check oil DATSUN 610 1969 Owner's Guide

Page 82 of 171


the
steel
balls
and
the
sleeve

yoke
for

damage
or
wear
Renew

the
boots
and
the
sleeve

yoke
plug
0

ring
if

necessary
Renew

the
universal

joint
jf

faulty

Check

the

play
in
the
drive
shaft

using
a
dial

gauge
as

shown
in

Fig
H
18
The
measurement
taken
with
the

dri
le

shaft

fully

compressed
should
not

exceed
O
lmm
0
004
in

Renew
the
drive
shaft
as

embly
if
the

specified
value
is
not

obtained

Oean

the
old
grease
from

the
sleeve

yoke
and
the
drive

shaft
ball

grooves
and
lubricate
with
oil

Asse

bly
of

the
drive
shaft

is
a

reversal
of
the

dismantling

procedure
noting
the

following
points

Align
the

yokes
and
make
sure
that

the
steel
balls

and

spacers
are
fitted

in
the
correct
order
Select
a

snap
ring
which

will

adjust
the
axial

play
of

the

universaIjoints
to
within
0
02mm

0
0008
in

Snap
rings
are
available
in

four
thicknesses
of

1
49
1
52
1
55

and
1
58
mm

0
0587
0
0598
0
0610

0
0622
in

Apply
a

generous

quantity
of
multi

purpose
grease
to
the

ball

groove
and
the
area
shown
in

Fig
H
19

REAR
AXLE
Removal
See

Fig
H
2

Estate
car
and
Van

Jack

up
the
vehicle
at
the
rear

and

support
it
on
stands

Remove

the
road

wheels
and
brake

drums
I

3
Disconnect
the
brake
hose
from
the

brake

pipe
Plug
the

end
of
the
hose
to

prevent
the

ingress
of

foreign
matter

4
Disconnect
the
handbrake
rear
cable
from

the
balance

lever

assembly

5
Disconnect

the

propeller
shaft
from
the
differential

flange

Release
the
lower
shock
absorber

self

locking
nuts
and

slide

the

mounting
eyes
of
the
shock
absorber
from
the

rear

spring
seat

pivot

6

Support
the
rear

axle
with

ajack
loosen
the
U
bolts
and

remove
the
nuts
from
the
rear

spring
shackles
Withdraw

the
shackles
from
the

spring
eyes

7
Remove
the
V
bolt
lock
nuts

completely
and
lower
the

jack
to

withdraw
the
rear
axle

assembly

REAR
AXLE

Dismailtling
and

Inspection

Disconnect
the
brake

pipes
from

the
wheel
cylinders
and

remove

the
brake

pipe
and
three

way
connector
Remove
the

cross
rod

clamp
and
the
balance
lever
from
the
rear
axle
case

Remove
both
cross
rod

ends
from
the

wheel

cylinder
lever

assembly

Unscrew
the
oil
drain

plug
and
drain
the
oil
from
the
axle

case
into
a
clean
container
The
oil

may
be
re
used
if
it
is
in

good
condition

Remove
the
nuts

securing
the
brake

backplate
to
the
axle

case
and
draw
out
the
axle
shaft

assembly
with
the

backpl
te

and
grease
catcher
A

sliding
hammer

ST
36230000
should
be

used
for
this

operation
as
shown
in

Fig
H
2Q

The

bearing
collar
can
be
removed
with
a

press
or

by

cutting
with
a
cold
chisel

and
the

bearing
withdrawn
with
the

puller
ST
3712001
as
shown
in

Fig
H
2t
Remove
the
brake

backplate
and
withdraw

the

gear
carrier
from

the
axle
case

Check
the
axle
shafts
for

straightness
wear
and
cracks

00
NOT

attempt
to

straighten
a
bent
shaft

by
heating
Check

the
oil
seal
lips
for

signs
of

damage
or
distortion
Make
sure

that

the

bearing
is
not
worn
or

damaged
REAR
AXLE

Assembly
and
Installation

Assembly
is
a
reversal
of
the

removal

procedure
noting
the

following
points

Thoroughly
clean
all

parts
and
fit
a
new

gasket
between

the
axle
case

and

gear
carrier

Tighten
the
nuts
in
a

diagonal

pattern
and
to

the

specified
torque
readings

Fit

the
grease
catcher

bearing
spacer
bearing
and
new

bearing
collar
onto
the
axle
shaft
A
load
of
4
5
tons
will

be

required
to

press
the

bearing
onto

the
shaft

Insert
the
wheel

bearing
with
the
seal
side

facing
the

wheel
and
ensure
that
the

oil
seal

lips
are
coated
with
wheel

bearing
grease
prior
to

fitting

Check
and

adjust
the
axial

play
between
the
wheel

bearing

and
the
axle

housing
using
a

dial
gauge
as

shown
in

Fig
H
22

The
axial

play
should
be

adjusted
to
within
0
3
0
5mm

0
0118
0
0197
in

on
the
1400
and
1600cc

models
and
to

within
O
lmm
0
0039
in
on

the
1800cc
models

Fill
the
rear
axle
with
the

specified
amount
of

oil
and

bleed
and

adjust
the
brake

system
as
described
in

the

appropriate

section

REAR
SPRING
Removal
and

Inspection

Estate
cars
aud
Vans

The
rear

springs
can
be
removed
in
the
following
manner

Jack

up
the

vehicle
at
the

rear
until
the
wheels
are
clear

of

the

ground
and

place
stands
under
the
rear
frame

Disconnect
the
shock
absorber
from

the

spring
seat

Fig
H
21a
and

support
the
rear
axle

housing
with

ajack

3
Take
off

the
locknuts

and
remove

the
U
bolts
shown

arrowed
in

Fig
H
2t
the

spring
seat
location

plates
and

seat

pads

4
Remove
the
nuts

securing
the
front
bracket
to
the

body

remove
the
bracket
from

the

spring
eye
and
car

body
and

withdraw
the
rear

spring

5
Remove

the

upper
and
lower

rear
shackle
nuts

Fig
H
23

and
remove
the
rear

spring
from
the
vehicle

Clean
the

spring
leaves

thoroughly
and
examine

them
for

fractures
or
cracks
Renew
the

assembly
if

necessary

Check
the
front

pin
shackle
U
boIts
and

spring
seat

for

signs
of
wear
cracks
and

damaged
threads
Renew
the

components
as

required

REAR
SPRING
Installation

Installation
of
the
rear

spring
is
a
reversal
of
the
removal

procedure
noting
the
following

