oil pressure DATSUN 610 1969 User Guide

Page 43 of 171


Connect
the
fuel
line
from
the
float

chamber
to
the
nozzle

nipple
and

tighten
the

retaining
clip
Pull
out

the
choke
lever

and

place
the

connecting
plaie
betw
n
the
washer
and
sleeve

collar
Screw
the

plate
to
the

nozzle
head
and
check
that
the

collar
is
installed
in
the
hole
in

the

plate
by
mo

ing
the
choke

lever
as

necessary

Recheck
the

piston
to
make

sure
that
it
falls

freely
without

binding

SU
TWIN
CARBURETTOR

Centering
the

jet

Remove
the

damper
oil

cap
nut

and
gradually
raise
the

lifter

pin
4
in

Fig
D
17

Continue
to
raise
the
lifter

pin
until
the
head
of
the

pin

raises
the

piston
by
approximately
8
mm
0
31
in
When
the

lifter

pin
is
released
the

piston
should

drop
freely
and
strike

the
venturi
with
a

light
metallic
click
If

the

pi
ston
does
not

fall

freely
it
will
be

necessary
to
dismantle
the

carburettor
in

the
manner

previously
described

SU

TWIN
CARBURETTOR

FLOAT
LEVEL

Inspection
and

Adjustment

The
fuel
level
in
the
float
chamber
can

be
checked

using

the

special

gauge
ST
19200000
Remove
the
float
chamber

drain

plug
and
install
the

special

gauge
as
shown
in

Fig
D
20

Start
the

engine
and
allow
it
to
run
at

idling
speed
The

fuel
level
is
conect
if
it
is

indicated
on

the

glass
tu

be
at
a

distance
of
22
24
mm
0
866
0
945
in
below
the

top
of
the

float
chamber

The
level
of
the
fuel
can

be
corrected
if

necessary
by

adjusting
the
float
level
in
the

following
manner
Take
out
the
float
chamber
coveT

securing
screws
and

lift
off
the
cover
and
attached
float

lever
Hold
the
cover
so
that

the
float
lev
r
is

facing
upwards
Lift
the
float
lever
and
then

lower
it
until
the
float
lever
seat

just
contacts

the
valve
stem

The
dimension
uH
in

Fig
D
1
should
be
11
12
mm
0
43

0
47
in

and
can

be
corrected

by
bending
the
float
lever
at
the

point
indicated

SU
TWIN
CARBURETTOR

Starting
interlock
valve

opening
adjustment

To

adjust
the
starting
interlock

opening
the

connecting

rod
4
in

Fig
D
22
1
must
be
bent

using
a
suitable

pair
of

pliers
The
throttle

opening
can

be
increased

by
lengthening

the

connecting
rod
or
reduced

by
shortening
the
rod

The
throttle

opening
is
correctly

adjusted
when
the

clearance
8

between
the
throttle
valve
and
throttle
chamber

is
set
to
0
6
mm
0
023
in
with
the
choke
lever
half

completely

out

HYDRAULIC
DAMPER

The

damper
oil

should
be
checked

approximately
every

5000
km
3000
miles
To
check
the
oil
level
remove
the
oil

cap
nut
as
shown

in

Fig
D
23
and
check
the
level
of
oil

against

the
two

grooves
on
the

plunger
rod

Top

up
with
SAE
20

engine
oil
if

the
oil
level
is
below
the
lower
of
the
two

grooves

Take
care

not
to
bend
the

plunger
rod
when

removing
and

replacing
the
oil

cap
nut

and
make
sure
that
the
nut
is

sufficiently

tightened
by
hand

TechnIcal
Data

Engine
Model
Ll4

I400cc

Primary
Secondary

28mm
32mm

21x7mrn
28xlOmm

96

165

60
60

I
Omm

220
100

1
6
Outlet
diameter

Venturi
diameter

Main

jet

Main
air
bleed

1
st

slow
air
bleed

2nd
slow
air
bleed

Economizer

Power

jet

Float

level

Fuel

pressure

Main
nozzle
55

22mm

0
24

kg

sq
cm
3
41b

sq
in

2
2mm

2
Smm

SU
Twin
Carburettors

Type

Bore
diameter

Piston
lift

Jet
needle

Nozzle

jet
diameter

Suction

spring
IUL
38
W6

38mm

1
4961
in

29mm

1417
in

M
76

2
34
mm

0
0921
in

No
23

Float
needle
valve

inner
diameter

Float

level
1
5mm
0

059
in

23mm
0
9055
in

42
Ll6
1600cc

Primary

Secondary

28mm
32mm

22x7mm

29xlOmm

102
165

60

60

1
0mm

180
100

1
6
Ll8

l80Occ

Primary
Secondary

30mm

34mm

23x14x7mm
30xlOmm

102
170

60
60

I
Omm

210
100

1
6

55

22mm
55

22m

2
3mm
2
5mm
2
3mm
2
8mm

Throttle

clearance
at
full

throttle

Position
at
full
throttle
0
6mm
0
0236
in

6
50

FUEL
PUMP

Type

Delivery
amount
Mechanical

1000cc
minute
at
1000

r

p
m

0
18
0
24

kg

sq
cm

2
5
3
41b

sq
in

from
eccentric
on
cam

shaft
Delivery

pressure

Drive

Page 44 of 171


Clutch

DESCRIPTION

CLUTCH
Removal
and

Dismantling

CLUTCH
Inspection
and

Adjustment

CLUTCH
Installation

CLUTCH
PEDAL
Removal
and
Installation

DESCRIPTION

Either
a

diaphragm
spring
or

coil

spring
type
clutch

is

fitted
to

the
vehicle
The

component
parts
of
the

diaphragm

spring
clutch
are
shown
in

Fig
E
l
and
the

component
parts

of
the
coil

spring
clutch
are
shown
in

Fig
E
2

The
clutch
is
of
the

single
dry
plate
type
consisting
of

the
drive

plate
clutch
coveT
and

pressure
plate
and
release

bearing

The
driven

plate
comprises
a

flexible
disc
and

splined
hub

which
slides
on
the

clutch
shaft
Friction
linings
are

rivetted
to

both

sides
of
the
disc

The
clutch
cover

and

pressure
plate
are
combined

by
nine

spring
setting
bolts
The

diaphragm
is
dished
to

maintain
a

constant

pressure
on
the

pressure
plate
which
in
turn
holds

the
driven

plate
in
contact
with
the

flywheel
The
release

bearing

is
a
sealed

type
ball

bearing
mounted
on
a

bearing
sleeve
Both

bearing
and
sleeve
are
operated

by
the
withdrawalleveT
when

the
clutch

pedal
is

operated

The
clutch

pedal
actuates
a
master

cylinder
which
transmits

fluid

under

pressure
to
a
slave

cylinder
The
movement
of

the

slave

cylinder
piston
operates
the
clutch
withdrawal
lever
via

a

push
rod
See

Fig
E
14

CLUTCH
Removal
and

Dismantling

The

gearbox
must

be
removed
from
the
vehicle
before

the
clutch
