electrical system general BMW 328i 1997 E36 User Guide

Page 55 of 759


If
a
battery
cableconnection
hasno
visible
faults,
but
is
still
suspect,
measure
the
voltage
drop
across
the
connection
.
A
large
drop
indicates
excessive
resistance,
meaning
the
con-
nection
is
corroded,
dirty,
or
damaged
.
Clean
or
repair
the
connection
and
retest
.

NOTE-

For
instructions
on
conducting
a
voltage
drop
test,
and
other
general
electrical
troubleshooting
information,
see600
Electrical
System-General
.

Wiring
and
Harness
Connections

The
electronic
fuel
injection
and
ignition
systems
operate
at

low
voltage
and
current
values,
making
them
sensitive
to

small
increases
in
resistance
.
The
electrical
system
is
routine-

ly
subjected
to
corrosion,
vibration
and
wear,
so
faults
or
cor-

rosion
in
the
wiring
harness
and
connectors
are
common
causes
of
driveability
problems
.

Visually
inspect
all
wiring,
connectors,
switches
and
fuses
in
the
system
.
Loose
or
damaged
connectors
can
cause
inter-

mittent
problems,
especially
the
smallterminals
in
the
ECM

connectors
.
Disconnect
the
wiring
harness
connectors
to

check
for
corrosion
;
and
use
electrical
cleaning
spray
to
re-

move
contaminants
.
Often,
simply
disconnecting
and
recon-

necting
a
dirty
connector
several
times
will
clean
the
terminals
and
help
to
reestablish
good
electrical
contact
.

If
a
wiring
harnessconnectorhasno
visible
faults,
but
is
still

suspect,
measure
the
voltage
drop
across
the
connector
.
A

large
drop
indicates
excessive
resistance,
meaning
the
con-

nector
is
corroded,
dirty
or
damaged
.
Clean
or
repair
the
con-

nector
and
retest
.

Ground
Connections

For
any
electrical
circuit
to
work,
it
must
make
acomplete

path,
beginning
at
the
positive
(+)
battery
terminal
and
ending

at
the
negative
(-)
terminal
.
The
negative
(-)
battery
cable
is

attached
to
the
car's
chassis
.
Therefore,
any
wireor
metal

part
attached
to
the
chassis
provides
a
good
ground
path
back

to
the
negative
(-)
battery
terminal
.

Poorground
connections
are
amajor
source
of
driveabílity

problems
.
If
any
of
themainground
connections
for
the
igni-
tion
system
or
the
fuelinjection
system
are
faulty,
the
in-

creased
resistance
in
that
circuit
will
cause
problems
.

Visually
inspect
al¡
ground
wires
and
connections
for

breaks,
looseness
or
corrosion
.
Be
careful
because
wires

sometimes
break
internally
or
in
areas
not
easily
visible
.
The

main
grounds
for
the
DME
system
are
shown
in
Fig
.
11,Fig
.

12,
and
Fig
.
13
.
Also
check
the
main
fuel
pump
ground
in
the
center
console,
below
the
emergency
brake
handle
.

If
a
ground
connection
has
no
visiblefaults,
but
is
still
suspect,

measure
the
voltage
drop
acrossthe
connection
.
A
large
drop

indicates
high
resistance,
meaning
the
connection
is
corroded,

dirty
or
damaged
.
Clean
or
repair
the
connection
and
retest
.

ENGINE-GENERAL
100-
1
3

UU,~uyi

Fig
.
11
.
Mainground
(arrow)
for
engine
management
system
.
Grounds
are
in
right
rear
of
engine
compartment
.

Fig
.
12
.
Mainground
for
ignition
coils
on
MS
41
.1
engine
manage-
ment
system
(arrow)
.

DRIVEABILITY
TROLIBLESHOOTING

Page 57 of 759


al
Icld

Table
e
.
Engine
Driveability
Troubleshooting

c
l



1



I



f



I



I
Oxygen
sensor
faulty



Test
oxygen
sensor
.

ENGINE-GENERAL
100-
1
5

SYMPTOMS

a
.
Engine
fafs
tostart

b
.
Engine
startsbut
stops
immediately

c
.
Erratic
engine
idle

d
.
Poor
engine
responseon
acceleration

e
.
Erratic
engine
operation
in
al¡
speed
ranges

f
.
Excessive
fuel
consumption
g
.
Poor
enginepower,
fails
to
rev
up
h
.
CO
content
toolow

i.
CO
content
too
high

CAUSES



CORRECTIVE
ACTION

a



Fuel
pump
faulty



Test
fuel
pump
.
Repair
Group
160

a



e



Ignition
system
faulty



Test
ignition
system
.
Repair
Group
120
a



Main
relay
or
fuel
pump
relay
faulty



Test
main
relay
.
Repair
Group
130
a



Crankshaft/rpm
position
sensor
faulty



Test
crankshaft/rpm
sensor
.
120
b



c



h



i



ldle
speed
control
valve
faulty



Test
idle
speed
control
valve
.

c



d



e



Throttle
position
sensor
faulty
or
idle
signal
to



Test
throttle
position
sensor
.
DME
control
module
missing
.

c



d



h



i



Mass
air
flow
sensor
faulty



Test
mass
air
flow
sensor
Repair
Group
130
a



b



c



d



e



h



Large
air
intake
system
leak



Check
for
major
intake
air
leaks
downstream
of
mass
air
flow
sensor
.

a



c



d



e



g



h



Fuel
pressure
too
low



Test
fuel
pressure
.
Repair
Group
130

?



