air condition DATSUN 610 1969 Workshop Manual

Page 10 of 171


Remove
the
fan

and
pulley
the

right
hand

engine
mounting

and
oil
filter
Remove
the
oil

pressure
switch
Remove
the

following
items
oil
level

gauge
spark
plugs
thermostat

housing

rocker
cover
carburettor
and
inlet
and
exhaust
manifolds

Remove
the
clutch

assembly
as
described
in
the
section

CLUTCH
Remove
the
left
hand

engine
mounting
crankshaft

pulley
water

pump
fuel

pump
fuel

pump
drive
earn
and
cam

shaft

sprocket
See

Fig
A
4
Remove
the

cylinder
head
bolts

in
the

sequence
shown
in

Fig
A

5
and
lift
off
the

cylinder

head
Invert
the
engine
and
remove
the
oil

sump
and
oil

strainer
oil

pump
and
drive

spindle
assembly
front
cover
and

chain
tensioner
Remove
the

timing
chain
oil
thrower
crank

shaft
worm

gear
and
chain
drive

sprocket
See

Fig
A
6
andA
7

Remove
the

connecting
rod

caps
and

push
the

pistons
and

connecting
rods
through
the

top
of
the
bores
as
shown
in

Fig

A
B

Keep
the

connecting
rod

caps
with
their
respective
rods
to

ensure

that

they
are
assembled
in
their

original
positions

Remove
the
flywheel
retaining
bolts
and
withdraw
the

fly

wheel

Fig
A
9
Remove
the
main

bearing
caps
using
the

special
puller
ST
1651
SOOO
to
withdraw
the
centre
and
rear
main

bearing
caps
as
shown
in

Fig
A

l
O
Remove
the
rear
oil
seal

and
lift
out
the
crankshaft
remove
the
baffie

plate
and

cylinder

block
net

Fig
A
II
Remove
the

piston
rings
with
a

suitable

expander
and

press
out
the

gudgeon
pins
under
an
arbor

press

using
the

special
stand
STl300001
as
shown
in

Fig
A

12

Keep

the
dismantled

parts
in
order
so
that

they
can

be
reassembled

in
their

original
positions
Slacken

the
valve
rocker

pivot
lock

nut
and
remove
the
rocker
arms

by
pressing
down
the
valve

springs

Remove
the
camshaft

taking
care
not
to

damage
the

bearings
and
earn
lobes
Withdraw
the
valves

using
the
valve

lifter
STl2070000
as
shown
in

Fig
A
13

ENGINE

Inspection
and
Overhaul

Cylinder
Head
and
Valves

Clean
all

parts
thoroughly
and
remove
carbon

deposits
with

a

blunt

scraper
Remove

any
rust
which
has
accumulated
in

the
water

passages
and
blow

through
the
oil
holes
with

compres

sed
air
to
make
sure

that

they
are

clear

Measure
the

joint
face
of
the

cylinder
head
for
out
of
true

as
shown
in

Fig
A
14

The
surface
should
be
checked
at
various

positions
using
a

straight
edge
and
feeler

gauge
The
permissible

amount
of
distortion
is
0
05
mm
0
0020
in
or
less
If
the

surface
is
out
of
true

by
more
than
the
limit
of
0
1
mm

0
0039

in
it
will
be

necessary
to

regrind
the
head

Clean
each
valve

by
washing
in

petrol
and

carefully
examine

the
stems
and
heads

If
the
stem
is
worn

damaged
or
not

straight
the
valve
must

be
discarded
Check
the

diameter
of
the
stem
with
a
micro

meter

The
diameter
of

the
inlet
valves
should
be
7
965

7
980
mm
0
3136
0
3142
in
and
the
diameter
of

the
exhaust

valves
7
945
7
960
mm
0
3128
0
3134
in

If

the
seating
face
of
the
valve
is

excessively
burned

damaged
or
distorted
it
must
be
discarded
A

badly
pitted

seating
face
should
be
refaced
on
a
valve

grinding
machine

removing
only
the
minimum
amount
of
metal
Renew
the
valve
if
the
thickness
of

the
valve
head
has

been
reduced

by
0
5
mm
0
0197
in
see
Technical
Data
for

valve
dimensions

The

valve
stem

tip

may
be
refaced
if

necessary
the
maxi

mum
allowance
however
is
0
5
mm
0
0197
in

The
valves
can
be

ground
in
to

their
seats
when

completely

satisfactory
The
valve
seats
and
valve

guides
should

be
in

good

condition
and
must
be
checked
as
described
in
the

following

paragraphs

VALVE
GUIDES

Replacement

The
valve
stem
to
valve

guide
clearance
can
be
checked

by

inserting
a
new
valve
into
the

guide
The
stem
to

guide
clearance

should
be
0
020
0
053
mm
0