can

be
withdrawn
The

procedures
for

removing
the

gearbox
can
be
found
in
the
section
GEARBOX

If
a

diaphragm
clutch
is
fitted
insert
a

spare
clutch
shaft

or
a

special
alignment
tool
ST20600000
into
the

splines
of

the
driven

plate
So
that
the
dutch
is

supported
Slacken
the

six
bolts

securing
the
clutch
cover
to
the

flywheel
by
a
single

turn
at
a
time
and
in
a
diagonal

pattern
until
the

spring

pressure

is
relieved
Remove
the
bolts

completely
and
lift

away
the

clutch

assembly

When

removing
the
coil

spring
type
clutch
it
will

be

necessary
to
insert
suitable
hooks

under
the
release
levers
to

restrain
the
tension
of
the
clutch

spring
before

removing
the

clutch
cover
lx
llts

Ensure
that
the
friction

linings
of
the
driven

plate
do
not

become
comtaminated
with
oil
or

grease
when
removing
the

plate
from
the

splined
shaft

Diaphragm
clutch

The
clutch
cover
and

pressure
plate
assembly
should
not

be
dismantled
and
must
be

replaced
if
wear
or

damage
has

occurred
Make
sure
that
the
friction
face
of

the

pressure
plate
CLUTCH
PEDAL
Adjusting

CLUTCH
MASTER
CYLINDER

CLUTCH
SLAVE
CYLINDER

CLUTCH
WITHDRAWAL
LEVER

Adjusting

CLUTCH
SYSTEM

Bleeding

is
perfectly
flat
and
smooth

Coil

spring
clutch

A

special
tool
No
ST200S0000
is
available
to
ensure

that

the
clutch
can
be
dismantled
and

accurately
reassembled
The

tool
shown
in

Fig
E
3
consists
of
a
Base

plate
I
Centre

spigot
2
Distance

pieces
3

Height
gauge
4
Operating
lever

5

Securing
bolts
6

A
chart
is
included
to
indicate
the
various

parts
to
be
used

for
each

type
of
clutch

To
dismantle
the
clutch
place
the
distance

pieces
on

the

base
plate
as
shown
and

arrange
the
clutch
cover
on
the
base

plate
so
that
the
cover
holes
coincide
with
the
threaded
holes

in
the
base

plate
Insert

the

securing
bolts
provided
in
the
kit

and

tighten
them
gradually
and

evenly
in
a

diagonal
pattern

until
the
cover
is

firmly
attached
to
the
base

plate
Mark
the

clutch
cover

the

pressure
plate
lugs
and
the
release
levers
with

a

centre

punch
so
that

they
can

be
reassembled
in
their
original

positions

Remove
the

restraining
hooks
from
the
release
levers
and

unscrew
the
three
nuts
from
the

eye
bolts
Slowly
release
the

pressure
on
the
clutch
coil

springs
by
unscrewing
the
bolts

securing
the
cover
to
the
base

plate
and
lift
off
the
cover

springs

and

pressure
plate

CLUTCH

Inspection
and
Adjustment

Use
a
solvent
to
clean
the
dismantled

parts
with
the

exception
of
the
disc

linings
and
the
release

bearing

Check
the
clutch
cover

diaphragm
spring
and

pressure

plate
assembly
for
wear
or

damage
and
renew
the

complete

assembly
if

necessary
The

pressure
plate
on
the
coil

spring

clutch
can
be

lapped
if
necessary
as
described
below
Ensure

that
the
disc
rivets
are
not
loosened
and

inspect
the

linings
for

contamination
Grease
or
oil
should
be
removed
and
the

linings

dressed

using
a
wire

brush

Check
the
disc
for

run
ut

using
a
dial

gauge
as
shown
in

Fig
E
4
Position
the
dial

gauge
at
a

point
approximately
9Smm

3
74
in
from
the
centre
of
the
disc
and
check
that
the
run

out
does
not

exceed
the
permissible
limit
of
0
5
mm

0
02in

A
slight
deflection
can
be
corrected

by
hand

pressure
with

the
disc
mounted
on
the

gearbox
shaft

The
disc
must
be
renewed
or
relined
if
the
height
of
the

linings
above
the
rivets
is
less

than
0
3mm
0
012
in

Replace

the
bearing
sleeve
if
it
shows

signs
of
wear
at

the
point
of

contact
with
the
withdrawal
lever

Replace
the
release

bearing

if

grease
is

leaking
from
it
or
if
it
is

noisy
when
turned

43

Page 45 of 171


inter
llD
i

@
p1

11
l

1

14
l

1
Clutch
driven

pc
e

2
Qutch

assembly

3

Dutch
cover

4
Pressure

plate

5
Bolt

6

Eye
bolt

pivot
pin
81

r

Fig
E
I
The

diaphragm
spring
clutch

1
C7utch
driven

platt

2

Dutch
COl
tT
with

pnsmre
plate

3
8011

4
Lock
washer

5
Withdrawal

lacr

6
Retainer

spring

7

BeaMI
u
ve

8
Relmsf

bearing

9

Beving
s
vc
holder

spring

10
Dust
co
r

11

Fig
E
2
The
coil

spring
clutch

7

Inssure

spring

8

Spring
tainer

9

Release
In
O

10
Retf
t1sc

InleT
seat

11
Locknut

12
Releme
lever

support
19
R
hmr

beDrin8

20

Retaining
clip

21
DllJt
xw0

22
Return

sprint

23
Locknut

24
Wil
u
lnrrJ
raJ

Inn

pusher

44
13

Retaining
SProw

14
8011

15
LockwruheT

16
CTutch
withdrawal
lever

17

Retainer

spring

18
B

ng
sJ

Page 46 of 171


The
coil

spring
clutch

pressure
plate
can

be

lapped
with
a

surface

grinder
to
remove

dents
or

scratches

only
the
minimum

amount
of
metal
should
be
removed
to
restore
the
surface

Check
the

plate
for
distortion

by
placing
it

on
a
surface

plate
with

the
friction
face
towards
the
surface

plate
Press

the
pressure

plate
down
and
insert
a
feeler

gauge
of
1
0mm

0
0039
in

between
the

pressure
plate
and
surface

plate
If
it

is

possible
to
insert
the
feeler

gauge
then
the

pressure
plate
must

be

repaired
or

replaced
The

plate
can
be
skimmed
but
the

maximum
amount
of
metal
that
can
be
removed
is
1
0mm

0
0039in

CLUTCH
SPRING

Diaphragm
clutch

With
the

diaphragm
spring
assembled
to
the

pressure
plate

inspect
the

spring
height
and
load
in
the

following
manner

Place
distance

pieces
of
7
8
mm

0
307
in
on
the
base

plate
as

shown
in

Fig
E
3
and
bolt
down
the
clutch
cover

using
the

special
bolts

provided
with
the
kit
Meas
Jre
the

height
B
in

Fig
E
5

at
a
diameter
of
