oil type DATSUN 610 1969 User Guide

Page 46 of 171


The
coil

spring
clutch

pressure
plate
can

be

lapped
with
a

surface

grinder
to
remove

dents
or

scratches

only
the
minimum

amount
of
metal
should
be
removed
to
restore
the
surface

Check
the

plate
for
distortion

by
placing
it

on
a
surface

plate
with

the
friction
face
towards
the
surface

plate
Press

the
pressure

plate
down
and
insert
a
feeler

gauge
of
1
0mm

0
0039
in

between
the

pressure
plate
and
surface

plate
If
it

is

possible
to
insert
the
feeler

gauge
then
the

pressure
plate
must

be

repaired
or

replaced
The

plate
can
be
skimmed
but
the

maximum
amount
of
metal
that
can
be
removed
is
1
0mm

0
0039in

CLUTCH
SPRING

Diaphragm
clutch

With
the

diaphragm
spring
assembled
to
the

pressure
plate

inspect
the

spring
height
and
load
in
the

following
manner

Place
distance

pieces
of
7
8
mm

0
307
in
on
the
base

plate
as

shown
in

Fig
E
3
and
bolt
down
the
clutch
cover

using
the

special
bolts

provided
with
the
kit
Meas
Jre
the

height
B
in

Fig
E
5

at
a
diameter
of
44mm
1

732
in
The
release

fingers

should
not

exceed
a

height
of
43
45
mm
1
693
1
772
in

from
the
base

plate
Replace
the

spring
if

the

height
is
in
excess

of
the

figures

quoted

Press
the
dutch
down
as

shown
in
Fig
E
6
to
a

depth
of

7
8mm
0
307
in
or
until
the
clutch
driven

plate

upper
surface

lines

up
with
the
clutch
cover

mounting
face
If

the
load

applied

is
less
than
350

kg
770
lbs
it
will
be

necessary
to
renew
the

diaphragm
spring
Do
not

press
the
clutch
disc
down

by
more

than
9mm
0
35
in
or
the

diaphragm
spring
may
be
broken

CLUTCH
SPRINGS
Coil

spring
clutch

The
clutch

springs
must
be

replaced
as
a

set
if

any
of
the

springs
are
found
to
be
defective
Specifications
for
the

springs

are

given
in
Technical
Data
at
the
end
of
this
section

Generally

a

spring
may
be
considered
faulty
if
when
assembled
the
load
is

reduced

by
more
than
15
or
if
the
free

length
has
altered

by

more
than
1
5mm
0
0590
in
or
if
the
deflection
B
to
A

in

Fig
E

7
exceeds
5mm

per
100mm
0
2
in

per
3
94
in

Release

Bearing

The
release

bearing
should
be
renewed
if

excessively
worn

or
if

roughness
can
be
felt
when
the

bearing
is
turned

by
hand

The

bearing
should
also
be
renewed
if
the

grease
has

leaked

away
or
if
the
clearance

between
the
clutch
cover
and
inner

diameter
of

the
sleeve
is
more
than
0
5
mm
0
0197
in

The

bearing
can
be

removed

using
a
conventional

puller

as
shown
in

Fig
E
8
Two

types
of
release

bearings
are

available

and
care
must
be
taken
when

fitting
onto

the
bearing
sleeve

The
release
bearing
should
be

pressed
into

place
on
the

diaphragm

spring
type
of
clutch
with
a
force
of
400

kg
880
lbs

applied

at
the
outer
race
as
shown

in

Fig
E
9
On
the
coil

spring
clutch

the
same

force
must

be

applied
at

the
inner
race
as
shown
in

Fig
E
IO
It
should
be

possible
to
turn
the

bearing
freely
and

smoothly
when
it
is

pressed
into

place
CLUTCH

Assembly

Coil

spring
type

Press
the

pin
into
the

eyebolt
and

through
the

lug
on

the

pressure
plate
Place
the
three
distance

pieces
on
the
surface

of
the
base
plate
of
the

special
tool
ST20050000
and

position

the

pressure
plate

pressure
springs
and
retainers

on
the

plate

Set
the

retracting
springs
on
the
cover

and
insert
the

release
levers

through
the

spring
Place

the
clutch
cover
over

the

pressure
plate
and

springs
making
sure
that
the

retracting

springs
do
not

become
dislodged
or
distorted

Compress
the

pressure
springs
by
screwing
the

special
set

bolts
into
the
holes
in

the
cover

Tighten
the
bolts

gradually

in
a

diagonal

pattern
to
avoid

distorting
the
cover
Place
the

release
levers
on

the

eye
bolts
and
screw
OR
the

securing
nuts

Place

retaining
hooks
under
the
release
levers
and
remove
the

clutch
assembly
from
the
base

plate
slackening
the
set
bolts
in

a

diagonal
pattern

COIL
SPRING
CLUTCH

Adjusting

Screw
the
centre

pillar
into
the
base

plate
and

place
the

high
finger
over
the

pillar
The
height
of
the
release
levers
must

be

adjusted
by
turning
the
eye
bolt
nuts
until
the

tops
of

the

release
levers
are

just
touching
the

tip
of
the
gauge
See
Fig
E

11
Remove
the
centre

pillar
when
the
release
levers
are

correctly
adjusted
and
screw
in
the

actuating
lever
Fig
E
12

Turn
the

actuating
mechanism
several
times
to
bed
down
the

parts
and
then
recheck
the

height
of
the
release
levers
Check

for
run
out
as
near
to
the

edge
as
possible
and

readjust
if
the

deviation
is
more

than
0
5
mrn
0
020
in

CLUTCH
InsWlation

Ensure
that
the
friction
faces
are

free
from

oil
and

grease

and
place
the
driven

plate
on
the

flywheel
The

longer
chamfered

splined
end
of
the

assembly
should
face

the

gearbox
Use
a

spare
drive
shaft
to

align
the
driven

plate
The
shaft
must

be

inserted

through
the
splined
hub
of
the
driven

plate
and
into

the

pilot
bearing
of
the

flywheel

Place
the
clutch
cover
into

position
on

the
flywheel
and

tighten
the
dutch
bolts

gradually
in
a

diagonal

pattern
to
a

torque
reading
of
1
5
2
2

kgm
11
16Ib
ft

Remove
the

dummy
shaft
and
the

restraining
hooks
from
the
release
levers

Refit
the
release

bearing
and
the
bell

housing

CLUTCH
PEDAL
Removal
and
Installation

Remove
the
clevis

pin
from
the
end
of
the
master

cylinder
pushrod
and
disconnect
the
pushrod
Remove
the

return

spring
Remove
the

pushrod
after

slackening
the

pushrod

adjuster
Coil

spring
clutch

only
Remove
the

pedal
lever

securing
bolt
slacken
the
handbrake
bracket
bolts
and
lift
out

the

pedal

Clean
all

parts
thoroughly
and
check
them
for
wear
or

damage
paying
particular
attention
to
the
rubber

parts
return

spring
and

pedal
lever
bush

Installation
of
the
clutch

pedal
is
a
reversal
of

the

removal

procedures

45

Page 51 of 171


other
end
of
the

tube
into
a
clean
container

partly
filled
with

brake
fluid

Top

up
the
master

cylinder
reservoir