0008
0
0021
in
for
the
inlet

valves
and
0
040
0
073
mm
0
0016
0
0029
in
for
the
exhaust

valves
If
the
clearance
exceeds
0
1
mm
0
0039
in
for
the

inlet
valves
and
the
exhaust
valves
then
new

guides
should
be

fitted

The
valve

guides
are
held
in

position
with
an
interference

fit
of
0
027
0
049
mm
0
0011
0
0019
in
and
can
be
removed

by
means
of
a

press
and
drift
2
ton

pressure
This
operation

can
be
carried
out
at
room

temperature
but
will
be
more

effectively
performed
at
a

higher
temperature

Valve

guides
are
available
with
oversize
diameters
of
0
2
mm

0
0079
in

if
required
The
standard
valve

guide
requires
a
bore

in
the

cylinder
head
of
11
985
11
996
mm
dia
0
4719

0
4723
in
dia
and
the
oversize
valve

guide
a
bore
of
12
185

12
196
mm
dia
0
4797
0
4802
in

dial

The

cylinder
head

guide
bore
must
be
reamed
out
at

normal
room

temperature

Heat
the

cylinder
head
to
a

temperature
of
150
2000e

302
3920F
before

pressing
in
the
new
valve

guides
Ream

out
the
bore
of
the

guides
to
obtain
the
desired
fInish
and

clearance
Fig
A
IS
The

special
valve

guid
reamer
ST
1103

SOOO
should
be
used
if
available
Valve

guide
inner
diameters

are

specified
in
Technical
Data
at

the
end
of
this
section
The

valve
seat
surface
must

be
concentric
with
the

guide
bore
and

can
be
corrected
with
the

facing
tool
STll670000

Fig
A
16

using
the
new
valve

guide
as
the
axis

VALVE
SEAT
INSERTS

Replacing

The
valve
seat
inserts
should
be
replaced
if

they
show

signs

of

pitting
and
excessive
wear

The
inserts
can
be
removed

by
boring
out
to
a

depth
which

will
cause
them
to

collapse
although
care
must
be
taken
not

to
bore
beyond
the
bottom
face
of
the
recess

in
the

cylinder

head

Select
the
valve
seat

inserts
and
check
the
outer

diameters

Machine
the
recess
in
the

cylinder
head
to

the
following

dimensions
at
room

temperature

9

Page 28 of 171


The
thermostat
can
be

tested

by
suspending
it
with
a

thermometer
in
a

container
ftlled
with
water

Heat
the
water

gradually
and
stir
it
to

obtain
a
uniform

temperature
Maintain

a
constant

check
of
the

temperature
and

make
sure

that
neither
the
thermostat

or
thermometer

touch

the
sides
of
the
container
or
false

readings
will
be
obtained

The
thermostat
should

begin
to

open
at
a

temperature
of

820C

1
50C

179
60F
2

70Fj
and
should
be

fully

open

with
a
maximum
valve
lift
of
8
mm

0
315
in
at
a

temperature

of

950C
2030F

When

installing
the
thermostat

apply
adhesive
to

both
sides

of
the

gasket
before

refitting
the
water
outlet
elbow

RADIATOR
Removal

Drain

the

cooling

system
as

previously
described
and
remove

the
front

grille

2
Disconnect

the
radiator

upper
hose
lower

hose
and
hose
to

the
reservoir
tank

3
Remove
the

radiator

securing
bolts

and
lift
out
the

radiator

Fig
B
4
It
should
be
noted
that
cars
fitted

with
automatic
transmission

incorporate
a
transmission
oil
cooler

which
must

be
disconnected

Installation

is
a

reversal
of
the
removal

procedure
refill

the

system
as

previously
described

FLUID
COUPLING

The
water

pump
is

equipped
with

a
fluid

coupling
on

vehicles
fitted
with
an

air
conditioner

The
fluid

coupling

Limits

the
maximum
fan

speed
to

approximately
3000

r

p
ro

and
eliminates
noise

and
loss
of

power
at

high
engine

speeds

A
fault
in
the

coupling
may
be
caused

by
the

entry
of

foreign
matter

If
a
fault

developes
the

oupling
must
be

removed
and
dismantled

and
the
interior
cleaned

by

washing

in
solvent
The
condition
of
the
seal

and

bearing
must
be
care

fully
checked

and
the

coupling
replaced
if
the
latter

items
have

become
blackened
If
oil
leaks
occur

it
will
be

necessary
to

replace
the

water

pump
assembly
with
the

coupling
After

cleaning
the
unit
refill

with
11
5
cc
silicon
oil

using
a

suitable