44mm
1

732
in
The
release

fingers

should
not

exceed
a

height
of
43
45
mm
1
693
1
772
in

from
the
base

plate
Replace
the

spring
if

the

height
is
in
excess

of
the

figures

quoted

Press
the
dutch
down
as

shown
in
Fig
E
6
to
a

depth
of

7
8mm
0
307
in
or
until
the
clutch
driven

plate

upper
surface

lines

up
with
the
clutch
cover

mounting
face
If

the
load

applied

is
less
than
350

kg
770
lbs
it
will
be

necessary
to
renew
the

diaphragm
spring
Do
not

press
the
clutch
disc
down

by
more

than
9mm
0
35
in
or
the

diaphragm
spring
may
be
broken

CLUTCH
SPRINGS
Coil

spring
clutch

The
clutch

springs
must
be

replaced
as
a

set
if

any
of
the

springs
are
found
to
be
defective
Specifications
for
the

springs

are

given
in
Technical
Data
at
the
end
of
this
section

Generally

a

spring
may
be
considered
faulty
if
when
assembled
the
load
is

reduced

by
more
than
15
or
if
the
free

length
has
altered

by

more
than
1
5mm
0
0590
in
or
if
the
deflection
B
to
A

in

Fig
E

7
exceeds
5mm

per
100mm
0
2
in

per
3
94
in

Release

Bearing

The
release

bearing
should
be
renewed
if

excessively
worn

or
if

roughness
can
be
felt
when
the

bearing
is
turned

by
hand

The

bearing
should
also
be
renewed
if
the

grease
has

leaked

away
or
if
the
clearance

between
the
clutch
cover
and
inner

diameter
of

the
sleeve
is
more
than
0
5
mm
0
0197
in

The

bearing
can
be

removed

using
a
conventional

puller

as
shown
in

Fig
E
8
Two

types
of
release

bearings
are

available

and
care
must
be
taken
when

fitting
onto

the
bearing
sleeve

The
release
bearing
should
be

pressed
into

place
on
the

diaphragm

spring
type
of
clutch
with
a
force
of
400

kg
880
lbs

applied

at
the
outer
race
as
shown

in

Fig
E
9
On
the
coil

spring
clutch

the
same

force
must

be

applied
at

the
inner
race
as
shown
in

Fig
E
IO
It
should
be

possible
to
turn
the

bearing
freely
and

smoothly
when
it
is

pressed
into

place
CLUTCH

Assembly

Coil

spring
type

Press
the

pin
into
the

eyebolt
and

through
the

lug
on

the

pressure
plate
Place
the
three
distance

pieces
on
the
surface

of
the
base
plate
of
the

special
tool
ST20050000
and

position

the

pressure
plate

pressure
springs
and
retainers

on
the

plate

Set
the

retracting
springs
on
the
cover

and
insert
the

release
levers

through
the

spring
Place

the
clutch
cover
over

the

pressure
plate
and

springs
making
sure
that
the

retracting

springs
do
not

become
dislodged
or
distorted

Compress
the

pressure
springs
by
screwing
the

special
set

bolts
into
the
holes
in

the
cover

Tighten
the
bolts

gradually

in
a

diagonal

pattern
to
avoid

distorting
the
cover
Place
the

release
levers
on

the

eye
bolts
and
screw
OR
the

securing
nuts

Place

retaining
hooks
under
the
release
levers
and
remove
the

clutch
assembly
from
the
base

plate
slackening
the
set
bolts
in

a

diagonal
pattern

COIL
SPRING
CLUTCH

Adjusting

Screw
the
centre

pillar
into
the
base

plate
and

place
the

high
finger
over
the

pillar
The
height
of
the
release
levers
must

be

adjusted
by
turning
the
eye
bolt
nuts
until
the

tops
of

the

release
levers
are

just
touching
the

tip
of
the
gauge
See
Fig
E

11
Remove
the
centre

pillar
when
the
release
levers
are

correctly
adjusted
and
screw
in
the

actuating
lever
Fig
E
12

Turn
the

actuating
mechanism
several
times
to
bed
down
the

parts
and
then
recheck
the

height
of
the
release
levers
Check

for
run
out
as
near
to
the

edge
as
possible
and

readjust
if
the

deviation
is
more

than
0
5
mrn
0
020
in

CLUTCH
InsWlation

Ensure
that
the
friction
faces
are

free
from

oil
and

grease

and
place
the
driven

plate
on
the

flywheel
The

longer
chamfered

splined
end
of
the

assembly
should
face

the

gearbox
Use
a

spare
drive
shaft
to

align
the
driven

plate
The
shaft
must

be

inserted

through
the
splined
hub
of
the
driven

plate
and
into

the

pilot
bearing
of
the

flywheel

Place
the
clutch
cover
into

position
on

the
flywheel
and

tighten
the
dutch
bolts

gradually
in
a

diagonal

pattern
to
a

torque
reading
of
1
5
2
2

kgm
11
16Ib
ft

Remove
the

dummy
shaft
and
the

restraining
hooks
from
the
release
levers

Refit
the
release

bearing
and
the
bell

housing

CLUTCH
PEDAL
Removal
and
Installation

Remove
the
clevis

pin
from
the
end
of
the
master

cylinder
pushrod
and
disconnect
the
pushrod
Remove
the

return

spring
Remove
the

pushrod
after

slackening
the

pushrod

adjuster
Coil

spring
clutch

only
Remove
the

pedal
lever

securing
bolt
slacken
the
handbrake
bracket
bolts
and
lift
out

the

pedal

Clean
all

parts
thoroughly
and
check
them
for
wear
or

damage
paying
particular
attention
to
the
rubber

parts
return

spring
and

pedal
lever
bush

Installation
of
the
clutch

pedal
is
a
reversal
of

the

removal

procedures

45

Page 51 of 171


other
end
of
the

tube
into
a
clean
container

partly
filled
with

brake
fluid

Top

up
the
master

cylinder
reservoir
with
recommended

fluid
and

open
the
bleed
screw

approximately
three

quarters

of
a
turn

Depress
the
clutch

pedal
slowly
and
hold
it

completely

down
re

tighten
the
bleed
screw
and
allow
the

pedal
to
return

slowly

Repeat
the

operation
until
the
fluid

emerging
from
the

tube
is
free
from
air
bubbles
It
should
be
noted
that
assistance
will
be

required
when

carrying
out

bleeding
operations
as
not

only
must
the
fluid

entering
the

glass
container
be
watched
but
also
the
clutch

pedal
has
to
be

operated