I



F
ue
l
pr
essu
r
e
t
oo
high



T
est
f
u
el
pressure
.
Repair
Group
130
d



e



g



h



Fuel
pump
delivery
volume
too
low



Test
fuel
pump
delivery
volume
.
Repair
Group
160
a



c



e



f



h
q
C
oo
l
a
nt
t
e
mp
e
r
a
t
u
r
e
se
n
so
r
f
au
lty



--]
T
est
coo
l
a
n
t
temp
erature
sensor
.

c



e



~



f



i



~
Fuel
injectors
leaking



Check
fuel
injectors
and
replace
leaking
injectors
.

~
Repair
Group
130

Throttle
plate
binding
or
incorrectly
adjusted



Check
throttle
plate
and
adjust
if
necessary
.

a



c



Electrical
connections
loose,
broken,
or
cor-



Visually
inspect
connectors
and
correct
any
roded



faults
.
Repair
Group
600
Ground
connections
loose,
broken,
or
corroded



Visually
inspect
ground
connections
and
correct
any
faults
.
Repair
Group
600

c



e
~



f



CO
content
too
high



Test
air
flowor
mass
air
flow
sensor
.
Repair

~
Group
130
a



b



c



d



e



CO
content
too
low



Test
mass
air
flow
sensor
.
gb



c



d



e



f



g



h



i



Inputsignals
to
ECM
missing,
ECM
in
limp



Make
electrical
tests
at
DMEECM
relay
.
Repair

home
mode



Group
130
a
~
b
~
c
~
d



e]



f



g



h



i



ECM
faulty



Test
DMEECM
inputs
.
If
all
inputs
are
correct,
replace
ECM
.

DRIVEABILITY
TROUBLESHOOTING

Page 126 of 759


120-2



IGNITION
SYSTEM

Fig
.1
.



Ignition
characteristic
map
.

Disabling
Ignition
System

WARNING
-

The
ignition
system
is
a
high-energy
system
operat-
ing
in
a
dangerous
voltage
range
that
couldprove
to
be
fatal
if
exposed
terminals
or
live
parts
are
con-
tacted
.
Use
extreme
caution
when
working
on
a
car
with
the
ignition
on
or
the
engine
running
.

The
ignition
system
operates
in
a
lethal
voltage
range
and
should
therefore
be
disabied
any
time
senrice
or
repair
work
is
being
doneon
the
engine
that
requires
the
ignition
to
be
switched
on
.

The
engine
management
system
can
be
disabled
byremov-
ingthe
main
relay
.
The
relay
is
located
in
the
power
distribution
box
in
the
left
rear
of
the
engine
compartment
.
See
Fig
.
2
.

0013134
Fig
.
2
.



Maínsystem
relay
(arrow)
in
power
distribution
box
(left
rear
of
engine
compartment)
.

GENERAL

WARNING
-

"
Do
not
touch
or
disconnect
any
of
the
high
ten-
sion
cables
at
the
cotls
orspark
plugs
while
the
engine
ts
running
orbeingcranked
by
the
starter
.
Fatalvoltages
are
present
.

"
Before
operating
the
starter
without
starting
the
engine
(for
example
when
making
a
compression
test)
always
disable
the
ignition
.

CAUTION-

"
Prior
to
disconnecting
the
battery,
read
the
bat-tery
disconnection
cautions
gtven
at
the
front
of
thts
manual
on
page
viti
.

"
Do
not
attempt
to
disable
the
ignition
by
either
re-
moving
the
cotl
from
the
spark
plugs
(6-cylinder
engines)
or
disconnecting
the
coll
wires
from
the
plugs
(4-cylinder
engines)
.

"
Connect
or
disconnect
ignition
system
wires,
multiple
connectors,
and
ignition
test
equipment
leads
only
while
the
ignitionis
off
.
Switch
multtm-
eter
functions
or
measurement
ranges
onty
with
the
test
probes
disconnected
.

"
Do
not
disconnect
the
battery
while
the
engine
ts
running
.

"
Many
of
the
tests
of
ignition
system
components
require
the
use
of
high-impedance
test
equip-
ment
to
prevent
damage
to
the
electrical
compo-
nents
.
A
high
impedance
digital
multimeter
should
be
used
for
all
voltage
and
resistance
tests
.
AnLED
test
light
shouldbe
used
in
place
of
an
incandescent-type
test
lamp
.

"In
general,
make
test
connections
only
as
speci-fied
by
BMW,
as
described
inthis
manual,
or
as
described
by
the
instrumenta
manufacturer
.

Page 127 of 759


IGNITION
SYSTEM
DIAGNOSTICS



IGNITION
SYSTEM
SERVICE

Poor
driveability
may
have
a
variety
of
causes
.
The
fault



On
4-cylinder
engines,
an
ignition
coil
pack
is
mounted
to

may
lie
with
the
ignition
system,
the
fuel
system,
parts
of
the



the
passenger
side
strut
tower
in
the
engine
compartment
.

emission
control
system,
or
a
combination
of
the
three
.
Be-



The
coil
pack
integrates
4
individual
coils
.

cause
of
these
interrelated
functions
and
their
effects
oneach

other,
it
is
often
difficult
to
know
where
to
begin
looking
for



On
6-cylinder
engines,
an
ignition
coil
is
located
directly

problems
.



above
each
spark
plug
.

For
this
reason,
effective
troubleshooting
should
alwaysbe-

gin
with
an
interrogation
of
the
On-Board
Diagnostic
(OBD)

system
.
The
OBD
system
detects
certain
emissions-related

engine
management
malfunctions
.
When
faults
are
detected,

the
OBD
system
stores
a
Diagnostic
Trouble
Code
(DTC)
in

the
system
ECM
.
In
addition,
the
Check
Enginewarning
light

will
come
on
if
an
emissions-related
fault
is
detected
.