with
recommended

fluid
and

open
the
bleed
screw

approximately
three

quarters

of
a
turn

Depress
the
clutch

pedal
slowly
and
hold
it

completely

down
re

tighten
the
bleed
screw
and
allow
the

pedal
to
return

slowly

Repeat
the

operation
until
the
fluid

emerging
from
the

tube
is
free
from
air
bubbles
It
should
be
noted
that
assistance
will
be

required
when

carrying
out

bleeding
operations
as
not

only
must
the
fluid

entering
the

glass
container
be
watched
but
also
the
clutch

pedal
has
to
be

operated
and
the
reservoir

topped
up
frequently

throughout
the

procedure

When
the
fluid
is
completely
free
from
air
bubbles
the

bleed
screw
should
be

retightened
on
a
down
stroke
of
the

pedal

Finally
remove
the
bleed
tube
and

replace
the
dust

cap

TechnIcal
Data

Outch

type

Pressure

spring

Free

length

Fitted

length
and
load

Side
distortion

Permissible
deterioration

of

spring
force

Outch
release
levers

Oearance
between
release

bearing
and

diaphragm
spring

release
levers

Height
between
diaphragm
spring
and

flywheel

Height
between
release
levers
and
flywheel

Outch
driven

plate

Outer
diameter

Inner
diameter

Thickness
of

facingS

Total
friction
area

TIrickness
of

clutch
plate

Free

Compressed

No
of
torsion

springs

Permissible
minimum
depth
of
rivet
heads
from

facing
surface

Permissible
run
out
of
clutch

facing

P
rmissible
free

play
of

splines

Outch

pedal
1400
and
1600cc
models

Pedal

height
in
the
rest

position

P
da1
free
stroke

P

da1
effort

Master

cylinder

Diameter

Maximum
clearance
between

piston
and

cylinder

Pressure

plate

Permissible
refacing
limit

Outch

pedal
180Occ
models

P
da1

height

Play
at
clevis

pin

Full
stroke

P
da1
effort

50
Diaphragm
spring
or
coil

spring

52
3mm
2
059
in

29
2mm
44

2kg

1
149
in

197
t

4
4
lb

5mm

per
IOOmm

0
2in

per
3
94
in

15

1
2
I

4mm
0
047
0
055
in

44
t

Imm
1
732
t

0
039
in

50
5
t
0
05mm
1
988
t

0
0197
in

200mm
7
87
in

130mm
5
12in

3
5mm
0
140in

362

sq
cm
56
11
sq
in

8
6
9
0mm
0
3386
o
3543in

7
65
7
95mm
0
3012
o
3130in

6

O
3mm
0
0118

in

0
5mm
0
0197
in

0
4mm
0
0157
in

182mm
7
17in
R
H
D

207mm
8
15in
L
H
D

25mm
0
984in

15kg
33
lb

15
87mm
0
625in

O
13mm
0
005lin

Imm
0
0394in

175mm
6
89in

1
5mm
0
04
0
20in

135mm
5
3lin

10

5kg
23Ib

Page 52 of 171


Gearbox

GEARBOX
Removal

GEARBOX

Dismantling

GEARBOX
Inspection
and
Overhaul

GEARBOX

Assembling

THREE
SPEED
GEARBOX
GEARCHANGE
CONTROL
Removal
and

Adjusting

AUTOMATIC
TRANSMISSION

Gearchange
control

linkage

DESCRIPTION

Three

types
of
transmission
are
available
for
the
Datsun

models
covered

by
this
manual
Either
a
three

speed
gearbox

a
four

speed
gearbox
or
three

speed
automatic
transmission

can
be
fitted

The

three
and
four

speed
gearboxes
are

equipped
with

nchromesh
on
all
forward

gears
with
the
three

speed
gearbox

operated
by
a

steering
column

gearchange
system
and
the
four

speed
gearbox
by
a
floor
mounted

gear
lever

Two

types
of

synchromesh
are
used
in
the
four

speed

gearboxes
Either

Borg
Warner
or
Servo

types
may
be
fitted

The

gearboxes
differ

only
in
the

synchromesh
devices

whereby

the
baulk

rings
synchronize
the

coupling
sleeve
with
the
main

shaft

gear
on

the
Warner

gearbox
This
action
is

accomplished

by
a

synchrcrring
on
the
servo

gearbox

THREE
SPEED
GEARBOX
Removal

I
Jack

up
the
vehicle
and

support
it
on
stands

2
Disconnect
the
hand
brake
cable
at
the

equalizer
bracket

Slacken
the
two
exhaust

pipe
centre

clamps
and
turn
the

centre
section
of
the
exhaust
assembly
to
the
left
as
shown

in

Fig
F
2

3
Disconnect
the

propeller
shaft
from
the
rear
axle
drive

flange
by
removing
the
four

securing
bolts
Seal
off

the

gearbox
extension

housing
to

prevent
the
loss
of
oil
and

withdraw
the
shaft
to
the
rear

4
Disconnect
the

speedometer
drive
cable
from

the
adaptor

in
the

gearbox
extension

housing
Fig
F3

S
Disconnect
the
lower
shift
rods
from
the
shift
levers

Fig
F
4
and
remove
the
cross
shaft

assembly
from
the

gearbox
casing
Remove
the
clutch
slave

cylinder
from
the

clutch

housing
Fig
F
5

6

Support
the

engine
with

ajack
positioned
underneath
the

oil

sump
making
sure

that
the

jack
does
not
foul
the
drain

plug
A
block
of
wood
should
be

placed
between
the

sump

and

jack
to

avoid

damaging
the

sump

7
Remove
the
bolts

securing
the
rear

engine
mounting
to

the
crossmember
Position

ajack
under
the

gearbox
and

remove
the
bolts

attaching
the
crossmember
to
the

body

Lower
the

jack
under
the

engine
so
that
the

engine
is

tilted
to
the
rear
Remove
the
starter

motor
and
the
bolts

securing
the

clutch

housing
to
the

engine
Lower
the

jack

slowly
and
withdraw
the

gearbox
towards
the
rear
of
the

vehicle
THREE
SPEED
GEARBOX

Dismantling

Drain
the

gearbox
oil
Remove
the
dust
cover
release

the
retainer

spring
and
remove

the
withdrawal
lever

complete

with
release

bearing
from
the
clutch

housing
See
section

CLUTCH

Remove
the

gearbox
bottom
cover
the

speedometer
drive

pinion
assembly
and
the
rear
extension

housing
Take
out

the

cross
shaft

retaining
rings
and
unscrew
the
nuts

securing
the

operating
lever
lock

pins
Use
a
hammer
and

punch
to
drive

out
the

pins
and
withdraw
both
cross
shafts

Fig
F
6

Remove
the
fr
mt
cover

and
withdraw
the
counter
shaft

Lift
out

the
countersbaft

gear
cluster

together
with
the
needle

roller

bearings
and

spacers
Fig
F
7
Remove
the
reverse
idler

gear
shaft
lock
bolt
and
remove
the
shaft
and
the
idler

gear

Fig
F
B
Drive
out
the

pins
securing
the
selector
forks
to
the

selector
rods

Unscrew
the
interlock

plug
and
remove
the
detent
ball

and

spring
Fig
F
9
Remove
the
first
reverse

speed
and
second

third

speed
selector
rods
and
lift
out

the
selector
forks

Withdraw
the
main
shaft
assembly
and
the
drive
shaft

assembly
from
the

gearbox
See

Fig
F
1O
and
F
11

To
dismantle
the
mainshaft
release
the

circlip
from
the

front
of
the
mainshaft