and
the
reservoir

topped
up
frequently

throughout
the

procedure

When
the
fluid
is
completely
free
from
air
bubbles
the

bleed
screw
should
be

retightened
on
a
down
stroke
of
the

pedal

Finally
remove
the
bleed
tube
and

replace
the
dust

cap

TechnIcal
Data

Outch

type

Pressure

spring

Free

length

Fitted

length
and
load

Side
distortion

Permissible
deterioration

of

spring
force

Outch
release
levers

Oearance
between
release

bearing
and

diaphragm
spring

release
levers

Height
between
diaphragm
spring
and

flywheel

Height
between
release
levers
and
flywheel

Outch
driven

plate

Outer
diameter

Inner
diameter

Thickness
of

facingS

Total
friction
area

TIrickness
of

clutch
plate

Free

Compressed

No
of
torsion

springs

Permissible
minimum
depth
of
rivet
heads
from

facing
surface

Permissible
run
out
of
clutch

facing

P
rmissible
free

play
of

splines

Outch

pedal
1400
and
1600cc
models

Pedal

height
in
the
rest

position

P
da1
free
stroke

P

da1
effort

Master

cylinder

Diameter

Maximum
clearance
between

piston
and

cylinder

Pressure

plate

Permissible
refacing
limit

Outch

pedal
180Occ
models

P
da1

height

Play
at
clevis

pin

Full
stroke

P
da1
effort

50
Diaphragm
spring
or
coil

spring

52
3mm
2
059
in

29
2mm
44

2kg

1
149
in

197
t

4
4
lb

5mm

per
IOOmm

0
2in

per
3
94
in

15

1
2
I

4mm
0
047
0
055
in

44
t

Imm
1
732
t

0
039
in

50
5
t
0
05mm
1
988
t

0
0197
in

200mm
7
87
in

130mm
5
12in

3
5mm
0
140in

362

sq
cm
56
11
sq
in

8
6
9
0mm
0
3386
o
3543in

7
65
7
95mm
0
3012
o
3130in

6

O
3mm
0
0118

in

0
5mm
0
0197
in

0
4mm
0
0157
in

182mm
7
17in
R
H
D

207mm
8
15in
L
H
D

25mm
0
984in

15kg
33
lb

15
87mm
0
625in

O
13mm
0
005lin

Imm
0
0394in

175mm
6
89in

1
5mm
0
04
0
20in

135mm
5
3lin

10

5kg
23Ib

Page 56 of 171


to
ascertain
the
amount
of
wear
that
has
taken

place

Check
the
teeth
of
the

gearwheels
and
the
machined
surfaces

for

signs
of
wear

scoring
pitting
and
burrs
Ensure
that
the

synchronizer
hubs
slide

freely
on
the

splines
of

the
main
shaft

with
minimum
clearance
Check

the
mainshaft
for
run
out

using
V
blocks
and
a
dial

gauge
as
shown
in

Fig
F
15
Renew

the
mainshaft
if
the
run
out
exceeds
0
15mm
0
0059
in

Check
the

synchronizer
rings
for
wear
and
renew
them
if

necessary
Place
the

rings
in

position
on

their

respective
gear

wheel
cones
and
check
the

gap
between
the
end
of
the

ring
and

the
front
face
of

the
teeth
Fig
F
16
The
correct

gap
should

be
within
1
2
1
6mm
0
047
0
063
in
Renew
the
synchronizer

ring
if
the

gap
is
less
than
0
8mm
0
0315
in

Place
the
selector
rods
on
a
flat
surface
and
check
them
for

traightness
Renew

any
rod
which
is
bent
Renew
the

locking

pins
and
interlock
balls
if

they
are
worn
or

damaged
The

standard
clearance
between
the
selector
forks
and

operating

sleeve

groove
is
0
15
0
30mm
0
006
0
012
in

Make
sure
that
the
oil
seals
are

satisfactory
and
discard

the
O

rings

THREE
SPEED
GEARBOX

Assembly

Press
the
main
drive
gear

bearing
onto
the
main
drive
shaft

and
fit
the

spacer
Select
a

snap
ring
of
suitable
thickness
so

that
all

play
is
eliminated
between
the

bearing
and

snap
ring

Seven
sizes
of

snap
rings
are
available
and

vary
in
thickness
from

1
52mm
0
0598
in
to
1
89mm
0
0747in

The

synchromesh
unit
consists
of
a

coupling
sleeve
baulk

ring
spring
synchronizer
hub
and
insert
When

assembling
the

unit
make
sure
that
the
correct
insert

pressure
springs
are
fitted

to

the
relevant

speed
unit
The
first
reverse

gear
synchronizer

should
be
fitted
with
the
three
coil

spring
type
and
the
second

third

gear
synchronizer
with
the
two

expanding
springs

To
assemble
the
fiI3t

speed
synchronizer
insert
the

sliding

insert

snap
ring
onto

the
synchronizer
hub
as
shown
in

Fig
F
17

Fit
the

sliding
inserts

Fig
F
18
and

the
synchronizer
springs

on
the

synchronizer
hub
and
assemble
the

synchronizer
hub

complete
with
inserts
into
the

coupling
sleeve

Fig
F
19

Assemble
the
second
third

gear
synchronizer
hub
and

coupling
sleeve

making
sure

that
the
sleeve
slides

freely
on
the

hub

splines
Fit
the
three

shifting
inserts
and
install
a

spring
ring

on

each
side
of
the
hub
Fig
F
20

To
assemble
the
mainshaft
start
from
the
front
end
of
the

shaft
and
slide
the
second

speed
gearwheel
on
to
the
shaft
with

the

tapered
cone

facing
forwards
Install
the
baulk
ring
on
the

gearwheel
and

place
the
second
third
speed
synchronizer
assembly

on
the
front
end
of
the
shaft
and
retain
it
with
a

snap
ring
which

will

give
an
end

play
of
0
05
0
25
mm
0
002
0
009
in

Snap
rings
are
available
in
five
sizes
from
1
60
1
80
mm

0
063
0
071
in

Fit
the
first

speed
gear
and
baulk

ring
on
the
rear
of

the

shaft
so
that
the

tapered
cone
faces
to

the
rear

Assemble
the

first

speed
synchronizer
and
reverse

gear
on
the
shaft
Fit
the

spacer
and

press
the
mainshaft

bearing
complete
with
retainer

onto
the
shaft
Install
the

spacer
ball
and

speedometer
drive
pinion

Select
a

snap
ring
which
will
give
an
end
float
of
0
05
0
22mm

0
002
0
009
in
on
the
mainshaft
first

gear
Snap
rings
are

available
in

eight
thicknesses
from
1
30mrn
0
0512
in

to

1
70mm
0
0669
in

Secure
the
drive

gear
with
the
selected

snap
ring
and
check

the
end
float
of
the

gearwheels
as

shown
in

Fig
F
21
The
correct

end
float
should
be
as
follows

I
st

speed
gearwheel
0
2
o
3mm

0
008
0
012
in

0
2
0
3mm

0
008
0
012
in
2nd