points

The
front
bracket

pin
front
bracket

bushing
shackle

pin

and
shackle

bushing
should
be
coated
with
a

soapy
solution

prior
to

assembly

Tighten
the
front

pin
securing
nut

and
the
shock
absorber

lower

securing
nut
with
the
vehicle

weight
resting
on
the
rear

wheels

Ensure

that
the
flange
of

the
shackle

bushing
is

clamped

evenly
on
both
sides

The

tightening

torque
values
can

be
found

on
the

page

entitled
TIGHTENING

TORQUES

81

Page 83 of 171


REAR
SHOCK
ABSORBERS

Replacing

Estate
cars
and
Vans

Jack

up
the
reaT
of
the
vehicle
and

place
stands
under
the

rear

axle

housing

Disconnect
the
lower
end
of
the
rear
shock
absorber
from

the

spring
seat

Fig
H
23

Remove
the
shock
absorber

upper
attachment
nuts
and

withdraw
the
shock
absorber
The

upper
attachment
nuts
are

located
behind
the
Tear
seat
backrest
as
shown
in

Fig
H
24
Check
the
shock
absorber
for

leakage
or
cracks
and
make

sure
that

the
shaft
is

straight
Inspect
the
rubber
bushings
for

damage
and
deterioration
Renew
all
defective

components

lnstallation

is
a

reversal
of
the
removal

procedures
Tighten

the

upper
and
lower
shock
absorber
attachment
nuts
to
the

torque
readings
stipulated
in
TIGlITENING

TORQUES

NOTE
The

weight
of
the

vehicle
must
be

resting
on
the
fear

wheels
when

tightening
the
lower

mounting
to

damp
the
rubber

bushes
in
an
unloaded

position

TechnICal
Data

I
Type
Independent
suspension
with
semi
tralllI1g
arms
or

semi

floating

COIL
SPRINGS

14
2mm
0
559
in

14
5mm
0
571
in

90
mm
3
543
in

306
mm

12
047
in

299
mm
II
772
in

290
mm

11417
in

I
1400
and
1600cc

Wire
diameter

Wire
diameter
hard

suspension

Coil
diameter

Free

length
R
H

Free

length
L
H

Free

length
Hard

suspension

1800cc

Wire
diameter

Coil
diameter

Free

length
RHD
R
H

Free

length
RHD
L
H

Free

length
LHD
both

Free

length
Hard

suspension

RHD
R
H

RHD
L
H

LHD
both
14
5
mm

0
571
in

90
3
54
in

321
mm

12
6
in

307
mm

12
1
in

321
mm

12
6
in

306
mm

12
0

in

299
mm

I
1
8
in

306
mm

12
0
in

SHOCK
ABSORBERS

34
56

kg
75
123
lb

21
39

kg
46
86
lb

SHOCK
ABSORBERS

Estate
cars
and
Vans

1400
and
1600cc
estate
cars
and

rigid
axle
sedan

Piston
diameter
2S
mm
0
984
in

Stroke
205
mm

8
071
in

Max

length
518
mm
20
39
in

Damping
force
at
0
3
in
see

Estate
cars

Expansion

Compression

Damping
force

at
0
3m
jsec

Sedan

Expansion

Compression
1400
and
1600
cc

Piston
diameter

Piston
diameter
Hard

suspension

Stroke

Max

length

Damping
force
at
0
3m
sec

Expansion

Compression

1800
cc

Stroke

Max
lengtb

Damping
force
at
0
3
m
sec

Expansion

Compression

82
35
mm
1
378
in

40
mm

1
575
in

206
mm
8
110
in

568
mm
22
362
in

45

kg
99
21b

28

kg
61
7
lb

220
mm
8
60
in

595
mm
23
4
in

90

kg
198
4
lb

50

kg
110
3
lb

75

kg
165
4Ib

40

kg
88
2

lb
1800cc
Estate
cars

Stroke

Max

length

Damping
force
at
O
3m
sec

Estate
cars

Expansion

Compression
205mm
8
071
in

518
mm
20
39
in

63
87

kg
139
192
lb

33
43

kg
73
95
lb

Damping
force
at
0
3
m
sec

Estate
car
and
Van
with
hard

suspension

Expansion

Compression
97
131

kg
214
289
lb

29
43

kg
64
95
lb

REAR
SPRINGS

1400
and
1600cc
Estate
car

Length

Width

Thickness

No
of
leaves

Free
camber

Laden
camber
1200mm
47
2
in

60
mm
f2
362
in

6
mm
0
236
in

4

137
mm
5
394
in

15
mm

265
kg
0
59
in

584
lb

Spring
eye
bolt
diameter

Front

Rear
45
mm

I
772
in

30

mm
U81
in

1400
and
1600
cc

Free
camber

Laden
cam
her
rigid
axle
sedan

100
mm
3
937
in

15mm
250

kg
0
591
in

551

lb

1800cc
Estate

Laden
camber

Turning
torque
15
mm

265
kg
0
591

in
1

584
lb

2
2
kg
mm

123
Ib
in

REAR
AXLE
SHAFT

less
than
4
5

kg
cm
3
91b

in

less
than
0
1

S
mm

0
006
in

DRIVE
SHAFT
AND
JOURNAL
Spring
constant

End

play

Sliding
resistance
1400
and

1600
cc

Sliding
resistance
1800cc
0
15

kg
0
33
lib

less
than
20

kg
44
lb

Radial

play
of
ball

spline
less
than
O
lmm
0
004
in

Page 84 of 171


Front

SuspensIon

DESCRIPTION

WHEEL
HUBS

WHEEL
BEARINGS

Adjusting

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY

DESCRIPTION

The
front

suspension
is
of
the
strut

type
with
the
coil

spring
and

hydraulic
damper
units
mounted
on
the

suspension

member
and
transverse
link

assembly
See

FigJ
1

Vertical
movement
of
the

suspension
is
controlled

by

the
strut

assembly
the
tension
rod
absorbs
the
forward
and

backward
movement
of
the
transverse
links
whilst
side
move

ment
of

the

body
is
controlled

by
the
stabilizer
rod
which
is

attached
to
the

body
and
transverse
links

WHEEL
HUBS
Removal

1
Jack

up
the
vehicle
remove
the
road
wheel
and
disconnect

the
brake
hose
at
the
strut
outer

casing
bracket
as

described
under
the

previous
heading
Plug
the

opened
end

of

the
hose
to

prevent
loss
of
fluid

2
Remove

the
brake

calliper
assembly
or
the
brake
drum

as
described
in

the
section
BRAKES

3
Remove
the

grease

cap
from
the
hub

by
tapping
lightly
at

the

joint
using
a
screwdriver
and
hammer

4
Withdraw
the
cotter

pin
from
the
wheel

bearing
locknut

and
remove
the
nut
Remove
the
wheel
hub

together
with

the
wheel

bearing
and
washer

Fig
J
2

On
cars
fitted
with
disc
brakes
the
hub
is
removed

complete

with
brake