Two
generations
of
OBD
areusedon
the
cars
coveredby

this
manual
.
See
100
Engine-General
for
OBD
information
.

On-Board
Diagnostics

"
1992-1995
models
............
...
.
..
...



OBD
I

"
1996
and
later
models
.........
.......
..
OBD
II

NOTE-

"
On
carswith
OBD
ti,
specialized
OBD
11
scan
tool

equipment
mustbeused
to
access
DTCs,
either
using

the
BMW
special
tool
or
a
`generic"
OBD
11
scan
tool
.

"
The
OBD
11
fault
memory
(including
an
illuminated

Check
Engine
light)
can
only
be
reset
using
the
spe-

cial
scan
tool
.
Removing
the
connector
from
the
ECM

or
dísconnecting
the
battery
will
not
erase
the
fault

memory
.

Basic
Troubleshooting
Principies

An
engine
that
starts
and
runs
indicates
the
ignition
system

is
fundamentally
working-delivering
voltage
toat
least
some

of
the
sparkplugs
.
A
hard-starting
or
poor-running
engine,

however,
may
indicate
ignition
coil
problems,
cracked
or
dete-

riorated
spark
plug
wires
(4-cylinder
engines
only),
and
worn

or
fouled
spark
plugs
.

WARNING
-

Inefficient
combustion
(richair/fuel
mixture)
can

cause
the
catalytic
converter
to
overheat
and
plug
.

An
overheated
catalytic
converter
can
also
bea
tire

hazard
.

Checking
for
Spark

IGNITION
SYSTEM



120-
3

WARNING
-

If
a
spark
test
is
done
incorrectly,
damage
to
theen-
gine
control
module
(ECM)
or
the
ignitioncoil(s)
may
result
.

Checking
for
spark
is
difficult
onengines
with
distributorless

ignition
systems
.

Try
Rmovng
the
plugs
and
inspecting
for
differences
be-

tween
them
.
A
poor-firing
plug
may
be
wet
with
fuel
and/or

black
and
sooty,
butnot
always
.
If
a
coil
is
not
operating,
the

engine
management
system
will
electrically
disable
the
fuel
injectorto
that
cylinder
.
The
key
is
to
look
for
differences
be-

tween
cylinders
.

Ignition
coil,
testing
and
replacing

(4-cylinder
engine)

1.
Disconnect
mainharness
connector
from
coils
:

"
On
M42
engine,
remove
plastic
covering
from
coils
and

disconnect
individual
harness
connectors
.

"
On
M44
engine,
disconnect
main
harness
connectorat

end
of
coil
pack
.
See
Fig
.
3
.

Fig
.
3
.



Ignition
coil
pack
for
M44
engine
(arrow)
.
Coil
harness
con-

nector
shown
at1
.

IGNITION
SYSTEM
SERVICE

Page 137 of 759


CHARGING
SYSTEM

TROUBLESHOOTING
.............
.
.
.
.
.121-2

Charging
System
Quick-Check
...
.
..
.
...
.
121-2

Static
current
draw,
checking
........
.
...
.
121-2

BATTERY
SERVICE
....................
121-3

Battery
Testing
.
.
.
.
.
.........
.
........
.
121-3

Hydrometer
Testing
.
...
.
.
.
...
.
.........
121-3

Battery
Open-Circuit
Voltage
Test
....
.
....
121-4

Battery
Load
Voltage
Test
.
.
.
.
.
.
.........
121-4

Battery
Charging
.
.
.
.
...
.
.
.
.
.
.
.
.........
121-4

ALTERNATOR
SERVICE
.
.
.
.
.
.
.....
.
...
121-4

Chargingsystem,checking
.
.
.
.
.
.........
121-4

Alternator,
removingand
installing

(4-cylinder
engine)
....
.
.
.
.
.
.
.
.........
121-5

Alternator,
removingand
installing

(6-cylinder
engine)
..
.
.
.
.
.
.
.
.
.
.........
121-6

GENERAL

The
charging
system
consists
of
a
belt-driven
alternator

with
integral
voltage
regulator
and
a
battery
mounted
in
the

luggage
compartment
.

Various
versions
of
alternators,
voltage
regulators,
starters,

and
batteries
are
used
in
the
E36
cars
.
It
is
important
to
re-

place
components
according
tothe
original
equipment
speci-

fication
.
Check
with
an
authorized
BMW
dealer
for
specific

application
and
parts
information
.

WARNING
-

"
Weargoggles,
rubbergloves,
and
a
rubberapron
when
working
around
batteries
and
battery
acid
(electrolyte)
.

"
Battery
acid
contains
sulfuric
acid
and
can
cause
skin
irritation
and
burning
.
ff
acid
is
spilled
onyour
skin
or
clothing,
flush
the
area
at
once
with
large
quantities
of
water
.
lf
electrolyte
gets
into
your
eyes,flush
them
with
largequantities
of
clean
wa-
terfor
several
minutes
and
call
a
physician
.

"
Batteries
that
are
being
charged
or
are
fully
charged
give
off
explosive
hydrogen
gas
.
Keep
sparks
and
open
flames
away
.
Do
not
smoke
.

BATTERY,
STARTER,
ALTERNATOR



121-1

121
Battery,
Starter,
Alternator

GENERAL
..
.
...
.
........
.
...
.
.
.
.
.
.
.
.
.
121-1



Voltage
regulator,
removing
and
ínstalling
.
.
.
121-6

Alternator
brushes,
inspecting
and
replacing
.121-7

STARTER
SERVICE
....
.
.
.
.
.
..........
.121-7

Starter
Troubleshootíng



121-7



15
..
.
.
.
.
.
........
.
.
.