speed
gearwheel

Fit
the
main
drive

gear
and
mainshaft

assembly
into
the

gearbox
casing
Fit
the
selector
rods
and
forks
as
follows

Turn
the

gearbox
casing
so
that
the
detent
ball
hole

is

uppermost
and
insert
the

spring
and
ball
in
the
bottom
of
the

hole
Hold
the
ball
witb
a

dummy
shaft

and
install
tbe
first

reverse
selector
fork
and
rod
pushing
the

dummy
shaft
out

of

position
Insert
the

interlocking
plunger
and
fit
the
second
third

speed
selector
fork
and
rod

Insert
the
steel
ball
and

spring
and

refit
the

interlocking
plug
after

coating
the
threads
of
the

plug

with

sealing
compound
See

Fig
F
22

Secure
the
selector
forks

to

the
rods

by
inserting
the

retaining
pins

Fit
the
reverse
idler

gear
and
shaft
and
secure

the
shaft

with
the
lock
bolt
and

plate
Insert
the
counter

gear
cluster
and

shaft

using
a
suitable
thrust
washer
to
obtain
an
end
float
of

0
04
0
12
mm
0
0016
0
0047
in
Thrust
washers
are
available

in
five
sizes
from
3
85
4
05
mm
0
1516
0
1594
in
thickness

in
increments
of

0
05
mm
0
002
in

Fit
the
cross
shafts

1
in

Fig
F
23
the
thrust
washers
2

and
the

operating
levers
3
Secure
the
cross
shafts
with
the

retaining
rings
5
and
lock
the

operating
levers
to
the
shafts
with

the

pins
4

Locate
the
rear
extension

housing
on
the

gearbox
case

and

tighten
the
bolts
to
a

torque
reading
of
2
8
4
4

kgm

20

32
Ib
ft
Insert
the

speedometer
drive

pinion
and
retain
it

with
the
set

bolt
and
lock
plate
Check
the
backlash
of
all
the

gears
using
a
dial

gauge
as
shown
in

Fig
F
24
The
backlash

should
be
between
0
05
0
20
mm
0
002
0
008
in
Fit
the

gearbox
front
cover
and

tighten
the
fixing
bolts
to
a

torque

reading
of
1
I
1
7

kgm
8
0
12
3
lb
ft

taking
care
not
to

damage
the
oil
seal
Fit
the
clutch
release
bearing
and
with

drawallever

Fig
F
25

Replace
the
bottom
cover
and
tighten

the
bolts
to
a

torque
reading
of
1
I
1
7

kgm
8
0
12
31b
ft

THREE
SPEED
GEARBOX
Installation

Installation
of
the

gearbox
is
a
reversal
of

the
removal

procedure
noting
the
following

points

Fit
the

gearbox
with
I
7

litre
0
45
US
gall
0
37

Imp

gall
of
MP
90

gear
oil

Adjust
the
clutch
slave

cylinder
push
rod
as
described
in

the
section
CLUTCH
to

provide
a
free

play
of
2
2
mm
0
087in

at
the
withdrawal
lever

55

Page 80 of 171


factory
parts

Installation

is
a

reversal
of
the
removal

procedure

REAR
SUSPENSION

ARM
Removal
and
Installation

Saloon

I
J
ad

up
the
car
at

the
rear
and

support
it
on
stands

2
Remove
the
road
wheel
and
brake
drum
as
described
in

the

section
BRAKES

3
Disconnect

the
drive
shaft
from
the
axle
shaft

4
Disconnect

the
handbrake
cable
from
the

equalizer
bracket

and
the
wheel

cylinder
lever
Disconnect

the
brake
hose

from
the
brake
line

by
removing
the
lock

spring
and
then

withdrawing
through
the
connector

Plug
the
end
of
the

brake

line
to

avoid
loss

of
fluid
and

ingress
of
dirt

5
Remove
the
wheel

bearing
locknut

Fig
H
9
the
rear

axle

shaft

wheel

bearings
and
oil
seal
Remove
the
rear
brake

assembly
from
the

suspension
ann
See
section
BRAKES

6
Jack

up
the

suspension
arm
to

relieve
the
tension
on
the

shock
absorber
and
disconnect
the
shock
absorber
from

the
lower

mounting
Lower
the

jack
gradually
and
remove

the
coil

spring
seat
and

bump
rubber

7
Remove
the
bolts

securing
the

suspension
arm
to

the

suspension
member

Fig
H
IO
and
withdraw
the

suspension

arm

The
rubber
bushes
can

be
drawn
out

of
the

suspension
arm

if

necessary
using
the

special
tool
ST
38280000

Fig
H
Il

O1eck
the

suspension
arm
for
distortion
or

cracks
and

inspect
the
rubber
bushes
for

signs
of
wear
or

damage
Renew

any
part
which

is

unsatisfactory

Installation

is
a

reversal
of
the
removal

procedure
Tighten

all
the

suspension
arm

mounting
bolts
with
the

weight
of

the

vehicle

resting
on
the
rear
wheels
The
self

locking
nuts
must

be
renewed
at
each
overhaul

REAR

AXLE
SHAFTS
BEARINGS
AND
SEALS

Saloon
Removal
and

Dismantling

I
Raise
the
vehicle
at
the

rear
and

place
stands
under
the

body
member

2
Remove

the
road
wheel
and
brake
drum

3
Disconnect
the
drive
shaft
from
the
axle
shaft
and
remove

the
wheel

bearing
locknut
The

special
wrench
ST
38060001

can
be
used
to
hold
the

flange
as

shownin

Fig
H
12

4
Withdraw

the
axle

shaft

assembly
as
shown
in

Fig
H
13

using
the

special
tool
ST
07640000

and
sliding
hammer

ST
36230000
Remove

the
rear
axle
drive

flange

5
Use
a
suitable
drift
or

special
tool
ST
37750000
See

Fig

H
14
to
drive

out
the
inner

bearing
and
oil
seal

F
6
Remove

the

grease
retainer
and
withdraw
the
outer

bearing
with
a
conventional

puller
DO
NOT
re
use
this

outer

bearing

REAR
AXLE
SHAFTS
BEARINGS
AND
SEALS
Saloon

Assembly
and
Installation

Oleck
the
axle
shaft
for

straightness
make
sure
that
it
is

not
cracked
or

damaged
in

any
way
00
NOT
heat
the
shaft

if

attempting
to
re
straighten

Make
sure
that
the

lip
of
the
oil

seal
is
not

damaged
or

distorted
Check
the

bearing
for
excessive

wear
and

damage

Oean
the
wheel

bearings
the
oil
seal

and
the
inside
of
the

axle

housing

When

installing
the
wheel

bearings
the
sealed
side
of
the

outer

bearing
should
face

the
wheel
and
the
sealed

side
of

the

inner

bearing
should
face
the
differential
See

Fig
H
IS

Pressure
must
be

applied
to
the
inner
race
when

fitting

When

replacing
the

suspension
arm
check
that
the
distance

piece
is
