash sensor mounting for
security and corrosion.
If neither problem is evident, go to step 4.
If either problem is evident, remove, clean and
resecure the sensor. Reconnect the diagnostic
module. Switch on and clear the code 44. Switch
off and then on again to check that the airbag
warning lamp comes on at 'ignition on' and
extinguishes after approximately six seconds.
4.
Check the right hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
Ifthe resistance is high or
an
open circuit isdetected,
replace the crash sensor. Go to step 5
If the sensor continuity is good (OQ), service the
crash sensor harness or bulkhead harness as
necessary to remove the high resistance or open
circuit. Go to step 5.
5. With the airbag simulators in circuit and all
connectors in place, clear the code 44. Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
6. Switch off and rearm the airbags (6.4.21.4)
6-96 September 1996
Page 213 of 421
"3^=2?
Electrics
Airbag System
Airbag DM Fault Code 45
Left hand crash sensor incorrectly mounted.
Normal Operation
The diagnostic module constantly measures the
resistance between pins2-9 (LH crash sensor ground)
and
1
-3 (airbag DM system ground). If the resistance
rises above 2£2, fault code 45 is declared and the
airbag warning lamp is illuminated.
Possible Causes
• Loose sensor mounting or an accumulation of
dirt or corrosion at the sensor mountings.
• An open circuit or loose wire from DM pin 2-9
to the sensor.
• An open circuit wire or loose rivet within the
sensor.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnect the diagnostic module and check
continuity between pins 1-3 and 2-9.
If the resistance is significantly greater than OQ, go
to step 3.
If thecircuit resistance
is
OQ,
the fault is intermittent.
Manipulate the harness, particularly in the area of
the sensor connector and the crash sensor harness
to bulkhead harness connector, to identify the
location of the open circuit. Service the circuit as
necessary.
3. Check the left hand crash sensor mounting for
security and corrosion.
If neither problem is evident, go to step 4.
If either problem is evident, remove, clean and
resecure the sensor. Reconnect the diagnostic
module. Switch on and clear the code 45. Switch
off and then on again to check that the airbag
warning lamp comes on at 'ignition on' and
extinguishes after approximately six seconds.
4.
Check the left hand crash sensor connector for
security and service the connector if necessary.
If the connector is secure, disconnect and check
continuity from pin 1 to pin 2 of the sensor.
If the resistance is high or
an
open circuit isdetected,
replace the crash sensor. Go to step 5
If the sensor continuity is good (OQ), service the
crash sensor harness or bulkhead harness as
necessary to remove the high resistance or open
circuit. Goto step 5.
5. With the airbag simulators in circuit and all
connectors in place, clear the code 45. Switch off
and then on again to check that the airbag warning
lamp comes on at 'ignition on' and extinguishes
after approximately six seconds.
6. Switch off and rearm the airbags (6.4.21.4)
September 1996 6-97
Page 215 of 421
in:[M3^?
Electrics
Airbag System
Airbag DM Fault Code 52
Back-up power supply - voltage boost fault.
Normal Operation
A back-up power supply consisting of a capacitor
and voltage booster is contained within the
diagnostic module. The voltage booster charges
the capacitor to 24 ±
1
volt when the ignition is on.
The back-up power supply is connected to
diagnostic module pin 1-9 via a diode. Since the
resistance of pin 1-9 to ground is infinite, the
capacitor has no discharge path and the back-up
supply
is
maintained ata high
voltage.
Thediagnostic
module monitors this voltage and will flag a code
52 if a minimum of 23V is not achieved within 45
seconds of switching on the ignition.
Possible Causes
Low back-up supply voltage may be caused by:
• Partial or total short circuit of pin 1-9 to ground.
• Boost circuit failure within the diagnostic
module.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Disconnect the diagnostic module. Check for a
partial or permanent short circuit to ground from
diagnostic module harness connector pin 1-9.
If no short circuit is detected, go to step 3.
If a short circuit is detected, service the wiring as
necessary. Reconnectthediagnostic module. Clear
the code 52. Rearm the airbags.
3. Using a high resistance digital multimeter, set up to
measure the voltage from diagnostic module pin
1
-
9 to ground. Switch on the ignition.