Starter,
removing
and
installing

(4-cylinder
engine)
....
.
.
.
............
.
121-8

Starter,
removing
and
installing

(6-cylinder
engine
with
manual
transmission)
..
.
...........
.
...
121-8

Starter,
removing
and
installing

(6-cylinder
engine
with

automatic
transmission)
................
121-9

Solenoid
switch,
removingand
installing
....
121-10

TABLES

a
.
Battery,
Starter
and
Charging
System

Troubleshooting
............
.
.
.
.
:...
........
121-2

b
.
Specific
Gravity
of
Battery
Electrolyte
at
80°F
(27°C)
...............
.
.
..
..........
121-3

c
.
Open-Circuit
Voltage
and
Battery
Charge
........
121-4

d
.
Battery
Load
Test-Minimum
Voltage
.
..........
121-4

CAUTION
-

"
Prior
to
disconnectiog
the
battery,
read
the
bat-tery
disconnection
cautions
given
at
the
front
of
this
manual
on
page
viii
.
"
Disconnecting
the
battery
cables
may
erase
fault
codes
stored
in
control
unit
memory
.

"
Always
disconnect
the
negative
()
battery
cable
first
and
reconnect
it
last
.
Cover
the
battery
post
with
an
insulating
material
whenever
the
cable
is
removed
.

"
After
reconnecting
the
battery,
the
power
window
motors
must
be
reinitialized
.
See
511
Door
Win-
dows
.

"
Never
reverse
the
battery
cables
.
Even
a
momen-
tary
wrong
connection
can
damage
the
alternatoror
other
electrical
components
.

"
Battery
cables
may
be
the
same
color
.
Label
ca-blebefore
removing
.

GENERAL

Page 138 of 759


121-2



BATTERY,
STARTER,
ALTERNATOR

CHARGING
SYSTEM
TROUBLESHOOTING



Static
currentdraw,
checking

Charging
system
diagnostics
requires
special
test
equip-

ment
.
If
the
test
equipment
is
not
available,
charging
system

fault
diagnosis
can
be
performedby
an
authorized
BMW
deal-

eror
other
qualified
repair
shop
.
A
general
troubleshooting

guide
is
given
in
Table
a
.

Charging
System
Quick-Check

As
a
quick-check,
use
a
digital
multimeter
lo
measure
volt-



2
.
Disconnect
battery
negative
(-)
cable
.

age
across
the
battery
terminals
with
the
key
off
and
then

again
with
the
engine
running
.
The
battery
voltage
should
be



CAUTION-
about12
.6
volts
with
key
off
and
approximately
14
.0
volts
with



Prior
to
disconnecting
the
battery,
read
the
battery
the
engine
running
.
If
the
voltage
does
not
increase
when
the



disconnection
cautions
given
at
the
front
of
this
engine
is
running,there
is
a
fault
in
the
charging
system
.



manual
onpaga
viii
.

NOTE
-

The
regulated
voltage
(engine
running)
should
be
be-
tween
13
.5
and
14
.5,
depending
on
temperatura
and
operating
conditions
.
If
the
voltage
is
higher
than
14
.8,
the
voltage
regulator
is
most
Mely
faulty
.

Check
for
clean
and
tight
battery
cables
.
Check
the
ground

cable
running
from
the
negative
(-)
battery
terminal
lo
the

chassis
and
the
ground
cable
running
from
the
engine
lo
the

chassis
.
Check
the
alternator
drive
belt
condition
and
tension
.

If
the
battery
discharges
over
time,
there
may
be
a
constant

drain
or
current
draw
on
the
battery
.
A
small
static
drain
on
the

battery
is
normal,
but
a
largedrain
will
cause
the
battery
lo

quickly
discharge
.
Make
a
static
current
draw
test
asthe
first

step
when
experiencing
battery
discharge
.

1
.
Make
sure
ignition
and
al¡
electrical
accessories
are

switched
off
.

3
.
Connect
a
digital
ammeter
between
negative
battery

post
and
negative
battery
cable
lo
measure
current
.

See
Fig
.
1
.
Wait
at
least
one
minuta
lo
get
an
accurate

reading
.

A
range
of
about
0
lo
100
milliamps
is
normal,
dependingon

the
number
of
accessories
that
need
constant
power
.
A
current

of
400
milliamps
(0.4
amp)
or
more
may
indicate
a
problem
.

Table
a
.
Battery,
Starter
and
Charging
System
Troubleshooting

Symptom



1



Probable
Cause



1



Correctiva
Action

1
.
Engine
cranks
slowlyor
not



a
.
Battery
cables
loose,
dirty
orcor-



a
.
Clean
or
replace
cables
.
See020
Maintenance
Program
.
a
tall,
solenoíd
clicks
when



roded
.
starter
is
operated
.



b
.
Battery
discharged
.



b
.
Charge
battery,
test
and
replace
if
necessary
.
c
.
Body
ground
straploose,
dirty
or



c
.
Inspect
ground
strap,
clean,
tighten
or
replace
if
necessary
.
corroded
.
d
.
Poor
connection
at
starter
motor



d
.
Check
connections,
test
for
voltage
at
starter
.
Test
for
voltage
at
terminal
30
.



neutral
safety
or
clutch
interlock
switch
.
e
.
Starter
motor
or
solenoid
faulty
.



e
.
Test
starter
.