disc

5
The
wheel

bearing
outer
race
can

be
removed
from

the
hub

using
a
drift
as
shown
in

Fig
I
3

WHEEL
HUBS

Inspection
and
Overhaul

Gean
the
hub

and

bearings
by
washing
in

petrol
Examine

the

grease
seal
and
make
sure
that
it
is
not
worn
or
cracked

renew
the

seal
if

necessary
Ensure
that
the
races
are
not

pitted

or
scored
rotate
them
and
check
for

signs
of
wear
and

play

A
sectional
view
of

the
wheel

bearing
assembly
is

given
in

Fig

14
to

provide
an
indication
of
the

points
to
be
checked

WHEEL
HUB
AND
BEARING
Installation

The
wheel

bearing
outer
race
can
be
refitted
with
a
suitable

drift
or

special
tool

ST
35310000

Fill
the
wheel
hub
and
the
hub

cap
to
the

positions
shown

in

Fig
J
5
with
multi

purpose
grease

Fill
the

spaces
between
the

bearing
rollers
and
the

lip
of

the

grease
seal
with
the
same

type
of

grease
Lightly
smear

the

spindle
shaft
and
threads
the

bearing
washer
and

bearing
lock
SPRING
AND
STRUT
ASSEMBLY

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT

FRONT
WHEEL
ALIGNMENT

ADJUSTING
THE
STEERING
ANGLE

nut

with

grease
and
assemble
the

parts
onto
the
wheel

spindle

Make
sure
that
dirt
and

foreign
matter
does
not
adhere
to

the

greased
surfaces

Adjust
the
wheel

bearings
as
described
under
the

following

heading

WHEEL
BEARINGS

Adjusting

The
wheel

bearings
can
be

adjusted
with
the
road
wheel

the
hub

cap
and
the

bearing
locknut
cotterpin
removed
as

previously
described

Tighten
the
wheel

bearing
locknut
to
a

torque
reading
of

3
0
3
5

kgm
21
7

25
3lb
ft
Turn
the
hub
several
times
in

each
direction
to

settle
the

bearing
and
then
retighten
the

bearing
locknut
to
the

specified

torque
reading

Slacken
the

bearing
locknut
to

an

angle
between
40
to
700

a

ay
from
the

previously
tightened
position
and

align
the
cotter

pin
hole
with

the
hole
in
the
spindle
Turn
the
wheel
hub
a
few

times
in
each
direction
and
then
measure
the

torque
required

to
cause

the
hub
to

turlI
A

spring
balance
should
be
used
as

shown
m

Rig
J

p
make
sure
that
the
brake

pads
are
not

binding

on
the
disc

type
of
brake
unit
and
check
that
the
force

required

to
turn

the
hub
is
within
the
following
fIgures

Wheel

bearing
rotation

starting
torque

1800ce
With
new

bearing
7

0

kg
cm
97
in
oz

1400
1600cc
With
new

bearing
8
0

kg
cm
111
2

in
oz

With
used

bearing
4
0

kg
cm

56
0
in
oz

Starting
torque
at

the
hub
bolt

lWth
new

bearing

ith
used

bearings
1
57

kg
3
46
lb

0
7

kg
1
541b

Adjust
the
locknut

slightly
if
the

fIgures
do
not
conform
and

replace
the

cotterpin

Refit
the
hub
cap
and
the
road
wheel

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY
Removal

Jack

up
the
front
of
the
vehicle
and

place
stands
under

the
ront
side
members

Remove
the
road
wheels
and
the

splash
board

3
Disconnect
the
front
brake
hoses
and
remove
the
brake
hose

locking

springs
Withdraw
the

plates
and
remove
the
hoses

from
the
strut

assembly
Plug
the
ends
of

the
hoses
to

prevent
the
ingress
of
dirt
and
loss
of
fluid

4
Remove

the
cotter

pin
from
the
tie
rod
ball

joint
remove

83

Page 88 of 171


the
castle
nut
and
detach
the
tie
rod
from
the
knuckle
arm

5
Remove
the
tension
rod

securing
nuts

Fig
J
7
remove

the
bolts
and
withdraw
the
tension
rod
Withdraw
the
nut

shown
arrowed
in

FigJ
8
and
remove
the
stabilizer

6

Support
the

engine
with
suitable

lifting
tackle
so
that

the

engine
mounting
bolts
can

be
removed
and
the

suspension

crossmember
detached
from
the

engine
FigJ
9

7
Place

ajack
under
the
crossmember
Remove
the
bolts

indicated
in

Fig
J
IO
and

separate
the
crossmember
from

the

body

8
Remove
the
strut

assembly

upper
attachment
self

locking

nuts
at
both
sides
Fig
J
ll

and
lower

the
front

suspension

assembly
to
remove
it
from
the
vehicle

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY
Installation

Installation
is
a
reversal
of

the
removal

procedure
noting

the

following
points

Make
sure
that
all
rubber

parts
are
free
from
wear
and

deterioration

Any
part
of

the
suspension
assembly
which
has

been

damaged
or
distorted
must
be

replaced
The
front
wheel

alignment
should
be
checked
after

completing
the
installation

a
brief

description
is

given
at
the
end
of
this
section
Camber

and
castor

angles
are

preset
and
cannot
be

adjusted

SPRING
AND
STRUf
ASSEMBLY
Removal
and
Installation

The
strut

assembly
consists
of
the
outer

casing
piston
rod

piston
rod

guide
and
cylinder
etc
An

exploded
view
of
the

components
is

given
in

Fig
J
12

The
inner

components
must

be
replaced
as
a

complete

assembly
Replacement
and
overhaul

procedures
for

the
inner

components
together
with
the
removal
of
the
front

springs

should

only
be
carried
out

by
a
specialist
Datsun

workshop

The
strut

assembly
can
be
removed

prior
to

dismantling
by

following
the

procedures
outlined
below

Jack

up
the
front
of
the
vehicle
and

support
it
on
stands

2
Disconnect
the
brake
hose
from
the
strut

assembly
bracket

as

previously
described
under
the

heading
FRONT
AXLE

and
SUSPENSION
ASSEMBLY
Removal

3
Remove
the
stabilizer
bar
and
tension
rod
from
the
trans

verse
links
Loosen
and
remove

the
knuckle