syringe

TechnIcal

Data

Radiator

Radiator

cap
working
pressure

Radiator
core

heightxwidth

x

thickness

1400

and
1600
cc

engines
510

body

1600
and
1800
cc

engines
610

body
Corrugated
fin

type

0
9

kg

sq
cm

13Ib
sq
in

280x488x38mm

I
LOx
19
2x
1
49

in

360x502x32mm

l4
2x19

8x1
26
in

Thermostat

valve

opening

temperature

Standard

B20C
l
BOOF

Cold
climates
880C

1900F

Tropical
climates

76
50C
l700F

Max
valve
lift

Cooling
system

capacity

With

heater

Without
heater

Cooling
system

capacity

With

heater
Above
8
mm
0
31
in

6
8litres

1
75
US

gall

1
5

Imp
gall

6
4litres

1
75
US

gall

1
375

Imp
gall

1600

and
1800
cc

engines
610

body

6
5litres
l
7

US

gall

1
375

Imp
gall

6
0

Iitres
1
625
US

gall

1
375

Imp

gall
Without
heater

27

Page 34 of 171


Fuel

System

DESCRIPTION

FUEL
TANK

FUEL
PUMP

CARBURETTOR
IDLING
ADJUSTMENT

FAST
IDLE
OPENING
ADJUSTMENT

THROTTLE
VALVES
INTERLOCK
OPENING

DASHPOT

DESCRIPTION

The

diaphragm
type
fuel

pump
shown
in

Fig
D
1
feeds

fuel

from
the
tank
to
the
carburettor
in
a

regulated
supply

according
to
the
needs
of
the

engine
A
cartridge
type
fuel

strainer

prevents
any
dirt
from

reaching
the

pump
inlet
valve

The

carburettor
fitted
to

the

engine
is
either
a
down

draught
two
barrel

type
equipped
with
a
throttle

operated

acceleration

pump
and
power
valve
mechanism

See
Fig
D
2

or
a
twin
SU
carburettor
of
the

type
shown
in

Fig
D
3
In
the

two
barrel

type
carburettor

fuel
flows
from
the

passage
at
the

bottom
of
the
float
chamber

passes
through
the

primary
main

jet
and
mixes
with
air

introduced

through
the
main
air
bleed

screw

The

petrol
and
air
mixture
is

injected
into
the
venturi

through
the
main
nozzle

Each
time
the
accelerator

pedal
is

depressed
the
throttle

opens
and
the
accelerator

pump
forces
a

jet
of

petrol
into
the

air
stream
to
allow
the

engine
to
accelerate

smoothly
See

Fig

0
4
The

power
valve
mechanism
is

operated
automatically

according
to
the
demands
made

by
the

engine
Under
light
load

i
e

part
throttle
conditions
the
intake
manifold

depression
is

transmitted
below
the
throttle
valve
the
vacuum

pulls
a

piston

upwards
against
a

spring
and
leaves
the

power
valve
closed

allowing
additional
air
to
be

admitted
through
the
air
bleed
screw

and
thereby
weaken
the

petrol
and
air
mixture
When
the
vacuum

below
the
throttle
vaJve
is
lowered

during
full
load
conditions

the

piston
is

pushed
down
opening
the

power
valve
and
providing

additional
fuel
to
enrichen
the
mixture

The
model

HJ
L
38W6
SU
twin
carburettor
is
of

the

horizontal
variable
venturi

type
and
is
used

only
on
the
1600

and
1800
cc

engines
In
this

type
of
carburettor
a

constant

flow
of
intake
air
is

maintained

by
the

automatically
adjusted

venturi

opening
this
is
accomplished

by
the
suction

piston

sliding
in
accordance
with

changes
in
the
volume
of
intake
air

Referring
to

Fig
D
5
the
suction
chamber
is
mounted
above

the
venturi
The
suction

piston
slides
vertically
within
the

chamber

and

changes
the
venturi

opening
area
The

piston
is

operated
by
a

difference
between
the

upper
vacuum

pressure

which
is

applied
through
the
suction

poct
and
the
atmospheric

pressure
which

is
introduced

through
the
air
hole
from
the
air

cleaner

The
amount

by
which
the
throttle
is

opened
causes
the

suction

piston
to
rise
or
fall
under
the
intluence
of
the

engine

suction
The

pozzle

opening
therefore

changes
and

provides
an

optimum
air
fuel
mixture
at
all

engine
speeds

The

cartridge
type
fuel
strainer
utilizes
a
fibre
strainer

element
which
should
be

replaced
every
20
000
km
12
000

miles
Removal
of
the
fuel
strainer
is
a

simple
operation
but
as

it
cannot
be
drained
the
strainer
should
not
be
removed
when
CARBURETIOR
Removal
and
Overhaul