0
05
mm
0
002
in
shorter
than
the

length
of
the

housing
dimension
LI
See

Fig
H
16
The
distance

piece
and

axle

housing
code

markings
must
coincide

The
wheel

bearing
grease
must
be

replaced

every
50
000

km
30
000
miles
Pack
the
wheel

bearings
with

grease
at
the

positions
shown
in

Fig
H
IS
and
coat
the

lip
of
the
oil
seal

Renew
the
locknut
and
oil
seal
at

each
overhaul

Wheel

bearing
adjustment

Tighten
the
locknut
to

the

specified
torque
reading
of

25
33

kgm
181
239
lb
ft
and
check
that
the
rear
axle
shaft

end

play
does
not
exceed
0
15
mm
0
006
in
with
a

turning

torque
of
less
than
7

kg
em
6
11b
in
for
the
1400
and
1600cc

models
510

series
or
4
5

kg
em
3
91b
in
for
the
1800cc

610
series

If
the
correct
end

play
or

turning

torque
cannot
be

obtained
it
will
be

necessary
to

change
the
distance

piece
See

above

DRIVE
SHAFTS
Removal
and

Dismantlill8

Disconnect
the
end

flanges
and
remove
the
shaft
See

Fig
H
17
The
drive
shaft
should

only
be
dismantled
to

lubricate
the

splines
This

operation
will

only
be

necessary
every

two

years
or
50
000
km
30
000
miles

Remove
the
universal

joint
spider
at
the
differential
side

Refer
to
the

propeller
shaft
section
Remove
the

snap
ring

securiilg
the
sleeve

yoke
plug
and
take
out

the

plug
Compress

the
drive
shaft
and

remove
the

snap
ring
and

stopper
Fig
H
17

Disconnect
the
boot
and

split
the
shaft
Make
sure
that
the

balls
and

spacers
are
retained

DRIVE
SHAFTS

Inspection
and

Assembly

The
drive
shaft
should
be

replaced
as
an

assembly
if

any

part
is
found
to

be
defective

Check
the
shaft
for

straightness
damage
or
wear
Old

79

Page 88 of 171


the
castle
nut
and
detach
the
tie
rod
from
the
knuckle
arm

5
Remove
the
tension
rod

securing
nuts

Fig
J
7
remove

the
bolts
and
withdraw
the
tension
rod
Withdraw
the
nut

shown
arrowed
in

FigJ
8
and
remove
the
stabilizer

6

Support
the

engine
with
suitable

lifting
tackle
so
that

the

engine
mounting
bolts
can

be
removed
and
the

suspension

crossmember
detached
from
the

engine
FigJ
9

7
Place

ajack
under
the
crossmember
Remove
the
bolts

indicated
in

Fig
J
IO
and

separate
the
crossmember
from

the

body

8
Remove
the
strut

assembly

upper
attachment
self

locking

nuts
at
both
sides
Fig
J
ll

and
lower

the
front

suspension

assembly
to
remove
it
from
the
vehicle

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY
Installation

Installation
is
a
reversal
of

the
removal

procedure
noting

the

following
points

Make
sure
that
all
rubber

parts
are
free
from
wear
and

deterioration

Any
part
of

the
suspension
assembly
which
has

been

damaged
or
distorted
must
be

replaced
The
front
wheel

alignment
should
be
checked
after

completing
the
installation

a
brief

description
is

given
at
the
end
of
this
section
Camber

and
castor

angles
are

preset
and
cannot
be

adjusted

SPRING
AND
STRUf
ASSEMBLY
Removal
and
Installation

The
strut

assembly
consists
of
the
outer

casing
piston
rod

piston
rod

guide
and
cylinder
etc
An

exploded
view
of
the

components
is

given
in

Fig
J
12

The
inner

components
must

be
replaced
as
a

complete

assembly
Replacement
and
overhaul

procedures
for

the
inner

components
together
with
the
removal
of
the
front

springs

should

only
be
carried
out

by
a
specialist
Datsun

workshop

The
strut

assembly
can
be
removed

prior
to

dismantling
by

following
the

procedures
outlined
below

Jack

up
the
front
of
the
vehicle
and

support
it
on
stands

2
Disconnect
the
brake
hose
from
the
strut

assembly
bracket

as

previously
described
under
the

heading
FRONT
AXLE

and
SUSPENSION
ASSEMBLY
Removal

3
Remove
the
stabilizer
bar
and
tension
rod
from
the
trans

verse
links
Loosen
and
remove

the
knuckle
arm

fixing

bolts

Fig
J
9
And

separate
the

strut
assembly
from
the

ball

joints

4
Remove
the
strut

assembly

upper
attachment
self

locking

nuts

Fig
J
11
and
withdraw
the
strut

assembly
from

the

body
Fig
J
13

Installation
is
a
reversal
of
the
removal

procedure
Ensure

that
the
bolts
are

tightened
to

the
specified
torque
readings

given
under
TIGHTENING

TORQUES
SPRING
AND
STRUT
ASSEMBLY

Dismantling
and

Assembly

Care
must
be
taken
when

dismantling
the
assembly
to

ensure

that
aU

parts
are
maintained
in
a
clean
condition

Clamp
the

suspension
strut

assembly
in
a
vice
and
fit
the

special
attachment
ST
2770000
I
to
the
lower
end
of
the
strut

Prise
off
the
dust
cover

snap
ring
Use
the
coil

spring
compressor

ST
35650001
to

slightly

compress
the

spring
Remove
the
self

locking
nut
and
take
off
the
mounting
insulator
thrust
bearing

spring
seat
and

bump
rubber
Slacken
the

spring
compressor
and

remove

the

spring
Push
down
the
shock
absorber

piston
until
it

bottoms
and
remove

the

gland
packing
with
the

special
tool

ST
35500001

Fig
J
14
Remove
the
O

ring
from
the

piston

rod

guide
and
lift
out

the
piston
rod
and

cy
linder

assembly

00
NOT

separate
the

piston
and

cylinder
which
are
serviced

as
a

complete
assembly
Drain
all
fluid
from
the

suspension
unit

and
shock
absorber

assembly
Wash
all

parts
thoroughly
not

rubber

parts
in

petrol
or
a
suitable
solvent

The

gland
packing
and
0

ring
must
be
renewed
at

each

overhaul

Always
refill
with
the
correct

grade
of
fresh
oil
in

accordance
with
the
information
in
the
table
below

ATSUGI
KAYABA

Part
No

54302
UO
100

UOl10
325
cc
332
cc

54302
3
U0500
1

54302
N
1200
325