arm

fixing

bolts

Fig
J
9
And

separate
the

strut
assembly
from
the

ball

joints

4
Remove
the
strut

assembly

upper
attachment
self

locking

nuts

Fig
J
11
and
withdraw
the
strut

assembly
from

the

body
Fig
J
13

Installation
is
a
reversal
of
the
removal

procedure
Ensure

that
the
bolts
are

tightened
to

the
specified
torque
readings

given
under
TIGHTENING

TORQUES
SPRING
AND
STRUT
ASSEMBLY

Dismantling
and

Assembly

Care
must
be
taken
when

dismantling
the
assembly
to

ensure

that
aU

parts
are
maintained
in
a
clean
condition

Clamp
the

suspension
strut

assembly
in
a
vice
and
fit
the

special
attachment
ST
2770000
I
to
the
lower
end
of
the
strut

Prise
off
the
dust
cover

snap
ring
Use
the
coil

spring
compressor

ST
35650001
to

slightly

compress
the

spring
Remove
the
self

locking
nut
and
take
off
the
mounting
insulator
thrust
bearing

spring
seat
and

bump
rubber
Slacken
the

spring
compressor
and

remove

the

spring
Push
down
the
shock
absorber

piston
until
it

bottoms
and
remove

the

gland
packing
with
the

special
tool

ST
35500001

Fig
J
14
Remove
the
O

ring
from
the

piston

rod

guide
and
lift
out

the
piston
rod
and

cy
linder

assembly

00
NOT

separate
the

piston
and

cylinder
which
are
serviced

as
a

complete
assembly
Drain
all
fluid
from
the

suspension
unit

and
shock
absorber

assembly
Wash
all

parts
thoroughly
not

rubber

parts
in

petrol
or
a
suitable
solvent

The

gland
packing
and
0

ring
must
be
renewed
at

each

overhaul

Always
refill
with
the
correct

grade
of
fresh
oil
in

accordance
with
the
information
in
the
table
below

ATSUGI
KAYABA

Part
No

54302
UO
100

UOl10
325
cc
332
cc

54302
3
U0500
1

54302
N
1200
325
cc
300
cc

The
oil

quantity
is
extremely
critical
as
it
will
affect

the

damping

power
of
the
shock
absorber

To
assemble
fit
the
rubber
O

ring
on
the

top
of
the

piston

rod
and
refit
the

gland
packing
Take
care
that
the
oil
seal
does

not
become

damaged
during
the
latter

operation
Lift
the

piston

rod

up
by

approximately
90
mm
3
5
in
before

tightening
the

gland
packing
to
facilitate

bleeding
then

tighten
the
packing

to
a

torque
reading
of
7
13

kgm
51
94Jb
ft
Bleed
the

shock
absorber
by
pumping
the

piston
rod

up
and
down
until

the

pressure
is
the
same

in
both
directions

Position
the
coil

spring
bump
rubber

spring
seat
and
dust

cover
on
the

top
of
the

piston
rod
The

piston
rod
must
be
in

the

fully
extended

position
Compress
the

spring
fit
the
strut

mounting
insulator
and

bearing
assembly
Tighten
the
self

locking
nut
to
a

torque
reading
of

6
7
5

kgm
43
541b
ft

SPRING
AND
STRUT
ASSEMBLY
Installation

Installation
is
a
reversal
of

the
removal

procedure

Thoroughly
grease
the

parts
marked
in

Fig
J
15
Tighten
the

fixing
bolts
to
the

torque
readings
given
in
TIGHfENING

TORQUES

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT
Removal

The
transverse
link
with
rubber

bushing
is
connected
to

the

suspension
crosSlTIember

by
a

mounting
bolt
as
shown
in

Fig
J
11
and
to

the
strut

assembly
via
the
lower
ball

joint

87

Page 94 of 171


STEERING
GEAR

Inspection
and

Adjustment

Thoroughly
clean
all

parts
and
examine
them
for

signs

of
wear
or

damage
Replace
any
comIK
nent
found
to
be
un

satisfactory

It
is
advisable
to
renew
the
assemblies
if
the

steering
column

or
ball
nut

assembly
is
defective
as

the

adjustment
procedures

required
to
overhaul
the
units
are
rather
involved

The

dismantling
and

adjustment
procedures
for
the
ball

nut

assembly
can
be
carried
out
in

the
following
manner
if
it

is

decided
that
overhaul
procedures
are
to

be
carried
out

Ball
nut

Remove
the
ball

guide
tube

clamp
withdraw
the

guide

tubes
from
the
ball
nut
and
collect
the
steel
balls

Turn
the
nut

upside
down
and
rotate

the
steering
column

backwards
and
forwards
until
all

36
steel
balls
have

dropped

out
of
the
ball
nut
Pull
the
ball

nut
from
the
column

Inspect
the
ball

guide
tubes

and
make
sure

that

they
are

not

damaged
Pay
particular
attention

to
the
ends
of
the
tubes

that

pick
up
the

balls
from
the
helical

path
Renew
the
tubes
if

they
are

unsatisfactory
Check
the
steel
balls
and

the
ball
nut

for
wear
and

replace
the

complete
unit
if

necessary

Assemble
the
ball
nut
on

the
worm
with
the
ball

guide

holes

upwards
Drop
18
balls
into
each
of

the
two
holes
on
the

same
side
of
the
ball
nut

until
all
36
balls
are
installed
The

column
should
be

gradually
turned

away
from
the
hole

being

filled
and
if
the
balls
are

stopped
by
the
end
of
the
column
hold

down
those

already
installed
with
a

clean
rod
or

punch
while

turning
the
column
several
times
in
the
reverse
direction
The

filling
of
the
circuit
can
then
be
continued
but
it

may
be

necessary
to
turn
the
column
backwards
and
forwards

holding

the
balls
down
first
in
one

hole
and
then
the
other
to
close
the

spaces
and

completely
fill
the
circuit

Place
the

remaining
22
balls
in
the
ball

guide
halves
11

balls
for
each
half
Fit
the
other
half
of

the

guide
tube
to
each

f11led
half

hold
the
two
halves

together
a
ld

plug
each

open
end

with
vaseline
to

prevent
the
balls

falling
out

Push
the

guide
tubes
into
the

ball