FLOAT
LEVEL
Adjustment

SU
TWIN
CARBURmORS

Adjustments

SU
TWIN
CARBURmORS

Dismantling

SU
TWIN
CARBURETTORS

Inspection

STARTING
INTERLOCK
VALVE
OPENING

HYDRAULIC
DAMPER

the
tank
is

full
unless

absolutely
necessary

A

viscous

paper
type
air
cleaner
element
is
fitted
which

does
not

require
cleaning
and
should
be

repl
ced

every
40
000
km

24
000
miles
The
air

cleaner
fitted
on
the

single
carburettor

is
equipped
with
an

idling
compensator
to

prevent
the
mixture

from

becoming
too

rich
at

high
idling

temperatures
Additional

fresh
air
is
introduced
into
the
inlet
manifold

by
the
action
of

a
bimettalic

strip
located
in
the
air
cleaner
When
the

temperature

under
the
bonnet
is

high
the
bimetal
is

heated

by
the
hot
inlet

air
and
lifts
to
allow
the
valve
to

open
The

idling
compensator

valve

partially
opens
at

550
I310F
and
is

fully
open
at

650C

l490F
The
unit
cannot
be
dismantled
as

it
is

pre
sealed
and

correctly
adjusted
for
valve

timing
Fig
D
6
shows
the

layout

of

the
idling
compensator
piping

FUEL
TANK

Replacing

The
fuel
tank
can
be
removed
in
the
following
manner

Remove
the
rear
seat

and
back
rest

2
Take
out
the
board
behind
the
back
rest

3
Take
out
the

luggage
compartment
lining
board
and

disconnect
the
cable
to
the

petrol
gauge
unit

4
Disconnect
the
petrol
filler
tube
from
the
tank

5
Remove
the
tank
retaining
bolts
and
disconnect
the

rubber
fuel
outlet
and
return
hoses

Installation
is

a
reversal
of
the
removal

procedure
always

ensure
that
the
fuel
lines
arc
carefully
checked
for

signs
of

damage
before

replacing
the
tank

FUEL
PUMP

Testing

Pressure
and
capacity
tests
can
be
carried
out
with
the

pump
installed
in
the

following
manner

Static

pressure
test

Disconnect
the
fuel
line
at

the
carburettor
install
an

adaptor
tee

fitting
and
suitable

pressure
gauge
to
the
fuel
line

between
carburettor
and
fuel

pump
Start
the
engine
and
run
it

at

varying
speeds

The

reading
on

the
gauge
should
be
0
18
0
24

kg
sq

cm
2
6
34
Ib

sq
in
If
the

pressure
is
below
the

specified

figure
then
either
one

part
of
the

pump
has
worn

excessively

or

general
wear
has
occured
to

all
the

working
parts
The
faults

may
include
a

ruptured
diaphragm
worn
and

warped
valves

33

Page 38 of 171


Carburettor

type
Throttle

opening

angle

190

200
Dimension
A

213282

341

213282
221
l
3mm
0
051
in

I
4mm
0
056in

If

adjustment
is

required
the
choke
connecting
rod
can
be

carefully
bent
until
the

required
clearance
is

obtained

THROTTLE
VALVES
INTERLOCK
OPENING
ADJUSfMENT

Open
the

primary
throttle
valve
500
from
the

fully
closed

position
as
shown
in

Fig
D
I
O
At

this

angle
the
connecting

link
2
should
be
at

the
extreme

right
of
the

groove
in

the

primary
throttle
arm
The

linkage
between
the

primary
and

the

secondary
throttles
is

operating
correctly
if
the
clearance

C
between
the

primary
throttle
valve
and
the
wall
of
the

chamber
is
as
follows

Carburettor

type

213304

361

213304
421

213282
331

213282
341
Dimension
C

6
3
mm
0
248
in

6
3
mm
0
248

in

74
mm
0
291
in

74
mm
0
291
in

Adjustment
can
be
made
if

necessary
by
bending
the

connecting
link
until
the

required
clearance
is
obtained

DASHPOT
ADJUSfMENT

This

adjustment
is

only
required
on

carburettors
fitted
to

vehicles
with
automatic
transmission
Correct
contact
must
be

made
between
the
throttle
lever
and
the

dashpot
stem
See

Fig
D
II

Adjustment
can

be
carried
out
if

necessary
by

slackening
the
locknut
2
and
then

rotating
the

dashpot
in

either
direction
so
that
the
throttle
ann
touches
the
stem
at
a

throttle
valve

opening
angle
of
110
At

this
angle
the
clearance

B
between
the
throttle