cc
300
cc

The
oil

quantity
is
extremely
critical
as
it
will
affect

the

damping

power
of
the
shock
absorber

To
assemble
fit
the
rubber
O

ring
on
the

top
of
the

piston

rod
and
refit
the

gland
packing
Take
care
that
the
oil
seal
does

not
become

damaged
during
the
latter

operation
Lift
the

piston

rod

up
by

approximately
90
mm
3
5
in
before

tightening
the

gland
packing
to
facilitate

bleeding
then

tighten
the
packing

to
a

torque
reading
of
7
13

kgm
51
94Jb
ft
Bleed
the

shock
absorber
by
pumping
the

piston
rod

up
and
down
until

the

pressure
is
the
same

in
both
directions

Position
the
coil

spring
bump
rubber

spring
seat
and
dust

cover
on
the

top
of
the

piston
rod
The

piston
rod
must
be
in

the

fully
extended

position
Compress
the

spring
fit
the
strut

mounting
insulator
and

bearing
assembly
Tighten
the
self

locking
nut
to
a

torque
reading
of

6
7
5

kgm
43
541b
ft

SPRING
AND
STRUT
ASSEMBLY
Installation

Installation
is
a
reversal
of

the
removal

procedure

Thoroughly
grease
the

parts
marked
in

Fig
J
15
Tighten
the

fixing
bolts
to
the

torque
readings
given
in
TIGHfENING

TORQUES

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT
Removal

The
transverse
link
with
rubber

bushing
is
connected
to

the

suspension
crosSlTIember

by
a

mounting
bolt
as
shown
in

Fig
J
11
and
to

the
strut

assembly
via
the
lower
ball

joint

87

Page 92 of 171


SteerIng

DEsn
IPTION

S
i
EERlNG
MaintenaDce

STEERING
WHEEL
AND
STEERING
GEAR

Removal
and
Installation

STEERING
GEAR

Dismantling

STEERING
GEAR

Inspection
and
Adjustment

DESCRIPTION

A
worm
and

recirculating
ball

type
steering
system
is

fitted
to

the
vehicle
the

component
parts
of
the

steering
gear

are
shown
in

Fig
K
I

The

steering
linkage
consists
of
the
centre
tie
rod

pitman

ann
idler
arm
outer
tie
rods
and
the
knuckle
arms
as
shown

in

Fig
K
2

A

collapsible
steering
column
assembly
can
be
fitted
to
the

vehicle
to

protect
the
driver
from

injury
in
a
head
on

collision

Details
of
this

type
of

assembly
are

given
under
the

appropriate

heading

STEERING
Maintenance

O1eck
the
oil

level
in
the

steering
box
every
10
000
km

6
000
miles
and

top
up
with
recommended
lubricant
if

necessary

Grease
the

steering
linkage
every
50
000
km
30
OOO

miles
It
will
be

necessary
to

replace
the

plug
in
the
tie
rod
ball

joints
with
a

grease
nipple
for
this

operation
as

previously

described
in
the
section
FRONT
SUSPENSION

Use
a

grease
gun
to

completely
replace
the
old

grease
with

new

grease
making
SUfe
that
the

grease
is
not
forced
from
under

the
cover

clamp
if
a

high

pressure
gun
is
used

STEERING
WHEEL
AND
STEERING
GEAR
Removal

1
Take
out
the

retaining
bolts
and
remove
the
horn
ring

remove
the

steering
wheel
nut

Fig
K
3
and

pull
off

the

steering
wheel
The
special
tool
ST
27180000
should
be

used
if
available

2
Disconnect
the

battery
leads
remove

the
steering
column

shell
covers

and
the
turn

signal
and

lighting
switch
assembly

3
On
vehicles
fitted
with

steering
column

gear
change

assemblies
the

gear
lever
must
be
removed
from
the

control
rod

assembly
Unscrew
the
retaining
boltg
and

disconnect
the

gear
lever

4
Remove
the
bolts
from
the

steering
column

upper
clamp

Fig
K
4
and
the
bolts

holding
the
lower

plate
Fig
K
5

5
If
the
vehicle
is
fitted
with

steering
column
gear
change

remove
the

cotterpin
from
the
trunnion
and
detach
the

gearchange
rod
and
selector
rod
from
the

change
lever
and

selector
lever
STEERING
GEAR

Assembly
and

Adjustment

COLLAPSIBLE
STEERING

COLLAPSIBLE
STEERING
Removal
and

Inspection

COLLAPSIBLE
STEERING
Installation

STEERING
LINKAGE

6
Remove
the
bolts

securing
the

steering
gear
housing
to

the
car

body
Fig
K
6
and

pull
the
steering

gear
towards

the

engine
compartment

Remove
the
gearchange
control
from
the

steering
gear

assembly
as
described
in
the
section
GEARBOX

STEERING
WHEEL
AND
STEERING
GEAR
Installation

Installation
is
a
reversal
of
the
removal

procedure
When

the
installation
has
been
completed
make
sure
that
the

steering

wheel
can

be
turned

smoothly
and
is
correctly
aligned
The

free
travel
of
the

steering
wheel
should
be
between
2S
30mm

0
9B
1
18
in
Tighten
the

steering
wheel
locknut
to
a

torque

reading
of
4
0
5
0

kgm
29
36Ib
ft
and
the

steering
column

upper
clamp
and
plate
bolts
to
a

torque
reading
of
1
3
1
8

kgm

94
1
3
Ib
ft

Ensure
that
the

steering
box
is
topped
up
to
the
correct

level
with
recommended
lubricant

STEERING
GEAR

Dismantling

Remove
the

pitman
arm

retaining
nut

and
pull
out
the
arm

The

special
puller
ST
27140000
should
be

used
if
available

Remove
the
drain

plug
from
the

steering
gear
housing
and

drain
the
oil

Slacken
the

adjusting
screw
nut
and
turn
the
sector
shaft

adjusting
screw
a
few
turns
in
the
anti
clockwise
direction

Remove
the
sector

shaft
cover

retaining
bolts
and

pull
the

sector
shaft
cover
and
sector
shaft
from
the
gear
housing
Fig

K
7

Remove
the
bolts

securing
the
column

jacket
to
the

gear

housing
and

carefully
withdraw
the
main
column
jacket
assembly

from
the
gear
housing
Fig
K
B

NOTE
The
ball
must
not
be
allowed
to
run
to
either
end
of

the
worm
or
the
ends
of
the
ball

guides
will
be

damaged

Pull
the
column
assembly
from
the
column
jacket
Remove

the
sector
shaft
oil
seal
and
take
out
the
rear

bearing
outer

race

from
the
column

jacket
with
a
suitable

puller

Withdraw