nut

guide
holes
and

assemble
the

guide
tube

clamp

Inspection

Oteck
the
axial

clearance
between
the
ball
nut
and
the

balls
If
the
clearance
exceeds
0
08
mrn
0
003
in
the

complete

unit
must
be
replaced
Inspect
the

gear
teeth
of
the

sector

shaft
for
wear
or

damage
Replace
any
worn
or

imperfect

bearings
Examine
the

steering
column
shaft
for

straightness

and
check
that
the
maximum
deflection
does
not
exceed
0
2mm

0
008
in
at

point
C
in

Fig
K
9
when
the
shaft

is

supported

at

points
A
and
B
Check
the
sector
shaft
and

steering

column
shaft
serrations
for
wear
Renew
the

parts
as

necessary
STEERING
GEAR

Assembly
and

Adjustment

Grease
the

lip
of
the
oil
seal
and

press
it
into
the

housing

Insert
the
column

assembly
into

the
column

jacket
and
fit

the
worm

bearing
shims
to
the

gear
housing
Install
the

flange

securing
bolts
and

tighten
them
to
a

torque
reading
of

1
8

2
5

kgm
13
18lb
ft
If
a

new
column

bearing
assembly
is

fitted
it
must
be
filled
with

bearing
grease
and
cemented
to
the

column

The

preload
of
the
worm

bearing
can
be

adjusted
by

altering
the
thickness
of
the
worm
bearing
shim
Four
shim

thicknesses
are
available
in
sizes
of
0
76
0
254
0
127
0
050mm

0
0300
0
100
0
005
in
0
002
in

This

adjustment
check
is
carried
out
without

the
sector

shaft
fitted
and
with
the
worm

bearings
oiled

Install
the

steering
wheel
as
shown
in

Fig
K
9
use
a

spring

balance
as
indicated
to
check
that
the
force
required
to
turn

the
wheel
is
between
4
0
8
0

kg
cm
56
l120z

inch

Select
a
suitable
shim
from
the
sizes

given

Assemble
the
selector
shaft

adjuster
with
a
shim
into
the

sector
shaft
Measure
the
end
clearance
of
the

adjuster
with
a

feeler

gauge
as

shown
in
Fig
K
1
O

The
correct
clearance
is
0
01
0
03mm
0
0004
O
0012in

and
can
be

adjusted
by
varying
the
thickness
of
shim
Four

thicknesses
of
shim
are
available
as

follows

1
57
mm
0
0618
in

1
55
mm
0
0610
in

1
52
mm
0
0598

in

1
50
mm
0
0591
in

To
assemble
the
sector
shaft
into
the
gear
housing
rotate

the
column

by
hand
until
the
ball
nut
is
at
the
central

position

of
its
travel
so
that
the
centre
tooth
of
the
sector
shaft
enters

the
centre
tooth

space
of

the
ball
nut
Fit
a
new

gasket
and

push

the

sector
shaft
cover

and
sector
shaft
into

place

Ensure
that
a
certain
amount
of

play
is

present
between

the
rack
and
sector
teeth
before

tightening
the
cover

bolts
to

a

torque
reading
of
1
5
2
5

kgm
10
9
18
llb
ft

Temporarily
lock
the

adjusting
screw
with

the
locknut

Move
the
sector
shaft
several
times
from

the

pitman
arm
side

to
make
sure
that
it
turns

smoothly

Connect
the

pitman
arm
to
the
sector
shaft

taking
care

that
the

alignment
marks
on

the
arm
and
shaft
coincide

Adjust
the
backlash
with

the
steering
in

the
central

position
using
a
dial

gauge
as
shown
in

Fig
K
II
Turn
the

adjusting
screw
with
a
screwdriver
until
the
amount
of
free

movement
at
the

top
of
the

pitman
arm
is

within
O
lmm

0
0039
in
at
a

radius
of

127
mm
5
0
in
Lock
the

adjusting

screw
with
the
locknut
Fig
K
12
and
recheck
the
free
move

ment

Fill
the

steering
gear
housing
with
the
correct
amount
of

recommended
lubricant

Refit

the

steering
gear
to
the
vehicle
as

previously
described

Make
sure

that
the
steering
wheel
is

correctly
aligned
and
that

93

Page 104 of 171


brake
shoe
is
in
contact
with
the
drum
The

adjuster
must
be

turned
from

the
rear
of

the

backplate
and
the
drum
turned

by

hand

When
the
shoe
contacts
the
drum
turn
the

adjuster
in

the

opposite
direction
until
the

shoe
is

just
clear
and
the
drum

can

be
rotated

freely
by
hand

Depress
the
brake

pedal
and
make
sure
that
the
brakes

operate
correctly
The

adjusters
must

be
released

slightly
if

the

brake
shoe
binds

FRONT
DISC
BRAKE
Friction

pads
Fig
L
14

The
disc
brakes
are
self

adjusting
but
the
friction

pads

should
be
checked
for
wear

every
5
000
km
3
000
miles
and

replaced
if
the
thickness
of

the
friction

lining
on

any

pad
is
less

than
1
0mm
0
004
in
In
effect
this
means
that
renewal
is

necessary
when
the
total
thickness
of

pad
and

lining
is
less
than

8
4mm
0
24
in

To

replace
the
friction

pads
proceed
as

follows

Siphon

out
some
of
the
fluid
in
the
master

cylinder
reservoir
Jack

up

the
front
of
the
vehicle
and
remove

the
road
wheel

Remove
the
anti
rattle

clip
from
the

calliper
plate
Fig
L
lS

Unhook
the

hanger
spring
and
withdraw
the
brake

pads

and
shims

Fig
L
17

It
should
be
noted
that
the
friction

pads
must
be

replaced

as
a
set
and
renewed
at
both
sides
of
the
vehicle
otherwise
the

braking
action
will
be
uneven

Oean
the

calliper
and

pad
at

their
installation

positions

Press
the

pistons
into
the

calliper
bores
so
that
the
new
friction

Pads
can
be
installed
The

pistons
can

be
installed

by
applying

light

pressure
as
shown
in

Fig
L

16
but
care
must

be
taken
to

avoid

pushing
them
too
far
or
the

groove
of
the

piston
will

damage
the
seal

If
the

pistons
are

pushed
down

excessively
it
will
be

necessary
to
dismantle
the

calliper
as

described
under
the

appropriate
heading

Assemble
the

anti

squeal
shims
to
the
friction

pads
with

the
arrow
mark
on