valve
and
the
wall
of
the
chamber

should
be
as
follows

Carburettor

type

213304
421

213282
341
Dimension
B

0
780mm
90
0307
in

0
586mm
0
0231
in

Retighten
the
locknut
after

completing
the

adjustment

CARBURETTOR
Removal
and
Overhaul

The
carburettor
can
be
removed
from
the

engine
in
the

following
manner

Remove
the
air
cleaner

assembly

2
Disconnect
the
fuel
and
vacuum

pipes
and
the
choke
wire

from
the
carburettor

3
Remove
the
throttle
lever
and
take
off
the
nuts
and

washers

securing
the
carburettor
to

the
manifold

4
Lift
the
carburettor

away
from
the
manifold
and
discard

the

gasket

To
dismantle
the
carburettor
for
a

complete
overhaul

remove
the

primary
and

secondary
main

jets
and
needle
valves
these
are
accessible
from
the
exterior
of
the
carburettor

Remove
the
choke

connecting
rod

pump
lever
return

spring
and
set
screws
and
take
off
the
choke
chamber

The

primary
and

secondary
emulsion
tubes
can
be
with

drawn
after

removing
the
main
air
bleed
screws

If
the
accelerator

pump
is
to
be
checked
take
off
the

pump

cover
but
take
care
not
to
lose
the
return

spring
and

inlet
valve

ball
situated
at
the
lower

part
of
the

piston

Separate
the
throttle
chamber
from
the
float
chamber

by

removing
the

retaining
screws
leave
the
throttle
valve

intact

unless
otherwise

required

All

parts
of
the
carburettor
must
be
ctifefully
cleaned
and

sediment

gum
or

other

deposits
removed

Clean
the

jets
by
blowing
through
them
with

compressed

air
Never

push
wire

through
the

j
ts
or

passages
or
the
orifices

will
be

enlarged
and
the
calibration
affected

Check
all

parts
for

signs
of
wear
and

exchange
them
if

necessary

Examine
the
float
needle
and
seat
for
wear

and
make
sure

that
the
throttle
and
choke
bores
in
the
throttle

body
and

cover
are
not
worn
or
out
of
round
If
the

idling
adjustment

needles
have
burrs
or

ridges
they
must

be
replaced

Inspect
the

gaskets
to
make
sure
that

they
are
not
hard

and
brittle
or
distorted

Oean
the
filter
screen
if
it
is

clogged
or

change
it
if
it

is

otherwist

unsatisfactory

Check
the

operation
of
the
accelerator

pump
by
pouring

petrol
into
the
float
chamber
and
operating
the
throttle
lever

Petrol
should

spurt
from
the

pump
discharge
jet
if

the

pump
is

working
correctly
If

petrol
cannot
be

ejected
from
the

jet

when
the
lever
is
actuated
clean
the
discharge
jet
by
blowing

through
it
with
compressed
air

CARBURETTOR
Assembly
and
Installation

The

assembly
and
installation
of
the
carburettor
is
a

reversal
of

the
dismantling
and
removal

procedures
noting
the

following
points

Always
replace
the

gaskets
if

they
are
not

satisfactory
and

take
care
that
the
carburettor

linkage
operates
smoothly
and
is

not
bent
or
distorted

The

performance
of
the
carburettor
will

depend
on

the

condition
of

the
jets
and
air
bleeds
As

previously
stated
these

pacts
should
be
cleaned

using
petrol
and

compressed
air

only

Replacement
jets
or
air
bleed
screws
can

be
used
to

provide

greater
economy
or
to
increase

output
whatever
the
require

ment
When

the
carburettor
is
installed

adjust
the
idling
speed

as

previously
described

37

Page 110 of 171


ElectrIcal

EquIpment

DESCRIPTION

BATTERY
Maintenance

STARTER
MOTOR

Removal
and

Dismantling

STARTER
MOTOR

Testing

STARTER
MOTOR

Assembly
and
Installation

ALTERNATOR
Removal

Dismantling
and

Inspection

DESCRIPTION

A
12
volt

negative
earth
electrical

system
is
used
in
which

the

battery
is

charged
by
an
alternator
In
the
alternator
a

magnetic
field
is

produced
by
the
rotor

which
consists
of
the

alternator
shaft
field
coil

p
le

pieces
and

slip
rings

Output
current
is

generated
in
the