the

bearing
inner
races
from

the
front
and
fear

worm

bearings

Remove
the
column
shaft

bearing

91

Page 104 of 171


brake
shoe
is
in
contact
with
the
drum
The

adjuster
must
be

turned
from

the
rear
of

the

backplate
and
the
drum
turned

by

hand

When
the
shoe
contacts
the
drum
turn
the

adjuster
in

the

opposite
direction
until
the

shoe
is

just
clear
and
the
drum

can

be
rotated

freely
by
hand

Depress
the
brake

pedal
and
make
sure
that
the
brakes

operate
correctly
The

adjusters
must

be
released

slightly
if

the

brake
shoe
binds

FRONT
DISC
BRAKE
Friction

pads
Fig
L
14

The
disc
brakes
are
self

adjusting
but
the
friction

pads

should
be
checked
for
wear

every
5
000
km
3
000
miles
and

replaced
if
the
thickness
of

the
friction

lining
on

any

pad
is
less

than
1
0mm
0
004
in
In
effect
this
means
that
renewal
is

necessary
when
the
total
thickness
of

pad
and

lining
is
less
than

8
4mm
0
24
in

To

replace
the
friction

pads
proceed
as

follows

Siphon

out
some
of
the
fluid
in
the
master

cylinder
reservoir
Jack

up

the
front
of
the
vehicle
and
remove

the
road
wheel

Remove
the
anti
rattle

clip
from
the

calliper
plate
Fig
L
lS

Unhook
the

hanger
spring
and
withdraw
the
brake

pads

and
shims

Fig
L
17

It
should
be
noted
that
the
friction

pads
must
be

replaced

as
a
set
and
renewed
at
both
sides
of
the
vehicle
otherwise
the

braking
action
will
be
uneven

Oean
the

calliper
and

pad
at

their
installation

positions

Press
the

pistons
into
the

calliper
bores
so
that
the
new
friction

Pads
can
be
installed
The

pistons
can

be
installed

by
applying

light

pressure
as
shown
in

Fig
L

16
but
care
must

be
taken
to

avoid

pushing
them
too
far
or
the

groove
of
the

piston
will

damage
the
seal

If
the

pistons
are

pushed
down

excessively
it
will
be

necessary
to
dismantle
the

calliper
as

described
under
the

appropriate
heading

Assemble
the

anti

squeal
shims
to
the
friction

pads
with

the
arrow
mark
on
the
shims

pointing
in
the
direction
of

forward
disc
rotation

Refit
the

pads
and

retaining
pins
and
assemble
the
coil

spring
to

the

retaining
pin
furthest
away
from

the
air
bleed
screw

After

installing
the
new

pads
and
shims

depress
the
brake

pedal
several
times
to

reposition
the
pistons
in
the

calliper

O1eck
the
fluid
level

in
the
master

cylinder
reservoir
and
refill

to
the
correct
level

FRONT
DISC

BRAKE
Removal
and

Dismantling

1
Jack

up
the
front
of

the
vehicle
remove
the
road
wheel

and
take
out

the
friction

pads

2
Disconnect
the
brake
hose
from
the
brake

tube
and

plug

the

opened
end
to

prevent
the
loss
of
fluid
3
Remove
the
bolts

securing
the
brake

calliper
to

the

knuckle

flange
and
remove
the

calliper
assembly
Fig
L
IS

4
Remove
the
hub
nut

and
withdraw
the
hub
and
disc

To
dismantle
the
calliper
remove
the
anti
rattle

clip
and

withdraw
the
brake

pads
Remove
the
tension

springs
and

pull

the
cylinder
out
of
the

calliper
Blow
out

the
piston
with
com

pressed
air

applied
at

the
brake
hose
connection

Oean
the

components
in
brake
fluid
and
examine
them

for

signs
of
wear
or

damage

The

cylinder
walls
can

be
carefully
polished
with
fine

emery
cloth
if

they
are
rusted
or
contaminated
If
the

parts

are

excessively
corroded

they
should
be
renewed

Replace
the

pistons
if

they
are

unevenly
worn

damaged

or
rusted
The
sliding
surface
of
the

piston
is

plated
and
no

attempt
should
be
made
to

use

emery
cloth
or
similar
abrasives

for

cleaning
purposes

Check
the
thickness
of
the
friction
pads
as

previously

described
and
replace
them
if

necessary
Renew
the

piston
seals

and
the
dust
covers

O1eck
the
brake
disc
for

scoring
and
out
of
round
The

standard
disc
thickness
is
10
Omm
0
0394
in
and
must
not

be

reground
below
8
4mm
0
3307
in

Check
the
disc
run
out
with
a
dial

gauge
as
shown
in

Fig

L
19
Position
the
gauge
near
the
outer
diameter
and
check
that

the
run
out
does
not

exceed
0
06mm
0
0024
in

FRONT
BRAKE
DISC
Assembly
and
Installation

Rinse
the

cylinder
bore
with
brake
fluid
and
fit
the

piston

seal
into
the

cylinder

groove
Fig
L
20
Fit
the
wiper
seal
and

lightly
grease
the
bore
of
the

cylinder
Clean
the
brake
disc

and
fit
it
to
the
hub
Install
the
hub
to
the
knuckle

spindle

Carefully
insert
the

piston
into
the

cylinder
until
the
face

of
the

piston
is
almost
flush
with

the

wiper
seal
retainer
The

relieved

part
of
the

piston
should
face
the

piston
pin

Fit
the
cylinder
to
the

calliper
plate
and
secure
in

position

with
the
two
torsion

springs
Assemble
the
hold
down
pin

the

spring
washer
and
the
nut
to

the

support
bracket
Secure

the
nut

with
a
cotter

pin

Assemble
the

calliper
to

the
mounting
bracket

using
the

pivot
pin
washer

spring
washer
and
nut

Tighten
the
nut
and

secure
with
a
cotter

pin
Hook
the
hold
down
bracket
to
the

top
of
the

mounting
bracket
and
turn
the

calliper
plate
to

make

sure

that
it
can
slide

smoothly
Fit
the

calliper
assembly
to
the

knuckle

flange

Fit
a
shim
to
the
inner

pad
and
insert
the

pad
Draw
the

calliper
towards
the
chassis
and
insert
the
lower
cuts
on

the

pad

into
the

mounting
bracket
and

push
the

pad
in
until
it
contacts

the

piston
Move
the

calliper
away
from
the
chassis
and
insert

the

upper
cuts
Centre
the
indentation
of

the
outer

pad
in
the

calliper
plate
Fit
the
anti
rattle

clip
Fig
L
14

103

Page:   < prev 1-10 11-20 21-30 31-40 next >