the
shims

pointing
in
the
direction
of

forward
disc
rotation

Refit
the

pads
and

retaining
pins
and
assemble
the
coil

spring
to

the

retaining
pin
furthest
away
from

the
air
bleed
screw

After

installing
the
new

pads
and
shims

depress
the
brake

pedal
several
times
to

reposition
the
pistons
in
the

calliper

O1eck
the
fluid
level

in
the
master

cylinder
reservoir
and
refill

to
the
correct
level

FRONT
DISC

BRAKE
Removal
and

Dismantling

1
Jack

up
the
front
of

the
vehicle
remove
the
road
wheel

and
take
out

the
friction

pads

2
Disconnect
the
brake
hose
from
the
brake

tube
and

plug

the

opened
end
to

prevent
the
loss
of
fluid
3
Remove
the
bolts

securing
the
brake

calliper
to

the

knuckle

flange
and
remove
the

calliper
assembly
Fig
L
IS

4
Remove
the
hub
nut

and
withdraw
the
hub
and
disc

To
dismantle
the
calliper
remove
the
anti
rattle

clip
and

withdraw
the
brake

pads
Remove
the
tension

springs
and

pull

the
cylinder
out
of
the

calliper
Blow
out

the
piston
with
com

pressed
air

applied
at

the
brake
hose
connection

Oean
the

components
in
brake
fluid
and
examine
them

for

signs
of
wear
or

damage

The

cylinder
walls
can

be
carefully
polished
with
fine

emery
cloth
if

they
are
rusted
or
contaminated
If
the

parts

are

excessively
corroded

they
should
be
renewed

Replace
the

pistons
if

they
are

unevenly
worn

damaged

or
rusted
The
sliding
surface
of
the

piston
is

plated
and
no

attempt
should
be
made
to

use

emery
cloth
or
similar
abrasives

for

cleaning
purposes

Check
the
thickness
of
the
friction
pads
as

previously

described
and
replace
them
if

necessary
Renew
the

piston
seals

and
the
dust
covers

O1eck
the
brake
disc
for

scoring
and
out
of
round
The

standard
disc
thickness
is
10
Omm
0
0394
in
and
must
not

be

reground
below
8
4mm
0
3307
in

Check
the
disc
run
out
with
a
dial

gauge
as
shown
in

Fig

L
19
Position
the
gauge
near
the
outer
diameter
and
check
that

the
run
out
does
not

exceed
0
06mm
0
0024
in

FRONT
BRAKE
DISC
Assembly
and
Installation

Rinse
the

cylinder
bore
with
brake
fluid
and
fit
the

piston

seal
into
the

cylinder

groove
Fig
L
20
Fit
the
wiper
seal
and

lightly
grease
the
bore
of
the

cylinder
Clean
the
brake
disc

and
fit
it
to
the
hub
Install
the
hub
to
the
knuckle

spindle

Carefully
insert
the

piston
into
the

cylinder
until
the
face

of
the

piston
is
almost
flush
with

the

wiper
seal
retainer
The

relieved

part
of
the

piston
should
face
the

piston
pin

Fit
the
cylinder
to
the

calliper
plate
and
secure
in

position

with
the
two
torsion

springs
Assemble
the
hold
down
pin

the

spring
washer
and
the
nut
to

the

support
bracket
Secure

the
nut

with
a
cotter

pin

Assemble
the

calliper
to

the
mounting
bracket

using
the

pivot
pin
washer

spring
washer
and
nut

Tighten
the
nut
and

secure
with
a
cotter

pin
Hook
the
hold
down
bracket
to
the

top
of
the

mounting
bracket
and
turn
the

calliper
plate
to

make

sure

that
it
can
slide

smoothly
Fit
the

calliper
assembly
to
the

knuckle

flange

Fit
a
shim
to
the
inner

pad
and
insert
the

pad
Draw
the

calliper
towards
the
chassis
and
insert
the
lower
cuts
on

the

pad

into
the

mounting
bracket
and

push
the

pad
in
until
it
contacts

the

piston
Move
the

calliper
away
from
the
chassis
and
insert

the

upper
cuts
Centre
the
indentation
of

the
outer

pad
in
the

calliper
plate
Fit
the
anti
rattle

clip
Fig
L
14

103

Page 105 of 171


inter
f
illl

@
l

l

Au

y
l
ver

I

R
H

I
Equaliler
b2nd

i
b7ke

Pl
te

Iock
band
buk

able
I

I

I

T

@A
Adjuster
cable

oo

pm
Odb
k
SPd
wm

LH
able

C

Note

@
Apply
bearing

grease

@APPIYch
S

i

Pin
fulcrum
hand

brab
lever
6c

1l

Clip
cable
frout
N
nd
brake

Fill
L21
Handbrake

linkage
1400
and
1600
c
c

Saloons

1
I
J

Pull

priDg

1

Clt
vU

Balance
leve

I

I

J
c

1
1

I

I
1

l

J

L

I

iL

Note

@
Apply
engine
oil
8

S

J

@

I

Aj

Fran
able
Rear
cable

L

I
r

f
7

n
t

i

Adjust

position
A

Fig
L
22
Handbrake

linkage
1400
and
1600

c
c

Estate

cars

1
Control
sUm

2
Control
ratchet

Xing

3
O
mtrol
ratchet

4
O
mtro

guide

5

Control
bracket

6

OJntrol
yoke

7
wer

spring

8
Control
lever

Fig
L
23

Handbrake

linkage
1800

c
c
models

104
able

s

Fig
L
19

Checking
the

brake
disc
for

run
out

1

j

v

fti

r

v

r

Fig
L
20

As
embling
the

piston
seals
and

retainer

ti

J

4

Fill
L
24
The
handbrake

cable

adjuster
Saloons

9

Front
cable

10
Centre

lever

II
Rear
cable

adjuster

12
DIble

lock

plate

13

Return

spring

14

RI
fU
cabk

15
Qevis

Page 110 of 171


ElectrIcal

EquIpment

DESCRIPTION

BATTERY
Maintenance

STARTER
MOTOR

Removal
and

Dismantling

STARTER
MOTOR

Testing

STARTER
MOTOR

Assembly
and
Installation

ALTERNATOR
Removal

Dismantling
and

Inspection

DESCRIPTION

A
12
volt

negative
earth
electrical

system
is
used
in
which

the

battery
is

charged
by
an
alternator
In
the
alternator
a

magnetic
field
is

produced
by
the
rotor

which
consists
of
the

alternator
shaft
field
coil

p
le

pieces
and

slip
rings

Output
current
is

generated
in
the
armature
coils
located

in
the
stator
Six
silicon
diodes
are

incorporated
in
the
alternator

caSing
to

rectify
the

alternating
current

supply