armature
coils
located

in
the
stator
Six
silicon
diodes
are

incorporated
in
the
alternator

caSing
to

rectify
the

alternating
current

supply
A
voltage

regulator
and

pilot
lamp
relay
are
built
in
the

regulator
box

which

nonnally
does
not

give
trouble
or

require
attention

The
starter
motor
is
a

brush

type
series
wound
motor

in

which

positive
meshing
of
the

pinion
and

ring

gear
teeth
are

secured

by
means
of
an

overrunning
clutch

BATTERY
Maintenance

The

battery
should
be
maintained
in
a
clean
and

dry

condition
at
all
times
or
a
current

leakage
may
occur

between

the
terminals
If

frequent
topping

up
is

required
it
is
an

indication
of

overcharging
or
deterioration
of
the

battery

When

refitting
the
cables
clean
them

thoroughly
and
coat

their

terminals
and
the
terminal

posts
with

petroleum
jelly

Check
the
level
of
the

electrolyte
in
the

battery
at

frequent

intervals
and

top
up
if

necessary
to

the
level
mark
on

the

battery
case
with
distilled
water
A

hydrometer
test
should
be

carried
out

to
determine
the
state

of

charge
of

the

battery
by

measuring
the

specific
gravity
of
the

electrolyte
It
should
be

pointed
out

that
the
addition
of

sulphuric
acid
will
not

normally

be

necessary
and
should

only
be
carried
out

by
an

expert
when

required

The

specific
gravity
of
the

electrolyte
should
be
ascertained

with
the

battery

fully
charged
at
an

electrolyte
temperature
of

200C
680F

The

specific
gravity
of
the

electrolyte
decreases
or
increases

by
0
0007
when
its

temperature
rises
or
falls

by
10C
1
80F

respectively

The

temperature
referred

to
is
that
of
the

electrolyte
and

not
the
ambient

temperature
to
correct
a

reading
for
an
air

temperature
it
will
be

necessary
to

add
0
0035
to
the

reading

for

every
50C
above
200C

Conversely
0
0035
must

be
deducted

for

every
SOC
below
200C
Test
each
cell

separately
and
draw

the

liquid
into
the

hydrometer
several
times
if
a
built
in

thermometer
type
is
used

The
correct

specific
gravity
readings
should
be
as
follows
ALTERNATOR

Assembly
and
Installation

HEAD
LAMPS

Replacing

HORN

INSTRUMENT
PANEL
Removal

WINDSCREEN
WIPERS

WINDSCREEN
WASHERS

IGNITION
SWITCH
AND
STEERING
LOCK

Cold
climates

Temperature
climates

Tropical
climates
Permissible

value

Over
1
22

Over
1
20

Over
1
18
Fully
charged
at
200C

680F

1
28

1

26

1
23

The

battery
should
be

recharged
if
a
low

specific
gravity

reading
is
indicated

Always
disconnect
both
terminals
of
the

battery
when

charging
and
clean
the
terminal

posts
with
a

soda

solution
Remove
the
vent

plugs
and

keep
the
electrolyte

temperature
below
450C
l130F
during
charging

Check
the

specific
gravity
after

charging
and
if
it
is
above

1
260
at

200C
680C
add
distilled
water

STARTER
MOTOR
Removal
and
Dismantling

As
previously
stated
the
starter
motor

is
brush

type
series

wound
motor
in
which
the

positive
meshing
of
the

pinion
and

ring
gear
teeth
are
secured

by
an

overrunning
clutch
The
over

running
clutch

employs
a
shift
lever
to
slide
the

pinion
into

mesh
with
the
flywheel
ring

gear
teeth
when
the
starter
is

operated

When
the
engine
starts
the

pL
lion
is

permitted
to
overrun

the
clutch
and
armature

but
is
held
in
mesh
until
the
shift
lever

is
released
An

exploded
view
of
the
starter

is
shown
in

Fig
M
2

To
remove
the
starter

motor

proceed
as
follows

Disconnect
the

battery
earth
cable

2
Disconnect
the
black
and

yellow
wire
from
the
solenoid

terminal
and
the
black
cable
from
the

battery
terminal

3
Remove
the
two
bolts

securing
the
starter
motor
to
the

clutch

housing
Pull
the
starter
motor

assembly
forwards

and
withdraw

it
from
the
v