as
shown
in

Fig
F
12
and
remove
the

second
and
third

speed
synchronizer
hub
and
second

speed

gearwheel
Fig
F
13
Remove
the

circlip
securing
the
speedo

meter
drive

gear
and
withdraw
the

gear
together
with
the
ball

and

spacer
Fig
F
14
Remove
the
mainshaft

bearing
using
a

press
Hold
the
rnainshaft
reverse

gear
and

tap
the
shaft
on
a

piece
of
wood
to
release
the
reverse

gear
assembly
together

with
the
first

speed
gearwheel

GEARBOX

Inspection
and
Overhaul

Oean
all

parts
thoroughly
and
examine
the

gearbox
case

and
extension
housing
for
cracks

If
the

joint
faces
are
burred
or

pitted
it

may
be

necessary

to

replace
the
units
if

repair
cannot
be
carried
out
satisfactorily

Remove
any
adhesive
which
remains
on

the
faces

The
rear
extension

housing
bush
should
be
renewed
if

worn

unevenly
Clean
the

bearings
and

dry
with
compressed
air

taking
care
that
the
bearings
do
not

spin
Turn
the
ball

bearings

to
make
sure

that
they
run

smoothly
and
without
play
Replace

the
needle

bearings
if
worn
or

damaged
in
any

way

It
is
advisable
to
renew

the
needle
roller

bearings
after

they

have
been
installed
for
a
considerable

period
as
it
is
difficult

51

Page 56 of 171


to
ascertain
the
amount
of
wear
that
has
taken

place

Check
the
teeth
of
the

gearwheels
and
the
machined
surfaces

for

signs
of
wear

scoring
pitting
and
burrs
Ensure
that
the

synchronizer
hubs
slide

freely
on
the

splines
of

the
main
shaft

with
minimum
clearance
Check

the
mainshaft
for
run
out

using
V
blocks
and
a
dial

gauge
as
shown
in

Fig
F
15
Renew

the
mainshaft
if
the
run
out
exceeds
0
15mm
0
0059
in

Check
the

synchronizer
rings
for
wear
and
renew
them
if

necessary
Place
the

rings
in

position
on

their

respective
gear

wheel
cones
and
check
the

gap
between
the
end
of
the

ring
and

the
front
face
of

the
teeth
Fig
F
16
The
correct

gap
should

be
within
1
2
1
6mm
0
047
0
063
in
Renew
the
synchronizer

ring
if
the

gap
is
less
than
0
8mm
0
0315
in

Place
the
selector
rods
on
a
flat
surface
and
check
them
for

traightness
Renew

any
rod
which
is
bent
Renew
the

locking

pins
and
interlock
balls
if

they
are
worn
or

damaged
The

standard
clearance
between
the
selector
forks
and

operating

sleeve

groove
is
0
15
0
30mm
0
006
0
012
in

Make
sure
that
the
oil
seals
are

satisfactory
and
discard

the
O

rings

THREE
SPEED
GEARBOX

Assembly

Press
the
main
drive
gear

bearing
onto
the
main
drive
shaft

and
fit
the

spacer
Select
a

snap
ring
of
suitable
thickness
so

that
all

play
is
eliminated
between
the

bearing
and

snap
ring

Seven
sizes
of

snap
rings
are
available
and

vary
in
thickness
from

1
52mm
0
0598
in
to
1
89mm
0
0747in

The

synchromesh
unit
consists
of
a

coupling
sleeve
baulk

ring
spring
synchronizer
hub
and
insert
When

assembling
the

unit
make
sure
that
the
correct
insert

pressure
springs
are
fitted

to

the
relevant

speed
unit
The
first
reverse

gear
synchronizer

should
be
fitted
with
the
three
coil

spring
type
and
the
second

third

gear
synchronizer
with
the
two

expanding
springs

To
assemble
the
fiI3t

speed
synchronizer
insert
the

sliding

insert

snap
ring
onto

the
synchronizer
hub
as
shown
in

Fig
F
17

Fit
the

sliding
inserts

Fig
F
18
and

the
synchronizer
springs

on
the

synchronizer
hub
and
assemble
the

synchronizer
hub

complete
with
inserts
into
the

coupling
sleeve

Fig
F
19

Assemble
the
second
third

gear
synchronizer
hub
and

coupling
sleeve

making
sure

that
the
sleeve
slides

freely
on
the

hub

splines
Fit
the
three

shifting
inserts
and
install
a

spring
ring

on

each
side
of
the
hub
Fig
F
20

To
assemble
the
mainshaft
start
from
the
front
end
of
the

shaft
and
slide
the
second

speed
gearwheel
on
to
the
shaft
with

the

tapered
cone

facing
forwards
Install
the
baulk
ring
on
the

gearwheel
and

place
the
second
third
speed
synchronizer
assembly

on
the
front
end
of
the
shaft
and
retain
it
with
a

snap
ring
which

will

give
an
end

play
of
0
05
0
25
mm
0
002
0
009
in

Snap
rings
are
available
in
five
sizes
from
1
60
1
80
mm

0
063
0
071
in

Fit
the
first

speed
gear
and
baulk

ring
on
the
rear
of

the

shaft
so
that
the

tapered
cone
faces
to

the
rear

Assemble
the

first

speed
synchronizer
and
reverse

gear
on
the
shaft
Fit
the

spacer
and

press
the
mainshaft

bearing
complete
with
retainer

onto
the
shaft
Install
the

spacer
ball
and

speedometer
drive
pinion

Select
a

snap
ring
which
will
give
an
end
float
of
0
05
0
22mm

0
002
0
009
in
on
the
mainshaft
first

gear
Snap
rings
are

available
in

eight
thicknesses
from
1
30mrn
0
0512
in

to

1
70mm
0
0669
in

Secure
the
drive

gear
with
the
selected

snap
ring
and
check

the
end
float
of
the

gearwheels
as

shown
in

Fig
F
21
The
correct

end
float
should
be
as
follows

I
st

speed
gearwheel
0
2
o
3mm

0
008
0
012
in

0
2
0
3mm

0
008
0
012
in
2nd

speed
gearwheel

Fit
the
main
drive

gear
and
mainshaft

assembly
into
the

gearbox
casing
Fit
the
selector
rods
and
forks
as
follows

Turn
the

gearbox
casing
so
that
the
detent
ball
hole

is

uppermost
and
insert
the

spring
and
ball
in
the
bottom
of
the

hole
Hold
the
ball
witb
a

dummy
shaft

and
install
tbe
first

reverse
selector
fork
and
rod
pushing
the

dummy
shaft
out

of

position
Insert
the

interlocking
plunger
and
fit
the
second
third

speed
selector
fork
and
rod

Insert
the
steel
ball
and

spring
and

refit
the

interlocking
plug
after

coating
the
threads
of
the

plug

with

sealing
compound
See

Fig
F
22

Secure
the
selector
forks

to

the
rods

by
inserting
the

retaining
pins

Fit
the
reverse
idler

gear
and
shaft
and
secure

the
shaft

with
the
lock
bolt
and

plate
Insert
the
counter

gear
cluster
and

shaft

using
a
suitable
thrust
washer
to
obtain
an
end
float
of

0
04
0
12
mm
0
0016
0
0047
in
Thrust
washers
are
available

in
five
sizes
from
3
85
4
05
mm
0
1516
0
1594
in
thickness

in
increments
of

0
05
mm
0
002
in

Fit
the
cross
shafts

1
in

Fig
F
23
the
thrust
washers
2

and
the

operating