If the voltage is in the range 24 ± 1 volt, the back
up power supply is good. Suspect an intermittent
short circuit to ground and recheck the output
circuit from pin 1-9.
Ifthe voltage is below the range 24 ±
1
volt, replace
the diagnostic module.
4.
Rearm the airbags (6.4.21.4).
Airbag DM Fault Code 53
internal diagnostic module failure.
Normal Operation
The diagnostic module constantly measures the
voltage on pins
1
-2,
1
-6,
1 -11
and
1
-12. It should
be 10
±1
volt. The voltage is regulated by a resistor
within the diagnostic module and the resistance to
ground ofpins
1-2,6,11
and 12 should be infinite.
The resistance across the normally open contacts of
the crash sensors should also be infinite. If the
resistance of the pins to ground or across the crash
sensors becomes measurable, the voltage wi
11
drop.
At between 5V and lOVthe diagnostic module will
recognise an internal voltage regulation failure and
flag a code 53 fault and the airbag warning light will
be illuminated.
Notes: A dead short to ground in the
crash
sensor circuits
will drop the voltage below 5V and the diagnostic
module will flag
a
code
14
fault.
The
diagnostic module
performs several self-tests as
the
ignition is switched on. If it fails any
test,
fault code 53
will be flagged.
Possible Causes
• A decrease in resistance from infinity between
the primary crash sensor circuits and ground.
• An internal diagnostic module self-test failure.
Fault Analysis
1.
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
2.
Check each of pins 1-2, 1-6, 1-11 and 1-12 for
continuity to ground.
If resistance of all circuits is infinity, go to step 3.
If any resistance other than infinity is detected,
service the circuit wiring as necessary. Reconnect
all connectors and switch on and clear all fault
codes.
Switch off the ignition and then switch on again.
Check that the airbag warning lamp comes on at
'ignition on' and extinguishes after approximately
six seconds on satisfactory completion of the airbag
system self-check.
3. Rearm the airbags (6.4.21.4).
September 1996 6-99
Page 216 of 421
Electrics
Airbag System [n:M^^^?
Airbag DM Fault Code 99
Rapid continuous flashing of the airbag warning
light - Both front crash sensors disconnected.
Normal Operation
Each crash sensor has three wires. Two deploy the
airbag and monitor the sensors connection to the
diagnostic monitor. The third wire monitors the
mounting of the sensor to the vehicle bodywork. A
code99isdeclaredifbothsensorsaredisconnected
and not properly grounded.
Fault Analysis
Disarm the airbag system and fit airbag simulators
(6.4.21.4).
Check continuity of all circuits listed below and
service as necessary.
LH Crash Sensor
DM Pin
1-6
1-12
2-9
RH Crash Sensor
DM Pin
1-2
1-11
2-8
Sensor Pin
1
2
4
Sensor Pin
1
2
4
Also check for correct grounding of the diagnostic
module and the sensor cases.
Reconnect all connectors, clear fault code 99.
Switch off the ignition and then switch on again.
Check that the airbag warning lamp comes on at
'ignition on' and extinguishes after approximately
six seconds on satisfactory completion of the airbag
system self-check.
Rearm the airbags (6.4.21.4).
6-100 September 1996
Page 219 of 421
'^^
Electrics
Seat Belt Pretensioner
6.6.26.1
Pretensioner Control Module -
Renew
Read the warnings given in system fault strategy
and service instructions on the previous page before
starting the following procedure.
Procedure
1.
Disconnect the battery ground (black) lead and
wait at least 10 minutes for the pretensioner power
supply to fully discharge before working on the
pretensioner system.
Note:
The
vehicle battery must
be
disconnected within
12
seconds
of switching off
the
ignition to avoid the alarm
siren sounding.
2. Motor the right front seat to its rearmost position.
3. Remove the floor carpet and the ECU cover.
4.
Disconnect the pretensioner control module
connector (orange connector with black safety
clip).
5. Remove 3 flange screws securing the module,
noting the position of the earth strap.