A
voltage

regulator
and

pilot
lamp
relay
are
built
in
the

regulator
box

which

nonnally
does
not

give
trouble
or

require
attention

The
starter
motor
is
a

brush

type
series
wound
motor

in

which

positive
meshing
of
the

pinion
and

ring

gear
teeth
are

secured

by
means
of
an

overrunning
clutch

BATTERY
Maintenance

The

battery
should
be
maintained
in
a
clean
and

dry

condition
at
all
times
or
a
current

leakage
may
occur

between

the
terminals
If

frequent
topping

up
is

required
it
is
an

indication
of

overcharging
or
deterioration
of
the

battery

When

refitting
the
cables
clean
them

thoroughly
and
coat

their

terminals
and
the
terminal

posts
with

petroleum
jelly

Check
the
level
of
the

electrolyte
in
the

battery
at

frequent

intervals
and

top
up
if

necessary
to

the
level
mark
on

the

battery
case
with
distilled
water
A

hydrometer
test
should
be

carried
out

to
determine
the
state

of

charge
of

the

battery
by

measuring
the

specific
gravity
of
the

electrolyte
It
should
be

pointed
out

that
the
addition
of

sulphuric
acid
will
not

normally

be

necessary
and
should

only
be
carried
out

by
an

expert
when

required

The

specific
gravity
of
the

electrolyte
should
be
ascertained

with
the

battery

fully
charged
at
an

electrolyte
temperature
of

200C
680F

The

specific
gravity
of
the

electrolyte
decreases
or
increases

by
0
0007
when
its

temperature
rises
or
falls

by
10C
1
80F

respectively

The

temperature
referred

to
is
that
of
the

electrolyte
and

not
the
ambient

temperature
to
correct
a

reading
for
an
air

temperature
it
will
be

necessary
to

add
0
0035
to
the

reading

for

every
50C
above
200C

Conversely
0
0035
must

be
deducted

for

every
SOC
below
200C
Test
each
cell

separately
and
draw

the

liquid
into
the

hydrometer
several
times
if
a
built
in

thermometer
type
is
used

The
correct

specific
gravity
readings
should
be
as
follows
ALTERNATOR

Assembly
and
Installation

HEAD
LAMPS

Replacing

HORN

INSTRUMENT
PANEL
Removal

WINDSCREEN
WIPERS

WINDSCREEN
WASHERS

IGNITION
SWITCH
AND
STEERING
LOCK

Cold
climates

Temperature
climates

Tropical
climates
Permissible

value

Over
1
22

Over
1
20

Over
1
18
Fully
charged
at
200C

680F

1
28

1

26

1
23

The

battery
should
be

recharged
if
a
low

specific
gravity

reading
is
indicated

Always
disconnect
both
terminals
of
the

battery
when

charging
and
clean
the
terminal

posts
with
a

soda

solution
Remove
the
vent

plugs
and

keep
the
electrolyte

temperature
below
450C
l130F
during
charging

Check
the

specific
gravity
after

charging
and
if
it
is
above

1
260
at

200C
680C
add
distilled
water

STARTER
MOTOR
Removal
and
Dismantling

As
previously
stated
the
starter
motor

is
brush

type
series

wound
motor
in
which
the

positive
meshing
of
the

pinion
and

ring
gear
teeth
are
secured

by
an

overrunning
clutch
The
over

running
clutch

employs
a
shift
lever
to
slide
the

pinion
into

mesh
with
the
flywheel
ring

gear
teeth
when
the
starter
is

operated

When
the
engine
starts
the

pL
lion
is

permitted
to
overrun

the
clutch
and
armature

but
is
held
in
mesh
until
the
shift
lever

is
released
An

exploded
view
of
the
starter

is
shown
in

Fig
M
2

To
remove
the
starter

motor

proceed
as
follows

Disconnect
the

battery
earth
cable

2
Disconnect
the
black
and

yellow
wire
from
the
solenoid

terminal
and
the
black
cable
from
the

battery
terminal

3
Remove
the
two
bolts

securing
the
starter
motor
to
the

clutch

housing
Pull
the
starter
motor

assembly
forwards

and
withdraw

it
from
the
v
hicle

To
dismantle
the
starter

motor
ftrst
remove
the
brush

cover
and
lift
out

the
brushes
as
shown
in

Fig
M
3

Loosen
the
nut

securing
the

connecting
plate
to

the

solenoid
M
terminal
Remove
the
solenoid

retaining
screws

take
out

the
cotter

pin
and
withdraw

the
shift
lever

pin
Remove

the
solenoid

assembly
as
shown
in

Fig
M
4

Remove
the
two

through
bolts

and
rear
cover

assembly

then
remove

the
yoke
assembly
by
lightly
tapping
it
with
a

wooden
mallet

Fig
M
S
Withdraw
the
armature
and
shift

lever

Fig
M
6
Remove
the
pinion

stopper
from
the

armature
shaft

by
removing
the

stopper
washer
pushing
the

109

Page 111 of 171


inter
r
0J

@
jll@

FIg
M
7

Over
unning
clutch

assembly
1

m
ILE

COMMUTATOR

0
5
to
0
8
mrtl

ROUND

O
0197
to
0
0315
nl

SEGMENT

MICA

CORRECr
INCORRECT

Fig
M
9

Undercutting
the
commutator
insulation

Fig
M
11

Testing
the
field
coils
for
continuity

5

y
SERIES
COIL

5

r
SHUNT
COIL

Fig
M
13

Testing
the
solenoid
witch

10
J

Fig
M
8

Checking
the
brush

pring
tension

Fig
M
lO

Checking
the
armature
shaft
for
run
out

J

I

I
J

I

L
j
J

j

Fig
M

12
Testing
the
field
coils
for

earthing

1

rl

wr

v
E
L
DIMENSION

131
7

to
32
3mm
1
248
to
1
272
in

I

Adjus
llUt

2
PluJlKeradjuster

F
8
M
14

Measuring
the

gap
between

pinion

and

pinion
stop

I

Page 112 of 171


stopper
to

the
overrunning
clutch

side
and
removing
the

stopper
clip
Remove
the

stopper
and

overrunning
clutch
as

shown

inFig
M
7

Oean

the
dismantled

components
and
check
them
for

wear
or

damage

Cbeck
the
brushes
and
renew

them
if
worn
below
6
5mm

0
257
in
Fit
new
brushes
if
the
brush
contact