levers
3
Secure
the
cross
shafts
with
the

retaining
rings
5
and
lock
the

operating
levers
to
the
shafts
with

the

pins
4

Locate
the
rear
extension

housing
on
the

gearbox
case

and

tighten
the
bolts
to
a

torque
reading
of
2
8
4
4

kgm

20

32
Ib
ft
Insert
the

speedometer
drive

pinion
and
retain
it

with
the
set

bolt
and
lock
plate
Check
the
backlash
of
all
the

gears
using
a
dial

gauge
as
shown
in

Fig
F
24
The
backlash

should
be
between
0
05
0
20
mm
0
002
0
008
in
Fit
the

gearbox
front
cover
and

tighten
the
fixing
bolts
to
a

torque

reading
of
1
I
1
7

kgm
8
0
12
3
lb
ft

taking
care
not
to

damage
the
oil
seal
Fit
the
clutch
release
bearing
and
with

drawallever

Fig
F
25

Replace
the
bottom
cover
and
tighten

the
bolts
to
a

torque
reading
of
1
I
1
7

kgm
8
0
12
31b
ft

THREE
SPEED
GEARBOX
Installation

Installation
of
the

gearbox
is
a
reversal
of

the
removal

procedure
noting
the
following

points

Fit
the

gearbox
with
I
7

litre
0
45
US
gall
0
37

Imp

gall
of
MP
90

gear
oil

Adjust
the
clutch
slave

cylinder
push
rod
as
described
in

the
section
CLUTCH
to

provide
a
free

play
of
2
2
mm
0
087in

at
the
withdrawal
lever

55

Page 58 of 171


FOUR
SPEED
GEARBOX
Removal
and
Installation

The
removal
and
installation

procedures
for
the
four

speed

gearbox
are
similar
to

those

previously
described
for
the

three

speed
gearbox
However
the
floor
mounted

gear
lever
must
be

removed
from
the
controllevef
bracket
in
addition
to

the

operations
already
detailed

FOUR
SPEED
GEARBOX

Dismantling

Drain
the
oil
from
the

gearbox
Remove
the
dust
coveT
and

release
the

spring
securing
the
clutch
withdrawal
lever
Remove

the
withdrawal
lever
and
release

bearing
from
the
clutch

housing

as
described
in
the
section
CLurCH
Remove
the
clevis

pin

securing
the

striking
rod
to
the
control
lever

Remove

the
speedometer
drive

pinion
assembly
and
with

draw
the
rear

extension

housing
Disengage
the

striking
rod
from

the
selector
rod

gates
Remove
the

gearbox
covers
See

Figs
F
26

and
F
27

Unscrew
the
three
detent
ball

plugs
and
remove
the

spriags

and
detent
balls
Drive
out
the

pins
securing
the
selector
forks

to
the
rods
and
withdraw
the
forks
and
rods
Lock
the
main

shaft

by
moving
the
first
second
and
third
fourth

coupling
sleeve

into

gear
at
the
same
time
and
release
the
ffiainshaft
nut

Remove
the
countershaft
and
the
gear
cluster

together

with
the
two
needle
roller

bearings
and

spacers
Remove
the

snap
ring
holding
the
revep
e

idler

gear
and
withdraw
the
reverse

idler

gears
and
shaft

Fig
F
28

Take
off

the
bolts

securing
the
mainshaft

bearing
retainer

to
the

gearbox
case

Fig
F
29
Withdraw
the
mainshaft

assembly
Fig
F
30
and
the
main
drive
shaft

The
mainshaft
can
be
dismantled
in
the

following
manner

Release
the
third
fourth

synchronizer
unit

snap
ring
and
with

draw
the
hub

complete
with

coupling
sleeve
Remove
the
third

speed
gearwheel
and
the
needle
roller

bearing
from
the
main

shaft
Take
off
the
mainshaft
nut
and

locking
plate
Remove
the

speedometer
drive

gear
with
the

retaining
ball
Withdraw
the

mainshaft
reverse

gear
and
the
hub
Press
off

the
mainshaft

bearing
complete
with
the

bearing
retainer

Remove
the
thrust
washer
and
the
first

speed
gear
together

with
the
needle
roller

bearing
taking
care
not
to
lose
the
small

baU
used
to

locate
the
thrust
washer
Slide
off

the
first

speed

gearwheel
bush
Withdraw
the
first
second

synchronizer
and

hub
Remove
the
second

speed
gearwheel
and
needle
roller

bearing

FOUR
SPEED

GEARBOX
Installation

Refer
to

the
instructions

given
for
the
three

speed
gearbox

and
to
Technical
Data
for
the

specifications
applicable
to
the

different

gearboxes

FOUR
SPEED
GEARBOX

Assembly

Assembly
of

the

gearbox
is
similar
to
the

procedures

previously
described
for
the
three

speed
gearbox
with
the

following
exceptions
When

assembling
the
main
drive

gear
bearing
on
the
shaft

insiall

the

spacer
and
select
a
new

snap
ring
to
eliminate
all
end

float

between
bearing
and

snap
ring
Snap
rings
are
available
in

five
thicknesses
from
1
52
1
77mm
0
06
0
07
in

The

assembly
procedures
for

the
Warner

type
synchronizers

are
similar
to
the
instructions

previously
described
for
the
three

speed
gearbox
Refer
to
THREE
SPEED
GEARBOX

Assembly

for
further
details

To
assemble
the
Servo
F4C63

type
synchronizers
proceed

as
follows

Place
the

gear
on
a

clean
flat
surface
and
install
the

synchronizer
ring
on
the
inner
side
of
theclutch
gear
Fit
the

thrust
block
into

place
as
shown
in
Fig
F
31
Place
the
anchor

block
and
brake
band
into

position
and
fit
the

circlip
into
the

groove
in
the

gear
to
secure
the

synchromesh
assembly

When

assembling
the
mainshaft
select
a

snap
ring
which

will

give
an
end
float
between
0
05
0
15
mm
0
002
0
006in

to
the
third

speed
gearwheel
Snap
rings
are

available
in
five

sizes
from
1
40
mm

0
0551
in
to
1
60
mm
0
0630
in
thick

ness

Tighten
the
locknut
at

the
rear

of
the
mainshaft
to
a

torque
reading
of
7
1

kgm
51
87Ib
ft

Assemble
the
reverse
idler

gear
as
shown
in
Fig
F
32
The

reverse
idler
driven

gear
3
should
be

placed
on
the
end
of
the

reverse
shaft
1
with
the

longest
spline
and
retained
with
a

suitable

snap
ring
2
Install
the
reverse
shaft
and

gear
assembly

into
the

gearbox
case
from
the
rear
with
the
thrust
washer
4

between
the

gear
and
the
case

Fit
the
thrust
washer
5
and

idler
gear
6
18
teeth
and
secure
with
a
suitable

snap
ring

2
The
end
float
of
the

gear
should
be
checked
and

adjusted

to

0
1
O
3mm
0
004
0
012
in

by
selecting
a
suitable

snap

ring
2
Five
thicknesses
of

snap
rings
are
available
from
I
lmm

0
043in
to
1
5mm
0
06in
See
Technical
Data
for
F4W63

and
F4C63

gearboxes
Adjust
the
counter

gear
end
float
to

0
05
0
15
mm
0
002
0
006in

by
selecting
a
thrust
washer

of

the

required
thickness
Thrust
washers
are
available
in

five

thicknesses
from
2
40
2
60
mm
0
094
0
102
in

When