2
.
Battery
will
not
stay



a
.
Short
circuit
draining
the
battery
.



a
.
Test
for
excessive
current
drainwith
everything
electrical
in
the
charged
more
than
a
few



vehicle
off
.
days
.



b
.
Short
driving
trips
and
high
elec-



b
.
Evaluate
driving
style
.
Where
possible,
reduce
electrical
con
trical
drain
on
charging
system



sumption
when
making
short
trips
.
does
not
allow
battery
to
re-
charge
.
c
.
Drive
belt(s)
worn
or
damaged
.



c
.
Inspect
or
replace
multi-ribbed
belt(s)
.
See
020
Maintenance
Program
.
d
.
Battery
faulty
.



d
.
Test
battery
and
replace
íf
necessary
.
e
.
Battery
cables
loose,
dirty
orcor-



e
.
Clean
or
replace
cables
.
See
020
Maintenance
Program
.
rodad
.
f
.
Alternatoror
voltage
regulator



f
.
Test
alternator
and
voltage
regulator
.
faulty
.

3
.
Battery
losing
water
.



1
a
.
Battery
overcharging
.



1
a
.
Test
voltage
regulator
for
proper
operation
.

4
.
Lights
dim,
light
intensity



a
.
Drive
belt(s)
worn
or
damaged
.



a
.
Inspect
or
replace
multi-ribbed
belt(s)
.
See
020
Maintenance
varies
with
engine
speed
.



Program
.
b
.
Alternatoror
voltage
regulator



b
.
Test
alternator
and
voltage
regulator
.
faulty
.
c
.
Body
ground
straps
loose,
dirty
or



c
.
Inspect
ground
straps,
clean,
tighten
or
replace
as
necessary
.
corroded
.

CHARGING
SYSTEM
TROUBLESHOOTING

Page 143 of 759


Alternator
brushes,



STARTER
SERVICE
inspecting
and
replacing

Regulator
brushesarenot
available
as
replacement
parts
from
BMW
.
Replacement
brushes
may
be
available
from
af-

termarket
sources,
however
.

1
.
Remove
voltage
regulator
as
described
above
.

2
.
Clean
brush
contact
sürfaces
and
measure
brush
pro-trusion
.
See
Fig
.
7
.

Check
for
battery
voltage
at
terminal
50
of
the
starter
motor
Fig
.
7
.



Regulator
brush
protrusion
(A)
.



with
the
key
in
the
start
position
.
See
Fig
.
8
.
If
voltage
is
not
present,
check
the
wiring
between
the
ignition
switch
and
the
starter
terminal
.
If
voltage
is
present
and
no
other
visible
wir
Voltage
Regulator



ing
faults
can
be
found,
the
problem
is
most
likely
interna¡in

"
Brush
protrusion
(minimum)
.......
.
..
5
mm
(
1
/4
in
.)



the
starter
motor
.

3
.
To
replace
brushes,
carefully
and
as
quickly
as
possi-

ble,
unsolder
brush
lead
from
brush
holder
termina¡,

withdrawing
brush
from
holder
at
same
time
.

4
.
Remove
any
traces
of
solder
frombrush
holder
termi-
nal
using
solder
wick
.

5
.
Fit
spring
into
brush
holder
and
inserí
new
brush
.

6
.
Guide
brush
lead
into
terminal
and
solder
into
place
.

Check
for
free
movement
of
brushes
when
solder

cools
.

7
.
Check
brush
slip
rings
in
alternator
for
wear
.
Lightly
clean
slip
rings
using
fine
abrasive
cloth
.

BATTERY,
STARTER,
ALTERNATOR



121-
7

Starter
Troubleshooting

If
the
starter
tucos
the
engine
slowlyor
fails
to
operate
when
the
ignition
isin
the
start
position,
check
the
battery
first
.
In-
spect
the
starter
wires,
terminals,
and
ground
connections
for
good
contact
.
In
particular,
make
sure
the
ground
connections
between
the
battery,
the
body
and
the
engine
are
completely
clean
and
tight
.
If
no
faults
can
be
found,
the
starter
may
be
faulty
and
should
be
replaced
.

NOTE
-

"
Starting
in1194,
a
factory-installed
drive-away
protec-
tion
system,
alsoreferred
to
as
EWS
or
EWS
11,
was
used
on
all
E36
cars
.
This
system
prevenís
operation
of
the
starter
when
the
system
is
engaged
.
See
515
Central
Locking
and
Anti-theft
.

"
On
cars
with
automatic
transmission,
a
starter
relay
and
a
neutral
safetyswitchare
used
to
present
theen-
ginefrom
starting
in
gear
positions
other
than
park
or
neutral
.
ff
voltage
is
not
present
atterminal
50
with
the
key
in
the
startposition,
check
these
components

To
make
the
most
accurate
check
of
the
battery
cables
and
starterwiring,
make
a
voltage
drop
test
on
the
cables
and
wir-

ing
as
described
in
600
Electrical
System-General
.

Terminal
30
'
\



/
Terminal
30h

0012518

8
.
Reinstall
regulator
and
alternator
.



Fig
.
8
.



Typical
starterwiring
terminal
identification
.
Large
wireat
ter-
minal
30
is
direct
battery
voltage
.
Smaller
wire
at
terminal
50
operates
starter
solenoid
via
ignition
switch
.