hicle

To
dismantle
the
starter

motor
ftrst
remove
the
brush

cover
and
lift
out

the
brushes
as
shown
in

Fig
M
3

Loosen
the
nut

securing
the

connecting
plate
to

the

solenoid
M
terminal
Remove
the
solenoid

retaining
screws

take
out

the
cotter

pin
and
withdraw

the
shift
lever

pin
Remove

the
solenoid

assembly
as
shown
in

Fig
M
4

Remove
the
two

through
bolts

and
rear
cover

assembly

then
remove

the
yoke
assembly
by
lightly
tapping
it
with
a

wooden
mallet

Fig
M
S
Withdraw
the
armature
and
shift

lever

Fig
M
6
Remove
the
pinion

stopper
from
the

armature
shaft

by
removing
the

stopper
washer
pushing
the

109

Page 143 of 171


Renew
the
ruter
element
at

10
000
km
6000

miles
inter

vals

Dismantling
is
a

straight
forward

operation
Remove
the

plug
from
the
cover

and
withdraw
the
washer
spring
and

by
pass

valve
Check
the
free

length
and

compressed
length
of
the

by
pass

valve

spring
and
renew
if
necessary
The
free

length
of
the

spring

should
be
54
5
to
56
0
mm
2
14
to
2
20
in
and
the

compressed

length
49
0
mm
1
93
in

EMISSION
CONTROL
SYSTEM

Crankcase
and
exhaust

gas
emissions
are
controlled

by
two

systems
The
crankcase
emissions
by
a
Positive
Crankcase
Ventila

tion
System
and
the
exhaust
emissions

by
a
Nissan
Air

Injection

System
Brief

descriptions
of
the

systems
together
with
the
test

ing
and

servicing
procedures
are

given
below

Positive
Crankcase
Ventilation

System

lbis

system
returns
the
blow

by
gases
to
the
intake
mani

fold
and
the
carburettor
air
cleaner
see

Fig
A
22
Under

part

throttle
conditions
the
intake
manifold
draws
the

gases
through

a
variable
orifice
valve
Control
valve
into
the
combustion

chambers

Ventilating
air
is
then
drawn
from
the
carburettor

air
cleaner
and

passes
throy
gh
a
tube
in
to
the
crankcase

With
the
throttle

fully
open
the
manifold
vacuum
is
insuf

ficient
to
draw
the

gases
through
the
valve
Under
these
conditions

the

gases
flow

tluough
the
tube
to
the
air
cleaner
in
the
reverse

direction
The

gases
are
therefore
retained
or
burnt
to
lessen

the
risk
of
air

pollution

Servicing
and
testing

Once
a

year
or

every
20
000
km
12
000
miles
the
Posi

tive
Crankcase
Ventilation
System
should
be
serviced
as
follows

Check
all
hoses
and
connectors
for

signs
or

leakage
Discon

nect

the
hoses
and
blow

through
them
with

compressed
air
to

make
sure

they
are
not
blocked
Fit
a
new
hose
if
air
cannot

be
forced
through

Check
the
ventilation
control
valve
for

servicability
and

renew
it
if
defective
To
test
the
valve
run

the
engine
at

idling

speed
see
under
IGNITION
TIMING
AND
IDLING
SPEED

and
disconnect
the
ventilation
hose
from
the
rocker
cover
If

the
valve
is

working
correctly
a

hissing
noise
will
be
heard
as

air

passes
through
the
valve
and
a

strong
vacuum
should
be
felt

immediately
a

fInger
is

placed
over
the
valve
inlet
The
valve

cannot
be
serviced
and
must
be
renewed
if

unsatisfactory

Exhaust
emission
control

system

The
Nissan
Air

Injection
System
comprises
an
air
cleaner

belt
driven
air
injection

pump
check
valve
anti
backfIre
valve

and
the
related

connecting
tubes
and
hoses
The
sealed

pump
is

driven

by
the

engine
and

injects
clean
mtered
air
into
the
exhaust

port
of
each

cylinder
The
clean
air
combines
with
unbumt

gases

as

they
are

expelled
into
the
exhaust
manifolds
and
reduces
the

emissions
to
below
the

permissible
level

required
by
air

pollution

laws

A
modified
carburettor
and
distributor
is
fitted
with
this

type
of

system
The
air

injection
system
is
shown
in

Fig
A
23

The
anti
backfrre

valve
is
controlled

by
intake
manifoLd

vacuum
and
is
fitted
to

prevent
the
exhaust

system
from
back

fIring