assembling
the
selector
mechanisms

Fig
F
33
fit

the
first
second
selector
forks
I
and
the
third
fourth
selector

forks
2
onto
the

coupling
sleeves
and
insert
the
first
second

fork
rod
3

Fit
an

interlock
plunger
4
and
the
third
fourth

speed

selector
rod
5
Do
not

forget
the
interlock

pin
7
A
section

through
the
selector
and
interlock
mechanism
is

given
in

Fig

F
34
Install
an

interlock

plunger
6
and
assemble
the
reverse

selector
fork
8
and
fork
rod
9
Secure
the
selector
forks
to

the
rods
with
the

retaining
pins
10

Place
a
check
ball

and
spring
into
each
of
the
holes
and

screw

the

plug
down
to
a

torque
reading
of
1
7
2
1

Jegm

12
3
15
2
Ib
ft
after

coating
the
threads
with
sealing
com

pound

Install
the
rear
extension

housing
engaging
the

striking
rod

with
the
fork

rod

gates
and

tighten
the

housing
bolts
to

a

torque
reading
of
1
6
2
5

kgm
12
18Ib
ft
Fit
the
front

and
bottom
covers
and

tighten
the
bolts
to

a

torque
reading

of
1
1
1
8

kgm
8
13Ib
ft

57

Page 83 of 171


REAR
SHOCK
ABSORBERS

Replacing

Estate
cars
and
Vans

Jack

up
the
reaT
of
the
vehicle
and

place
stands
under
the

rear

axle

housing

Disconnect
the
lower
end
of
the
rear
shock
absorber
from

the

spring
seat

Fig
H
23

Remove
the
shock
absorber

upper
attachment
nuts
and

withdraw
the
shock
absorber
The

upper
attachment
nuts
are

located
behind
the
Tear
seat
backrest
as
shown
in

Fig
H
24
Check
the
shock
absorber
for

leakage
or
cracks
and
make

sure
that

the
shaft
is

straight
Inspect
the
rubber
bushings
for

damage
and
deterioration
Renew
all
defective

components

lnstallation

is
a

reversal
of
the
removal

procedures
Tighten

the

upper
and
lower
shock
absorber
attachment
nuts
to
the

torque
readings
stipulated
in
TIGlITENING

TORQUES

NOTE
The

weight
of
the

vehicle
must
be

resting
on
the
fear

wheels
when

tightening
the
lower

mounting
to

damp
the
rubber

bushes
in
an
unloaded

position

TechnICal
Data

I
Type
Independent
suspension
with
semi
tralllI1g
arms
or

semi

floating

COIL
SPRINGS

14
2mm
0
559
in

14
5mm
0
571
in

90
mm
3
543
in

306
mm

12
047
in

299
mm
II
772
in

290
mm

11417
in

I
1400
and
1600cc

Wire
diameter

Wire
diameter
hard

suspension

Coil
diameter

Free

length
R
H

Free

length
L
H

Free

length
Hard

suspension

1800cc

Wire
diameter

Coil
diameter

Free

length
RHD
R
H

Free

length
RHD
L
H

Free

length
LHD
both

Free

length
Hard

suspension

RHD
R
H

RHD
L
H

LHD
both
14
5
mm

0
571
in

90
3
54
in

321
mm

12
6
in

307
mm

12
1
in

321
mm

12
6
in

306
mm

12
0

in

299
mm

I
1
8
in

306
mm

12
0
in

SHOCK
ABSORBERS

34
56

kg
75
123
lb

21
39

kg
46
86
lb

SHOCK
ABSORBERS

Estate
cars
and
Vans

1400
and
1600cc
estate
cars
and

rigid
axle
sedan

Piston
diameter
2S
mm
0
984
in

Stroke
205
mm

8
071
in

Max

length
518
mm
20
39
in

Damping
force
at
0
3
in
see

Estate
cars

Expansion

Compression

Damping
force

at
0
3m
jsec

Sedan

Expansion

Compression
1400
and
1600
cc

Piston
diameter

Piston
diameter
Hard

suspension

Stroke

Max

length

Damping
force
at
0
3m
sec

Expansion

Compression

1800
cc

Stroke

Max
lengtb

Damping
force
at
0
3
m
sec

Expansion

Compression

82
35
mm
1
378
in

40
mm

1
575
in

206
mm
8
110
in

568
mm
22
362
in

45

kg
99
21b

28

kg
61
7
lb

220
mm
8
60
in

595
mm
23
4
in

90

kg
198
4
lb

50

kg
110
3
lb

75

kg
165
4Ib

40

kg
88
2

lb
1800cc
Estate
cars

Stroke

Max

length

Damping
force
at
O
3m
sec

Estate
cars

Expansion

Compression
205mm
8
071
in

518
mm
20
39
in

63
87

kg
139
192
lb

33
43

kg
73
95
lb

Damping
force
at
0
3
m
sec

Estate
car
and
Van
with
hard

suspension

Expansion

Compression
97
131

kg
214
289
lb

29
43

kg
64
95
lb

REAR
SPRINGS

1400
and
1600cc
Estate
car

Length

Width

Thickness

No
of
leaves

Free
camber

Laden
camber
1200mm
47
2
in

60
mm
f2
362
in

6
mm
0
236
in

4

137
mm
5
394
in

15
mm

265
kg
0
59
in

584
lb

Spring
eye
bolt
diameter

Front

Rear
45
mm

I
772
in

30

mm
U81
in

1400
and
1600
cc

Free
camber

Laden
cam
her
rigid
axle
sedan

100
mm
3
937
in

15mm
250

kg
0
591
in

551

lb

1800cc
Estate

Laden
camber

Turning
torque
15
mm

265
kg
0
591

in
1

584
lb

2
2
kg
mm

123
Ib
in

REAR
AXLE
SHAFT

less
than
4
5

kg
cm
3
91b

in

less
than
0
1

S
mm

0
006
in

DRIVE
SHAFT
AND
JOURNAL
Spring
constant

End

play

Sliding
resistance
1400
and

1600
cc

Sliding
resistance
1800cc
0
15

kg
0
33
lib

less
than
20

kg
44
lb

Radial

play
of
ball

spline
less
than
O
lmm
0
004
in

Page 84 of 171


Front

SuspensIon

DESCRIPTION

WHEEL
HUBS

WHEEL
BEARINGS

Adjusting

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY

DESCRIPTION

The
front

suspension
is
of
the
strut

type
with
the
coil

spring
and

hydraulic
damper
units
mounted
on
the

suspension

member
and
transverse
link

assembly
See

FigJ
1

Vertical
movement
of
the

suspension
is
controlled

by

the
strut

assembly
the
tension
rod
absorbs
the
forward
and

backward
movement
of
the
transverse
links
whilst
side
move

ment
of

the

body
is
controlled

by
the
stabilizer
rod
which
is

attached
to
the

body
and
transverse
links

WHEEL
HUBS
Removal

1
Jack

up
the
vehicle
remove
the
road
wheel
and
disconnect

the
brake
hose
at
the
strut
outer

casing
bracket
as

described
under
the

previous
heading
Plug
the

opened
end

of

the
hose
to

prevent
loss
of
fluid

2
Remove

the
brake

calliper
assembly
or
the
brake
drum

as
described
in

the
section
BRAKES

3
Remove
the

grease

cap
from
the
hub

by
tapping
lightly
at

the

joint
using
a
screwdriver
and
hammer

4
Withdraw
the
cotter

pin
from
the
wheel

bearing
locknut

and
remove
the
nut
Remove
the
wheel
hub

together
with

the
wheel

bearing
and
washer

Fig
J
2

On
cars
fitted
with
disc
brakes
the
hub
is
removed

complete

with
brake
disc

5
The
wheel

bearing
outer
race
can

be
removed
from

the
hub

using
a
drift
as
shown
in

Fig
I
3

WHEEL
HUBS

Inspection
and
Overhaul

Gean
the
hub

and

bearings
by
washing
in

petrol
Examine

the

grease
seal
and
make
sure