STARTER
SERVICE

Page 147 of 759


GENERAL
.
.
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
.........
130-2



Intake
air
temperature
(IAT)
sensor,

Principles
of
Operatinn
.
.
.
.
.
.
.
.
.
.........
130-2



testing
and
replacing
...
.
...
.
.
.
.......
.
130-19

Basic
Engine
Settings
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
:
.
130-3



Throttle
position
sensor
(TPS),

DISA
(Dual
Resonance
Intake
System)
.
.
.
.
.
130-3



testing
and
replacing
...
.
...
.
.
.
.
.
...
.
.
.130-19

On-Board
Diagnostics
(OBD)



Idle
speed
control
valve,
testing
.
.
.
.
.
.
.
.
.
.
130-20

and
Fault
Diagnosis
.
.
....
.
......
.
.
.
...
130-4



Idle
speed
control
valve,
replacing
.
.
.
.
.
.
..
130-21

SecondaryAir
Injection
.
.
.....
.
.........
.
130-5



BOSCH
DME
M5
.2
COMPONENT
Warnings
and
Cautions
.
.
...
.
.
.
.........
.
130-6



REPLACEMENT
.....
.
......
.
....
.
.
.
..
130-21

ELECTRICAL
CHECKSAND



Mass
air
flow
sensor,
replacing
.
.
....
.
....
130-22

COMPONENT
TESTING
.
.
.
.
.
.
.
.
...
.
.
.
.
.
130-7



Engine
coolant
temperature
(ECT)

Main



sensor,
replacing
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
130-22
rela
y
testing



130
-7
,...
.
.
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.



Intake
air
temperature
(IAT)
sensor,
Fuel
pump
relay,
testing
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
130-7



rep
lacin
.
.
.
.
.
.
.
.
.
.
.g



.
.
.
.
.
.
.
...
.
.
.
..
.130-22
Oxygen
sensor,
testing
(Boschsystems
only)
130-8



Throttle
poson
sensor
(TPS)
replacing



13022
,



..
.-

FUEL
DELIVERY
TESTS
...
.
....
.
.
.
...
.
130-9



Idle
speed
control
valve,
replacing
...
.
....
.130-23

Operating
fuel
pump
for
tests
.
.
.......
.
...
130-9



SIEMENS
MS
41
.1
COMPONENT
Relieving
fuel
pressure
and



REPLACEMENT
.
...
.
.
.
.
.
.......
.
....
.130-23
connecting
fuel
pressure
gauge
......
.
..
130-10

Residual
fuel
pressure,
testing
.
.....
.
.
.
.
.
130-10



Mass
air
flow
sensor,
replacing
.
.......
.
.
.130-25

Fuel
pressure
regulator
response



Engine
coolant
temperature
(ECT)

to
engine
load,
testing
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
130-11



sensor,
replacing
.....
.
.
.
.
.
.........
.130-25

Fuel
rail
and
injectors,
checking
...
.
.
.
.
.
.
.
130-11



Intake
air
temperature
(IAT)
sensor,
replacing
.
.
.
.
.
.....
.
.
.
.
.
.
.
.......
.
.
.130-25
Fuel
rail
and
injectors,
replacing



..
.
.
.
.
.
.
.
130-12



Throttleposition
sensor
(TPS),
replacing
.
.
.
130-26
Fuel
PressureRegulator
.........
.
.
.
.
.
.
.
130-13



Idle
s
eed
control
valve,
re
lacin



130-26
Fuel
pressure
regulatorreplacing



p



p



g
.'''...
.
'
,

(fuel
rail
mount)
...
.
.
.
.
.
.............
130-13



ECM
PIN
ASSIGNMENTS
.............
.
.
130-26
Fuel
pressure
regulator,
replacing



Engine
control
module
(ECM),
accessing
...
130-26
(undercar
mount)
.
.
.
.
.
.
.
.
.........
.
.
130-14

BOSCH
DME
M1
.7
COMPONENT

TESTS
AND
REPAIRS
.
.
.
.
.
...
.
.
.
.
.
.
.
.
130-14

Air
flow
sensor,
testing
and
replacing
.
.
.
.
.
.
130-14

Engine
coolant
temperature
(ECT)

sensor,
testing
and
replacing
...
.
.
.
.
.
.
.
.
130-15

Throttle
position
sensor
(TPS),

testing
and
replacing
.
..........
.
.....
130-16

Idle
speed
control
valve,
testing
and
replacing
.
.
.
.
.
............
130-16

BOSCH
DME
M3
.1
AND
M33
.1

COMPONENT
TESTS
AND
REPAIRS
.
.
.
130-17

Mass
Air
Flow
Sensor
.
.
.
.
.
.
.
.
.....
.
.
.
.
.130-17

Mass
air
flow
sensor
(hotwire),testing
and
replacing
.
.
.
.
.
.....
.
.
.
.
.
.
.
130-17

Mass
air
flow
sensor
(hot
film),

testíng
and
replacing
.
.
.
.....
.
.
.
.
.
.
.
.
.
130-18
Engine
coolant
temperature
(ECT)

sensor,
testing
and
replacing
..
.
.
.
.
.
...
.
130-18

130
Fuel
i
n
jection

FUEL
INJECTION



130-1

TABLES
a
.
Engine
Management
System
Variants
.........
.130-2
b
.
Mass
Air
Flow
Sensor
Variants
..
.
..
..........
.130-2
c
.
Fuel
Pressure
Specifications
..
.
.
...
..........
130-11
d
.
Engine
Coolant
Temperature
Sensor
or
Intake
Air
Temperature
Sensor
Test
Values
(DME
1
.7)
...
.
130-15
e
.
ThrottlePosition
Sensor
Tests
(DME
1
.7)
......
.130-16
f
.



Engine
Coolant
Temperature
Sensor
or
Intake
Air

Temperature
Sensor
Test
Values
(DME
3
.1/3
.3
.1)130-19
g
.
Throttle
Position
Sensor
Tests
(DME
3
.1/3.3
.1)
.
.130-20
h
.
ECM
Pin
Assignment-Bosch
DME
M1
.7
....
.
..
.130-28
i.



ECM
Pin
Assignment-Bosch
DME
M3
.1
.......
.130-30
j
.