6. Fit the new pretensioner control module with the
connector facing to the rear and secure with 3
flange screwsensuringthatthe earth strap is secured
with the outboard rear screw.
7. Connect the orange connector to the control
module.
8. RefitandsecuretheECU cover and the floor carpet.
9. Reconnect the battery ground (black)
lead.
Note:
The
vehicle clock and the window control unit will
need
resetting
after completion of this procedure.
10.
Switch on the ignition and check that the airbag
warni ng I ight comes on when the ign ition
is
switched
on and extinguishesafterapproximately sixseconds
indicating satisfactory completion of the
pretensioner and airbag system self tests.
6.6.24.1
Pretensioner Assembly Renew
Read the warnings given in system fault strategy
and service i nstruaions on the previous page before
starting the following procedure.
1.
2.
4.
Procedure
Motor the drivers seat to its rearmost position.
Disconnect the battery ground (black) lead and
wait at least 10 minutes for the pretensioner power
supply to fully discharge before working on the
pretensioner system.
Note: Disconnect the battery within 12 seconds of
switchingoffthe ignition to avoid the alarm siren sounding.
Remove the pretensioner trim cover. Unbolt the
drivers seat. Tip the seat rearwards and disconnect
the seat and pretensioner squib connectors.
Release one bolt at the
base
of the seat belt
stal k
and
remove the pretensioner assembly.
Ensure that the safety clip is fitted to the connector
at the pretensioner squib. Fit the new assembly,
locating the anti-rotation peg into the rear hole of
the mounting bracket. Secure the assembly with
one bolt. Torque the bolt to 35Nm.
Safety Clip in place
5. Route the pretensioner lead between the seat and
the frame. Reconnect the seat and pretensioner
connectors. Ensure that the pretensioner connector
safety clip is secured. Refit the drivers seat and
loosely secure.
6. Reconnect the battery ground (black)
lead.
Note:
The
vehicle clock and
the
window control unit will
need
resetting
after completion of this procedure.
7. Switch on the ignition and check that the airbag
warn i ng I ight comes on when the ignition
is
switched
on and extingu
ishes
after approximately six seconds
indicating satisfactory completion of the
pretensioner and airbag system self tests.
8. Fit the front screws ensuring a 1.2mm gap between
screws and slide. Power the seat forwardTorque the
rear screws to 25 Nm. Power the seat backward.
Torque the front screws to 25 Nm.
September 1996 6-103
Page 224 of 421
Electrics
Seat Belt Pretensioner ^?
060C Warning Lamp Short Circuit
060C will be logged if the nnonitor current flow
through the SRS/Airbag warning lamp is excessive.
The warning lamp circuit is normally at 12 volts and
is switched to ground by the airbag control module
or by the pretensioner control module when one of
these control modules detects a fault.
If either control module connector is displaced and
the ignition is switched on, the warning lamp will
be illuminated via the ground shorting link between
pins!
and 2 ofthe pretensioner controller connector
or pins 4 and 5 of the airbag controller connector,
both control modules must be checked for the
appropriate DTC to isolate which circuit is at fault.
Procedure
1.
Connect the PDU to the lower diagnostic socket
and access the pretensioner control module. Verify
that an 060C code is logged and note if the fault is
shown as intermittent. Note any other codes in the
DTC log and then clear all codes. Go to step 2.
If fault code 060C is not logged, go to the diagnostics
section of the airbag system.
2.
Check the security of the pretensioner control
module connector.
If the connector is secure, go to step 3.
If the connector isdisplaced,resecu re theconnector.
Clear all logged DTCs and retest the vehicle to
ensure that the problem is resolved.
3. Access the SRS/Airbag warning lamp and check the
lamp resistance.
If the resistance is approximately
120£2,
the lamp is
good.
Refit the lamp and go to step 4.
If the resistance of the lamp is significantly less than
approximately 120^, fit a new lamp and refit the
instrument panel. Clear the logged DTCs from the
pretensioner control module and retest the vehicle
to ensure that the problem is resolved.
4.
If the checks in step 3 are good, the low circuit
resistance must be in the instrument pack or in the
control module. Replace the pretensioner control
module and reconnect all components.