that
it
is
not
worn
or
cracked

renew
the

seal
if

necessary
Ensure
that
the
races
are
not

pitted

or
scored
rotate
them
and
check
for

signs
of
wear
and

play

A
sectional
view
of

the
wheel

bearing
assembly
is

given
in

Fig

14
to

provide
an
indication
of
the

points
to
be
checked

WHEEL
HUB
AND
BEARING
Installation

The
wheel

bearing
outer
race
can
be
refitted
with
a
suitable

drift
or

special
tool

ST
35310000

Fill
the
wheel
hub
and
the
hub

cap
to
the

positions
shown

in

Fig
J
5
with
multi

purpose
grease

Fill
the

spaces
between
the

bearing
rollers
and
the

lip
of

the

grease
seal
with
the
same

type
of

grease
Lightly
smear

the

spindle
shaft
and
threads
the

bearing
washer
and

bearing
lock
SPRING
AND
STRUT
ASSEMBLY

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT

FRONT
WHEEL
ALIGNMENT

ADJUSTING
THE
STEERING
ANGLE

nut

with

grease
and
assemble
the

parts
onto
the
wheel

spindle

Make
sure
that
dirt
and

foreign
matter
does
not
adhere
to

the

greased
surfaces

Adjust
the
wheel

bearings
as
described
under
the

following

heading

WHEEL
BEARINGS

Adjusting

The
wheel

bearings
can
be

adjusted
with
the
road
wheel

the
hub

cap
and
the

bearing
locknut
cotterpin
removed
as

previously
described

Tighten
the
wheel

bearing
locknut
to
a

torque
reading
of

3
0
3
5

kgm
21
7

25
3lb
ft
Turn
the
hub
several
times
in

each
direction
to

settle
the

bearing
and
then
retighten
the

bearing
locknut
to
the

specified

torque
reading

Slacken
the

bearing
locknut
to

an

angle
between
40
to
700

a

ay
from
the

previously
tightened
position
and

align
the
cotter

pin
hole
with

the
hole
in
the
spindle
Turn
the
wheel
hub
a
few

times
in
each
direction
and
then
measure
the

torque
required

to
cause

the
hub
to

turlI
A

spring
balance
should
be
used
as

shown
m

Rig
J

p
make
sure
that
the
brake

pads
are
not

binding

on
the
disc

type
of
brake
unit
and
check
that
the
force

required

to
turn

the
hub
is
within
the
following
fIgures

Wheel

bearing
rotation

starting
torque

1800ce
With
new

bearing
7

0

kg
cm
97
in
oz

1400
1600cc
With
new

bearing
8
0

kg
cm
111
2

in
oz

With
used

bearing
4
0

kg
cm

56
0
in
oz

Starting
torque
at

the
hub
bolt

lWth
new

bearing

ith
used

bearings
1
57

kg
3
46
lb

0
7

kg
1
541b

Adjust
the
locknut

slightly
if
the

fIgures
do
not
conform
and

replace
the

cotterpin

Refit
the
hub
cap
and
the
road
wheel

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY
Removal

Jack

up
the
front
of
the
vehicle
and

place
stands
under

the
ront
side
members

Remove
the
road
wheels
and
the

splash
board

3
Disconnect
the
front
brake
hoses
and
remove
the
brake
hose

locking

springs
Withdraw
the

plates
and
remove
the
hoses

from
the
strut

assembly
Plug
the
ends
of

the
hoses
to

prevent
the
ingress
of
dirt
and
loss
of
fluid

4
Remove

the
cotter

pin
from
the
tie
rod
ball

joint
remove

83

Page 92 of 171


SteerIng

DEsn
IPTION

S
i
EERlNG
MaintenaDce

STEERING
WHEEL
AND
STEERING
GEAR

Removal
and
Installation

STEERING
GEAR

Dismantling

STEERING
GEAR

Inspection
and
Adjustment

DESCRIPTION

A
worm
and

recirculating
ball

type
steering
system
is

fitted
to

the
vehicle
the

component
parts
of
the

steering
gear

are
shown
in

Fig
K
I

The

steering
linkage
consists
of
the
centre
tie
rod

pitman

ann
idler
arm
outer
tie
rods
and
the
knuckle
arms
as
shown

in

Fig
K
2

A

collapsible
steering
column
assembly
can
be
fitted
to
the

vehicle
to

protect
the
driver
from

injury
in
a
head
on

collision

Details
of
this

type
of

assembly
are

given
under
the

appropriate

heading

STEERING
Maintenance

O1eck
the
oil

level
in
the

steering
box
every
10
000
km

6
000
miles
and

top
up
with
recommended
lubricant
if

necessary

Grease
the

steering
linkage
every
50
000
km
30
OOO

miles
It
will
be

necessary
to

replace
the

plug
in
the
tie
rod
ball

joints
with
a

grease
nipple
for
this

operation
as

previously

described
in
the
section
FRONT
SUSPENSION

Use
a

grease
gun
to

completely
replace
the
old

grease
with

new

grease
making
SUfe
that
the

grease
is
not
forced
from
under

the
cover

clamp
if
a

high

pressure
gun
is
used

STEERING
WHEEL
AND
STEERING
GEAR
Removal

1
Take
out
the

retaining
bolts
and
remove
the
horn
ring

remove
the

steering
wheel
nut

Fig
K
3
and

pull
off

the

steering
wheel
The
special
tool
ST
27180000
should
be

used
if
available

2
Disconnect
the

battery
leads
remove

the
steering
column

shell
covers

and
the
turn

signal
and

lighting
switch
assembly

3
On
vehicles
fitted
with

steering
column

gear
change

assemblies
the

gear
lever
must
be
removed
from
the

control
rod

assembly
Unscrew
the
retaining
boltg
and

disconnect
the

gear
lever

4
Remove
the
bolts
from
the

steering
column

upper
clamp

Fig
K
4
and
the
bolts

holding
the
lower

plate
Fig
K
5

5
If
the
vehicle
is
fitted
with

steering
column
gear
change

remove
the

cotterpin
from
the
trunnion
and
detach
the

gearchange
rod
and
selector
rod
from
the

change
lever
and

selector
lever
STEERING
GEAR

Assembly
and

Adjustment

COLLAPSIBLE
STEERING

COLLAPSIBLE
STEERING
Removal
and

Inspection

COLLAPSIBLE
STEERING
Installation

STEERING
LINKAGE

6
Remove
the
bolts

securing
the

steering
gear
housing
to

the
car

body
Fig
K
6
and

pull
the
steering

gear
towards

the

engine
compartment

Remove
the
gearchange
control
from
the

steering
gear

assembly
as
described
in
the
section
GEARBOX

STEERING
WHEEL
AND
STEERING
GEAR
Installation

Installation
is
a
reversal
of
the
removal

procedure
When

the
installation
has
been
completed
make
sure
that
the

steering

wheel
can

be
turned

smoothly
and
is
correctly
aligned
The

free
travel
of
the

steering
wheel
should
be
between
2S
30mm

0
9B
1
18
in
Tighten
the

steering
wheel
locknut
to
a

torque

reading
of
4
0
5
0

kgm
29
36Ib
ft
and
the

steering
column

upper
clamp
and
plate
bolts
to
a

torque
reading
of
1
3
1
8

kgm

94
1
3
Ib
ft

Ensure
that
the

steering
box
is
topped
up
to
the
correct

level
with