ECM
Pin
Assignment-Bosch
DME
M3
.3
.1
.....
.130-32
k
.
ECM
Pin
Assignment-Bosch
DME
M5
.2
.......
.
130-34
I.



ECM
Pin
Assignment-Siemens
DME
MS
41
.1
..
.
130-36

Page 148 of 759


130-2



FUEL
INJECTION

GENERAL

This
repair
group
covers
fuel
injection
system
component

testing
and
repair
.
Special
equipment
is
necessary
for
some

of
the
procedures
given
in
this
repair
group
.
If
you
do
not
have

the
equipment
required
to
do
the
job,
it
is
recommended
that

these
repairs
be
left
to
an
authorized
BMW
dealer
.
The
BMW

dealer
is
equipped
with
sophisticated
diagnostic
test
equip-

ment
that
is
capable
of
quicklypinpointing
hard-to-find
fuel
in-

jection
problems
.

NOTE-

"
Wiring
diagrams
for
the
engine
management
system,

can
be
found
at
the
rear
of
the
manual
under
Electri-
cal
Wiring
Diagrams
.

"
For
ignition
system
repairinformation,
see120
Igni-

tion
System
.

"
For
fuel
supply
system
testing
and
repair,
see160



The
engine
control
module
(ECM)
uses
electrical
signals

Fuel
Tank
and
Fuel
Pump
.



from
the
mass
air
flow
sensor,
the
air
and
coolant
temperature

sensors,
the
crankshaft
position/rpm
sensor,
the
knock
sen

Principies
Of
Operation



sors
and
the
oxygen
sensorsas
the
primary
inputs
to
electron-

ically
control
fuel
delivery
and
ignition
timing
.

There
are
five
versions
of
engine
management
systems

usedon
the
E36
cars
.
Each
has
the
same
basic
components

and
operating
principles
.
The
most
notable
difference
is
that

1996
and
later
cars
use
a
sophisticated
OBD
II-compliant
sys-

tem
.
See
Table
a
.

Table
a
.
Engine
Management
System
Variants

Engine
code/year



1
System

4-cy1inder
M42
(1
.8
I)
1992-1995



Bosch
DME
Ml
.7
M44
(1
.91)
1996-1998



~
Bosch
DME
M5
.2
(OBD
II)

6-cylinder
M50
1992
(2.5
I)



Bosch
DME
M3
.1
1993-1995
(2.5
I)



Bosch
DME
M3
.3.1
(VANOS)
M52
1996-1998
(3281-
2
.8
I)



Siemens
MS
41
.1
(OBD
II)
1998
(3231
-
2
.5
I)



Siemens
MS
41
.1
(OBD
II)
M-Power
S50US
(M3
-
3
.01)
1995



Bosch
DME
M3
.3
.1
S52US
(M3
-
3
.21)
1997-1998



Siemens
MS
41
.1
(0131)
11)

NOTE-

-
Descriptions
and
procedures
in
the
first
partof
this
re-

pairgroup
refer
to
all
the
various
engine
management
systems
.

"
Particulars
of
each
fuel
injection
system
are
treated
in
separate
sections
in
the
second
part
of
this
repair
group
.

GENERAL

Fig
.1
.



OBD
II
diagnostic
connector
locatíon
.

The
fuel
injection
system
is
completely
electronic
in
opera-

tion
.
Air
flow
is
measured
electronically
via
a
mass
air
flow

sensor
and
additional
sensors
supply
information
about
en-

gine
operating
conditions
.
The
ECM
calculates
the
amount
of
fuel
needed
for
the
correct
air-fuel
ratio
and
actuates
the
fuel

injectors
accordingly
.
The
amount
offuel
metered
to
theen-

gine
is
determined
by
how
long
the
injectors
are
open
.

Airintake
.
Air
entering
the
engine
passes
through
a
pleat-

ed
paper
air
filter
in
the
air
cleaner
.
Intake
air
volume
or
mass

is
then
measured
bya
mass
air
flow
(MAF)
sensor
.
In
al¡
ex-

cept
the
vane
type
sensor
(DME
M1
.7),
a
reference
current
is

used
to
heat
a
thin
wireor
film
in
the
sensor
when
the
engine

is
running
.
The
current
used
to
heat
the
wire/film
is
electroni-

cally
converted
into
a
voltage
measurement
corresponding
to

the
mass
of
the
intake
air
.

Table
b
.
Mass
Air
Flow
Sensor
Variants

System



Al
r
flow
sensor
type

Bosch
DME
M1
.7



Vane
(volume
sensor)

Bosch
DME
M3
.1



Hot
wire
(mass
sensor)

Bosch
DME
M3
.3
.1



Hot
film
(mass
sensor)

Bosch
DME
M5
.2



Hot
film
(mass
sensor)

Siemens
MS
41
.1



Hot
film
(mass
sensor)

"
The
16-pin
OBD
11
diagnostic
connector
is
located
on



NOTE-

the
lower
left
dashpanel
.
See
Fig
.
1
.



On
cars
equipped
wíth
tractioncontrol,
an
additional
throttle
valve
is
controlled
by
an
electronic
throttle
actu-
ator
(motor)
.
This
valve
is
used
for
engine
speed
inter
vention
.
Repair
information
forthis
system
is
notcovered
here
due
to
the
special
electrical
testing
equip-
ment
required
to
service
it
.