is
loose
Cbeck

the
brush
holders
and

spring
clips
and
make
sure

that

they
are

not
bent
or
distorted
The
brushes
should
move

freely
in

their

housings
and
can
be
eased
with
a
file
if

necessary
The
brush

spring
tension
should

be
approximately
0

8kg
1
76Ib

and

can
be
checked
with
a

spring
balance
as

shown
in
Fig
M
S

Armature

assembly

Make
sure
that
the
surface
of
the
commutator

is
not

rough
or

pitted
Oean
and

lightly
polish
with
a
No
500

emery

cloth
if

necessary
If
the
commutator
is

badly
worn
or

pitted

it
should
be
skimmed
in
a
lathe

only
a

light
cut
must

be
taken

to
remove

the
minimum
amount

of
metal
If
the
commutator

diameter
wear
limit
of
0
2mm
0
OS
in

is
exceeded
the

assembly
must
be

renewed

Undercut

the
mica
between
the
commutator

segments

when
the

depth
of
mica
from
the
surface
of
the

segment
is

less
than
0
2mm
0
08

in
The

depth
should
be
between

0
5
0
8mm
0
0197
0
0315
in
as
shown
in

Fig
M
9

The
armature
shaft
should
be
checked
for

straightness

by
mounting
between

the
centres
of
lathe
and

positioning

a
dial

gauge
as
shown
in

Fig
M
I
O
Renew

the
armature

if
the

bend
of
the
shaft
exceeds
0
08mm
0
0031
in

Field
coils

testing

Test
the
field
coils
for

continuity
by
connecting
a

circuit

tester
between
the

positive
terminal
of
the
field
coil
and
the

positive
terminal
of
the
brush
holder
as
shown
in

Fig
M

I
I
If

a

reading
is
not

obtained
the
field
circuit
or
coil
is

open

Cbnnect
the
tester
to
the

yoke
and
field
coil

positive

teoninal
as

shown
in

Fig
M
12
to

check
the
field
coils
for

earthing

Unsolder
the
connected

part
of
each
coil
and
check
the

circuit
for

earthing
in
a
similar
manner

Renew
the
field

coils

if

they
are

open
earthed
or
short
circuited

Outch
assembly

The

overrunning
clutch
must
be

replaced
if
it
is

slipping

or

dragging
Examine
the

pinion
and
sleeve

making
sure
that

the

sleeve
is
able
to
slide

freely

along
the
armature
shaft

spline

Inspect
the

pinion
teeth
for

signs
of

rubbing
and
check
the

fly

wheel

ring
gear
for

damage
or
wear

Bearings

Inspect
the
metal

bearing
bushes
for
wear
and
side

play

The
bushes
must

be
renewed
if
the
clearance

between
the

bearing

bush

and
armature
shaft

is
in
excess
of
0
02mm
0
008
in

New

bearing
bushes
must
be

pressed
in
so
that

they
are
flush

with
the
end
of
the
case
and
reamed
ou
t
to

give
a
clearance
of

0
03
0
10
mm
0
0012
0
0039
in

H
Solenoid

assembly

Inspect
the
solenoid
contact
surface
and

replace
if

showing

signs
of

wear
or

roughness
Replace
the

pinion
sleeve

spring
if

weakened

Check
the
series
coil

by
connecting
an

8
12

volt

supply

between
the
Sand
M
terminals
as
shown
in

Fig
M
13
The

series
coil
is
normal
if
the

plunger
operates

Test
the
shunt
coil

by
connecting
the
S
terminal
the
M

terminal
and
the
solenoid

body
as
shown
in
the
lower
illustration

of

Fig
M
13

Open
the
M
terminal
when
the

plunger
is
operated

the
shunt
coil
is

satisfactory
if
the

plunger
stays
in
the

operated

position

Measure
the

length
L
between

theylonger
adjusting
nut

and
solenoid
cover

Press
the

plunger
against
a

firm
surface
as

shown
in

Fig
M
14
and
check
that
the
dimension
is
within

the
figures

given
Turn
the

adjusting
nut
if

necessary
until
the

required
dimension
is
obtained

STARTER
MOTOR

Assembly
and
Installation

The
assembly
and
installation

procedures
are
a
reversal

of
the
removal
and

dismantling
operations
When

assembling

the
starter
smear

the
armature
shaft

spline
with

grease
and

lightly
oil
the

bearing
bushes
and

pinion

ALTERNATOR

The
alternator
is
driven

by
the
fan
belt
and
has
an
advant

age
over
a

dynamo
in
that
it

provides
current
at

low

engine

speeds
thereby
avoiding
battery
drain
Maintenance
is
not

normally
required
but
the
tension
of
the
fan
belt
should
be

checked
and

adjusted
if

necessary
as

described
in
the

section

COOLING
SYSTEM
Care
must
be
taken
not
to

overtighten

the
fan
belt
or

the
alternator

bearings
will
be
overloaded

The
alternator

output
can
be
checked
with
the
alternator

in

the
vehicle

by
carrying
out
the

following
test
Ensure
that
the

battery
is

fully
charged
Withdraw
the
connectors
from
the

alternator
F
and
N
terminals
and
connect
a

jumper
lead
between

the
F
and
A
terminals

Connect
a
voltmeter
to
the
E

and
A
alternator
terminals

with
the

negative
lead
to

terminal
E
and
the

positive
lead
to

the
terminal
A
as
shown
in

Fig
M
IS
Switch
the

headlamps

on
to
full
beam
and
start

the

engine
Increase
the

engine
speed

gradually
and
note

the

reading
on
the
voltmeter
when
the

engine
reaches
a

speed
of

approximately
lOaD

rpm
The

alternator
is

operating

satisfactorily
if
the
voltmeter
shows
a

reading
above
12
5
volts
If

the

reading
is
below
12
5
volts
the

alternator
is
defective
and
should
be
removed
for

inspection

ALTERNATOR
Removal

Disconnect
the

negative
lead
from

the

battery
and
the
two

lead
wires
and
connector
from
the
alternator

Slacken
the
alter

nator

mounting
bolts
and
take
off

the
fan
belt
Take
out

the

mounting
bolts
and
withdraw
the
alternator
from
the
vehicle

III

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 next >