recommended
lubricant

STEERING
GEAR

Dismantling

Remove
the

pitman
arm

retaining
nut

and
pull
out
the
arm

The

special
puller
ST
27140000
should
be

used
if
available

Remove
the
drain

plug
from
the

steering
gear
housing
and

drain
the
oil

Slacken
the

adjusting
screw
nut
and
turn
the
sector
shaft

adjusting
screw
a
few
turns
in
the
anti
clockwise
direction

Remove
the
sector

shaft
cover

retaining
bolts
and

pull
the

sector
shaft
cover
and
sector
shaft
from
the
gear
housing
Fig

K
7

Remove
the
bolts

securing
the
column

jacket
to
the

gear

housing
and

carefully
withdraw
the
main
column
jacket
assembly

from
the
gear
housing
Fig
K
B

NOTE
The
ball
must
not
be
allowed
to
run
to
either
end
of

the
worm
or
the
ends
of
the
ball

guides
will
be

damaged

Pull
the
column
assembly
from
the
column
jacket
Remove

the
sector
shaft
oil
seal
and
take
out
the
rear

bearing
outer

race

from
the
column

jacket
with
a
suitable

puller

Withdraw
the

bearing
inner
races
from

the
front
and
fear

worm

bearings

Remove
the
column
shaft

bearing

91

Page 110 of 171


ElectrIcal

EquIpment

DESCRIPTION

BATTERY
Maintenance

STARTER
MOTOR

Removal
and

Dismantling

STARTER
MOTOR

Testing

STARTER
MOTOR

Assembly
and
Installation

ALTERNATOR
Removal

Dismantling
and

Inspection

DESCRIPTION

A
12
volt

negative
earth
electrical

system
is
used
in
which

the

battery
is

charged
by
an
alternator
In
the
alternator
a

magnetic
field
is

produced
by
the
rotor

which
consists
of
the

alternator
shaft
field
coil

p
le

pieces
and

slip
rings

Output
current
is

generated
in
the
armature
coils
located

in
the
stator
Six
silicon
diodes
are

incorporated
in
the
alternator

caSing
to

rectify
the

alternating
current

supply
A
voltage

regulator
and

pilot
lamp
relay
are
built
in
the

regulator
box

which

nonnally
does
not

give
trouble
or

require
attention

The
starter
motor
is
a

brush

type
series
wound
motor

in

which

positive
meshing
of
the

pinion
and

ring

gear
teeth
are

secured

by
means
of
an

overrunning
clutch

BATTERY
Maintenance

The

battery
should
be
maintained
in
a
clean
and

dry

condition
at
all
times
or
a
current

leakage
may
occur

between

the
terminals
If

frequent
topping

up
is

required
it
is
an

indication
of

overcharging
or
deterioration
of
the

battery

When

refitting
the
cables
clean
them

thoroughly
and
coat

their

terminals
and
the
terminal

posts
with

petroleum
jelly

Check
the
level
of
the

electrolyte
in
the

battery
at

frequent

intervals
and

top
up
if

necessary
to

the
level
mark
on

the

battery
case
with
distilled
water
A

hydrometer
test
should
be

carried
out

to
determine
the
state

of

charge
of

the

battery
by

measuring
the

specific
gravity
of
the

electrolyte
It
should
be

pointed
out

that
the
addition
of

sulphuric
acid
will
not

normally

be

necessary
and
should

only
be
carried
out

by
an

expert
when

required

The

specific
gravity
of
the

electrolyte
should
be
ascertained

with
the

battery

fully
charged
at
an

electrolyte
temperature
of

200C
680F

The

specific
gravity
of
the

electrolyte
decreases
or
increases

by
0
0007
when
its

temperature
rises
or
falls

by
10C
1
80F

respectively

The

temperature
referred

to
is
that
of
the

electrolyte
and

not
the
ambient

temperature
to
correct
a

reading
for
an
air

temperature
it
will
be

necessary
to

add
0
0035
to
the

reading

for

every
50C
above
200C

Conversely
0
0035
must

be
deducted

for

every
SOC
below
200C
Test
each
cell

separately
and
draw

the

liquid
into
the

hydrometer
several
times
if
a
built
in

thermometer
type
is
used

The
correct

specific
gravity
readings
should
be
as
follows
ALTERNATOR

Assembly
and
Installation

HEAD
LAMPS

Replacing

HORN

INSTRUMENT
PANEL
Removal

WINDSCREEN
WIPERS

WINDSCREEN
WASHERS

IGNITION
SWITCH
AND
STEERING
LOCK

Cold
climates

Temperature
climates

Tropical
climates
Permissible

value

Over
1
22

Over
1
20

Over
1
18
Fully
charged
at
200C

680F

1
28

1

26

1
23

The

battery
should
be

recharged
if
a
low

specific
gravity

reading
is
indicated

Always
disconnect
both
terminals
of
the

battery
when

charging
and
clean
the
terminal

posts
with
a

soda

solution
Remove
the
vent

plugs
and

keep
the
electrolyte

temperature
below
450C
l130F
during
charging

Check
the

specific
gravity
after

charging
and
if
it
is
above

1
260
at

200C
680C
add
distilled
water

STARTER
MOTOR
Removal
and
Dismantling

As
previously
stated
the
starter
motor

is
brush

type
series

wound
motor
in
which
the

positive
meshing
of
the

pinion
and

ring
gear
teeth
are
secured

by
an

overrunning
clutch
The
over

running
clutch

employs
a
shift
lever
to
slide
the

pinion
into

mesh
with
the
flywheel
ring

gear
teeth
when
the
starter
is

operated

When
the
engine
starts
the

pL
lion
is

permitted
to
overrun

the
clutch
and
armature

but
is
held
in
mesh
until
the
shift
lever

is
released
An

exploded
view
of
the
starter

is
shown
in

Fig
M
2

To
remove
the
starter

motor

proceed
as
follows

Disconnect
the

battery
earth
cable

2
Disconnect
the
black
and

yellow
wire
from
the
solenoid

terminal
and
the
black
cable
from
the

battery
terminal

3
Remove
the
two
bolts

securing
the
starter
motor
to
the

clutch

housing
Pull
the
starter
motor

assembly
forwards

and
withdraw

it
from
the
v
hicle

To
dismantle
the
starter

motor
ftrst
remove
the
brush

cover
and
lift
out

the
brushes
as
shown
in

Fig
M
3

Loosen
the
nut

securing
the

connecting
plate
to

the

solenoid
M
terminal
Remove
the
solenoid

retaining
screws

take
out

the
cotter

pin
and
withdraw

the
shift
lever

pin
Remove

the
solenoid

assembly
as
shown
in

Fig
M
4

Remove
the
two

through
bolts

and
rear
cover

assembly

then
remove

the
yoke
assembly
by
lightly
tapping
it
with
a

wooden
mallet

Fig
M
S
Withdraw
the
armature
and
shift

lever

Fig
M
6
Remove
the
pinion

stopper
from
the

armature
shaft

by
removing
the

stopper
washer
pushing
the

109

Page 116 of 171


ALTERNATOR
Dismantling

Refening