Page 149 of 759


FUEL
INJECTION



130-
3

Fuel
metering
.
The
ECM
meters
fuel
bychanging
the



The
engine
management
system
compensates
automatical-
opening
time
(pulsewidth)
of
the
fuel
injectors
.
To
ensure
that



ly
for
changes
in
the
engine
due
to
age,
minor
wear
or
small
injector
pulsewídth
is
the
only
factor
that
determines
fuel
me-



problems,
such
as
a
disconnected
vacuum
hose
.
Asa
result,
tering,fuel
pressure
is
maintained
bya
fuel
pressure
regula-



idle
speed
and
mixture
do
not
need
lo
be
adjustedas
partof
tor
.
The
injectors
are
mounted
lo
a
common
fuel
supply
called



routine
maintenance
.
the
fuel
rail
.

The
ECM
monitors
engine
speed
to
determine
the
duration



NOTE-

ofinjector
openings
.
Other
signals
to
the
ECM
help
determine



Poordriveabilitymaybe
encountered
when
the
batteryis

injector
pulse
time
for
different
operating
conditions
.
A
tem-



disconnected
and
reconnected
.
when
the
battery
is
dis-
connected,
the
adaptive
memory
is
lost
The
system
will
perature
sensor
signals
engine
temperature
for
mixture
adap-



readaptafterabout
ten
minutes
of
drfving
.
tion
.
A
throttle
position
sensor
signals
throttle
position
.
The
exhaust
oxygen
sensor(s)
signal
information
about
combus-
tion
efficiency
for
control
of
the
air-fuel
mixture
.
1992
to
1995



DISA
(Dual
Resonance
Intake
System)
engines
are
equipped
with
a
single
sensor
.
1996
and
later
(OBD
II)
engines
are
equipped
with
an
oxygen
sensor
before



TheE36
4-cylinder
engine
is
equipped
with
a
dual
intake
andone
after
each
catalytic
converter
.
Forexample,the
M52



runner
system,
termed
DISA
.
DISA
offers
the
advantages
of
engine
is
equipped
withfour
oxygen
sensors
.



both
short
and
long
intake
pipes
.
Long
intake
runners
are
most
useful
at
low
to
medium
engine
rpm
for
producing
good
Idle
speed
control
.
ldle
speed
is
electronically
controlled



torque
characteristics
.
Short
intake
runners
produce
hígherviathe
idle
speed
control
valve,
which
maintains
idle
speed
by



horsepower
at
hígher
engine
speeds
.
bypassing
varying
amounts
of
air
around
theclosed
throttle
valve
.
Idle
speed
is
not
adjustable
.



NOTE-

Knock
(detonation)
control
.
Knock
sensors
monitor
and



The
term
DISA
comes
from
the
German
words
Differen-

control
ignition
knock
through
the
ECM
.
The
knock
sensors



zierte
Sauganlage,
and
can
roughlybe
translated
as
"dif-
fering
intake
manifold
configuration
."
See
100
Engine-
function
like
microphones
and
are
able
to
convert
mechanical



General
foradditional
information
on
DISA
operation
.
vibration
(knock)
into
electrical
signals
.
The
ECM
is
pro-

grammed
to
react
to
frequencies
that
are
characteristic
of
en-



Manifold
construction
:
The
intake
manifold
is
a
two-piece
gine
knock
and
adapt
the
ignition
timing
point
accordingly
.



metal
construction,
with
a
pair
of
runners
in
thetop
section
See120
Ignition
System
for
further
details
.



and
four
runners
in
the
lower
section
.
A
butterfly
valve
is
in-
stalled
in
the
lower
section,
enabling
the
DISA
solenoid
toiso-

NOTE-



late
one
pair
of
runners
from
the
other
pair
.
See
Fig
.
2
.

The
1992
M50
engine
is
not
equipped
with
knock
sen-



Operation
.
With
the
DISA
butterfly
valve
closed,
the
pipes
sors
.
All
other
engines
are
equipped
with
two
knock



in
thetop
half
of
the
manifold
act
together
with
the
ram
air
sensors
.



pipes
in
the
lower
halfto
producea
single,
long
air
intake
pipe
for
each
cylinder
.
See
Fig
.
3
.
The
column
of
aír
oscíllating
in

Basic
Engine
Settings



this
combined
pipe
significantly
increases
engine
torque
in
the

medium
rpm
range
.

Idle
speed,
idle
mixture
(%CO),
and
ignition
timing
arenot

adjustable
.
The
adaptive
engine
management
system
is
de-

signed
to
automatically
compensate
for
changes
in
engine
op-

eratingconditions,
although
the
adaptive
range
is
limited
.
Once

these
limits
are
exceeded,
driveability
problems
usually
be-

come
noticeable
.

Above
approximately
4,800
rpm,
the
butterfly
valve
between
the
intake
air
pipes
for
the
two
cylinder
groups
is
opened
.
The
shorter
pipes
in
the
lower
manifold
section
now
become
the

main
suppliers
of
ram
air
to
the
cylinders,yielding
greater
pow-

er
at
the
upper
end
of
the
engine
rpm
range
.
See
Fig
.
4
.

Control
components
.
The
DISA
butterfly
valve
is
actuated

NOTE-



electro-pneumatically
via
the
engine
control
module
(ECM)
.

lf
the
system
adaptive
limits
are
exceeded,
the
Check



The
valve
begins
to
open
as
engine
speed
rises
aboye
4,840

Engine
light
will
most
likely
come
on,
indicating
an



rpmand
closes
below
4,760
rpm
.
The
action
of
the
valve
is
de-
emissions-
related
fault
For
Check
Engine
light
diag-



liberately
delayed
to
prevent
it
from
opening
and
closing
repeat-
nostics,
see100
Engine-General
.



edly
within
a
short
time
.

GENERAL

Page:   < prev 1-10 11-20 21-30 31-40 41-50 50 next >