6. Switch on the ignition and then test the vehicle.
If the 060C code is logged again, replace the
instrument pack.
060D Warning lamp open circuit
060D will be logged if the monitor current flow
through the SRS/Airbag warning lamp is below the
normal monitor level.
The warning lampcircuit is normally at 12 voltsand
is switched to ground by the airbag control module
or by the pretensioner control module when one of
these control modules detects a fault.
Procedure
Connect the PDU to the lower diagnostic socket
and access the pretensioner control module. Verify
that an 060D code is logged and note if the fault is
shown as intermittent. Note any other codes in the
DTC log and then clear all codes. Go to step 2.
lffaultcode060D is not
logged,
gotothediagnostics
section of the airbag system.
Switch off the ignition. Access the SRS/Airbag
warning lamp and check the lamp resistance. The
resistance should be approximately 120Q.
If the resistance is 120i2, go to step 3.
If the lamp resistance is significantly lower than
120^2,
replace the lamp. Retest the vehicle to
ensure that the problem is resolved.
Wait 10 minutes after switching off the ignition to
ensure that the pretensioner firing capacitors have
fully discharged.
Disconnect the pretensioner control module and
temporarily cheat the warning lamp shorting link.
Note: The control module harness connector has a
shorting link which short circuits the warning lamp line
(pin 2)to ground
(pin
Dwhen
the
connector
is
displaced.
Carefully insert a suitable non-metallic cheater to remove
the
short
circuit
between
pins
1
and 2 before continuing
with fault
diagnosis.
ooooooooooooo o o poo
i^i
^ ^ ^ 1^1
Insert cheater hare
6-108
September
1996
Page 379 of 421
The Aston Martin Lagonda Diagnostic System
Users Guide o: "3^^?
PDU Functions
The PDU main menu provides access into the following functions:
Diagnostics
Training
Digital Multimeter
User Self Test
Diagnostics
On selecting'Diagnostics'from the main
menu,
the user will be prompted to enter the features and market specification
of the vehicle to be tested. Use of the diagnostics in each of the above areas is described later in this guide.
Diagnostics Menu - 95 Model Year
Engine
Anti-Lock Braking System
Vlenu - 97 Model Year
Engine Diagnostics
OBD II Scan Tool
Airbag
Seat Belt Pretensioner
•
•
•
•
Transmission
Engine Datalogger
Climate Control
PATS System
Climate Control
Transmission
Anti-Lock Braking System
Security
Digital Multimeter
The Digital Multimeter function provides the capabilityto measure voltage, current, resistance, frequency, pulse width,
pulse period, and duty cycle. These measurements are usually made using the PDU measurement probes. Measurements
may also be made using the module pin selection function on the Teves Mk
II
braking system and on the Air Conditioning
system.
Training
An on-screen programme is provided to train new users in the use of screen icons and in the use of the digital multi
meter and datalogger functions.
User Self Test
In order to prove that the equpment is functioning correctly, a complete user self test is incorporated. The user is directed
to test the PDU and then to progressively connect each part of the PDU system which will be tested by the software.
Any fault identified during the test is notified to the user. If no faults are identified, the user is advised on the correct
functioning of the system.
PDU Power
Power for the PDU is supplied via an internal rechargeable battery pack which can keep the PDU operational for
approximately one hour when disconnected from the base station and the vehicle. In order to preserve PDU battery
charge, power to the screen backlight is automatically cut after five minutes of inactivity. The power ON indicator
remains lit, indicating that the PDU is in 'stand-by' mode. One touch of the screen will restore backlight power.
When connected to the base station, power is supplied to the PDU from the Electronic Module to recharge the PDU
battery pack as necessary.
On 95 MY vehicles, the Vehicle Battery Adaptor (VBA) is used to maintain PDU power.
On 97 MY vehicles, when connected via the MPA to either diagnostic socket on the vehicle, power is supplied via pin
4 (chassis ground) and pin 16 (battery power) to maintain PDU power at all times even when the vehicle ignition is
switched off.
On all model years, when connected to the air conditioning system using the VIA, the vehicle battery adaptor (VBA)
must also be used to maintain PDU power.
9-28 September 1996