to

Fig
M
16
remove

the

pulley
nut
and
take
off

the

pulley
rim
fan
and

spacer
Withdraw
the
brush
holder

retaining
screws
and
remove
the
brush
holder
cover
Withdraw

the
holder
and
brushes
as
shown
in
Fig
M
17

Slacken
and
remove
the
three

through
bolts
and

separate

the
diode

housing
from
the
drive
end
housing
by
tapping
the

front
bracket

lightly
with
a
wooden
mallet

Fig
M
18

Remove
the
screws
from
the

bearing
retainer
and

separate
the

rotor
from
the
front
cover

Fig
M
19

Remove
the
rear

bearing
from
the
rotor

assembly
with
the

aid
of
a

puller
as
shown
in

Fig
M
2D
Take
off
the
diode
cover

and
unsolder
the
three
stator
coil
lead
wires

from
the
diode

terminal

Remove
the

A
terminal
nut
and
diode
installation
nut
and

remove
the
diode

assembly
Do
not
force

the
diode

assembly

when

removing
or
it

may
be

damaged
Remove
the
stator
from

the
rear
cover

ALTERNATOR

Inspection

Use
an

ohmmeter
as

shown
in
Fig
M
21
to
test

the
rotor

field
coil

Apply
the
tester
between
the

slip
rings
and
check
that

the
resistance
is

approximately
4
4
ohms
at

normal
ambient

temperature
Check
the

conductivity
between

slip
ring
and
rotor

core
as
shown
in

Fig
M
22
if

conductivity
exists
the
field
coil

or

slip
ring
must
be

earthing
and
the
rotor

assembly
should
be

renewed

Cbeck
the
stator
to
ensure
that
there
is

conductivity

retween
the
individual
stator

coil
terminals
as
shown
in

Fig
M

23
If
there
is
no

conductivity
between
the
individual
terminals

the
stator
is
defective

Check
each
lead
wire

including
the
neutral
wire
as
shown

in

Fig
M
24
If
there
is

conductivity
between

any
wire
and
the

stator
COTe

the
stator
core

is

earthing
and
the
stator
must

be

replaced

Diodes

Three

positive
diodes
are
mounted
on
the
positive
plate

and
three

negative
diodes
are
mounted
on
the

negative
plate

The
diodes
allow

current
to
flow
in
one
direction

only
The

diodes
on
the

positive
plate
only
allow
current
to
flow
from

the
terminal
to
the

positive
plate
whilst
the
diodes
on
the

negative
plate
only
allow
current
to
flow
from
the

negative

plate
to
the
terminal
A
diode
which
allows
current
to
flow

in
ooth
directions
or
does
not

allow
current
to
flow
in
the

correct
direction
is
unserviceable
and
all
six
diodes
must
be

replaced
Use
a
tester
as
shown
in
Figs
M
25
and
M26
to
check

each
diode

Brushes

Check
the
movement
of
the
brushes
in
their
holders
The

brushes
should
move

freely
and
can
be
eased
in
necessary
by

carefully
ming
the
sides
Oean
the
brush
holders
before

replacing

the
brushes
Renew
the
brushes
if

they
are
worn
below
a
length

of
7mm
0
275
in
With
the
brush

projecting
approximately

2mm
0
08
in
from
the
holder
it
is
possible
to
measure
the

brush

spring
pressure
using
a

spring
balance
as
shown
in

Fig
M
27

The

pressure
of
a
new
brush
should
be
255
345

grammes

9
0
12
2
oz
the

pressure
will
however
decrease

by
approxi

mately
20

grammes
per
I
amm
0
039

in
of
wear

ALTERNATOR

Assembly
and
Installation

Asssembly
is
a
reversal
of
the

dismantling
prQcedure
noting

the

following
points
The
stator
coil
lead
wires
must
be
resoldered
to
the
diode

assembly
terminal
as

quickly
as

possible
or

the
diodes

may
be

damaged
When

installing
the
diode
A
tenninal
make
sure

that

the

insulating
bushing
and
tube
are

correctly
fitted

The

pulley
nut
should
he

tightened
to
a

torque
reading
of

350
400

kg
cm
301
344Ib
in
Mount
the

assembly
in
a

vice
as
shown
in

Fig
M
28
and
when
the

pulley
is

tightened

make
sure
that
the
deflection
of
the

pulley
groove
does
not

exceed
O
3mm
m
o
118

in

ilEA
D
LAMPS

Replacing

All
weather

type
sealed
beam

headlamp
units
are
fitted
to

the
vehicle
Each

lamp
is
of
the
double
fIlament

type
with
a

full
beam
filament
of
50W
and
a
dipped
beam
filament
of
40W

The

replacement
of
the
sealed
beam
unit
can

be
carried

out
as
follows

Remove
the

wiring
socket
from
the
back
of
the

headlamp

unit
On

Coupe
models
withdraw
the
screws

attaching
the

front

grille
to
the
radiator
core

support
On
all
other
models

remove

the
three

retaining
screws
and
remove
the

headlamp
rim

Withdraw
the
three

retaining
screws

securing
the

retaining

ring
3
in

Fig
M
29
and
remove

the
sealed
beam
unit

When

installing
a
new
sealed
beam
unit
make
sure
that
the

Top
mark
on
the
ring
is

uppennost
when
fitted

HORNS

The
circuit
for

the
horns
is
shown
in

Fig
M
30
The
horns

can
be
adusted
for
v01ume
and
tone
in

the

following
manner

Remove
the
connector

and
the

retaining
nut
in

the
centre

of
the
horn
withdraw
the
horn
from
the
vehicle
Connect
a

voltmeter
and
ammeter

into
circuit
as
shown
in

Fig
M
3I
Set

the
switch
to
ON
and
check
that
the
voltmeter
shows
a

reading
of
12
to
12
5
volts
The
sound
can
be

regulated
by

turning
the

adjusting
screw

Fig
M
32
A

reading
of

2
5

amps

should
be
obtained
for
the
flat

type
of
horns
or
5
0

amps
for

the

spiral
type
of
horns

Turning
the

adjusting
screw
clockwise
will
increase
the

current

turning
anti
clockwise
decreases
the
current

Install
the
horns
in
the
vehicle
and
check
that
the
correct

sound
can
still
be
obtained
when
the

higher
voltage
of
14
15

volts
is

generated
by
the
alternator
Turn
the

adjusting
slightly

if

necessary
then

tighten
the
locknut

INSTRUMENT
PANEL
Removal

The
instrument

panel
holds
the
various
meters

and

indicators
A
printed
circuit
board
is
located
at
the
rear
of
the

panel
and
the
connections
to
it
are

multiple
connectors
When

the

panel
is
remove

the
instruments
are

easily
withdrawn
for

inspection
and

servicing

Disconnect
the

battery
negative
terminal

2
Remove
the
windscreen

wiper
switch

lighting
switch
and

choke
control
knobs

by
pressing
them
in
and

turning

anticlockwise
Remove
the
escutcheon

3
Disconnect
the

cigarette
lighter
cable
at
the
rear
of
the

instrument

panel
and
turn

the

cigarette
lighter
outer
case

so
that
it
can
be
removed

115

Page:   < prev 1-10 11-20 21-30 next >