during
deceleration
When
decelerating
the
mixture
in

the
intake
manifold
is
too
rich
to
bum
and

ignites
as
it
combines

with
air

injected
by
the

pump
The
valve
shuts
off

the
air
delivered

SI2
to
the
exhaust

system
during
the

flrstpredetennined
period

of

dCl
cleration
and

prevents
back

firing
from

occuring

To

check
valve
is
located

between
the
air

pump
and
air

injection
nozzle
and
is
fitted
to

prevent
a
backflow
of
exhaust

gases
from

entering
the

system
The
valve
doses
when
the

exhaust
manifold

pressure
exceeds
air

injection

pressure
as
It

will

at
high
speed
or
if
the

pump
drive
belt
fails

A
relief
valve
is
mounted
in
the

discharge
cavity
of
the
air

pump
and
is

incorporated
to

hold
the
exhaust

gas
temperatures

to
a
minimum
to
minimize

any
loss
of

power
caused

by
the
air

injection

system
and
to

protect
the

pump
from
excessive
back

pressures

Testing

The

following
tests
should

be
carried
out
to
make
sure
that

the
exhaust
emission
control

system
is

operating
correctly
The

engine
must

be
at
normal

operating

temperature
to

perfonn
the

tests
Before
the

system
can
be
tested
the

engine
itself
must
be

checked
to

ensure
that
It
is
functioning
correctly
Disconnect

the
ant
backflTe
valve

sensing
hose
and
insert
a

plug
into
the

hose
to
close
the

passage
to
the
intake
manifold
Make
sure
that

the

engine
operates
normally
and
then

reconnect
the

parts

Testing
the
check
valve

Run
the

engine
until
it
reaches
its
nonnal

operating
tem

pemture
and
check
all
hoses
and
connectors
for

signs
of
leakage

Disconnect
the
air

supply
hose
from
the
check
valve
and

check
the
position
of
the

plate
inside
the
valve
body
The

plate

should
be

lightly
positioned
against
the
valve
seat
and
away
from

the
air
distributor
manifold
Insert
a
suitable
probe
into
the

valve
and

depress
the

plate
When
released
the

plate
should

return

freely
to
its

position
against
the
valve
seat

Leave
the
hose
disconnected
and
start

the

engine
Slowly

increase
the

engine
speed
to
1500
r

p
m
and
examine
the
valve

to

make
sure
that
the
exhaust

gases
are
not

leaking
The
valve

may
flutter
or
vibrate
at

idling
speed
but
this
is

quite
nonnal

Renew
the
valve
if

necessary

Testing
the
ant

backftre
valve

Run
the

engine
until
it
reaches
its

normal
operating
tem

perature
Check
the
hoses
and
connections
for

signs
of

leakage

Rectify
any
leakage
before

testing
the
vaNe

Accelerate
the
engine
in
neutral
and
allow
the
throttle

to
close

quickly
The
valve
is

operating
correctly
if
the
exhaust

system
does
not
backfire

Further
test
can
be
made
with
the

by

pass
hose
to
the
air

pump
suction
line
disconnected
from
the

valve

Open
and
close
the
throttle
valve
rapidly
Hold
a

fInger

over
the
valve
outlet
and
check
that
air
flows
for
between
a

half
and
one
second
If
air
does
not

flow
or

alternatively
if
it

flows

continuously
for
more

than
two
seconds
the
valve
is

faulty
and
must
be
renewed

Disconnect
the
vacuum

sensing
hose
from
the
valve
Insert

a

suitable

plug
securely
into
the

hose
The
valve
is
not

functioning

correctly
if
the

idling
speed
now
differs

excessively
from
the

speed
at

which
the

engine
operated
with
the
hose
connected

Testing
the
air

pump

Special
tools
are

required
to
test
the
air

pump
The
vehicle

should
therefore
be
taken
to
an

Approved
Agent
capable
of

Page 162 of 171


BrakIng
System

Description

Front

disc
brake
Friction

pads

Front

disc
brake
Removal
and
Installation

Rear
drum

brake
Removal
and
Installation

Master
Vac
Servo
Unit

Handbrake

cables
Removing

Handbrake

Adjusting

Brake

pedal

Adjusting

Rear
drum

brake

Adjusting

Bleeding
the

hydraulic
system

DESCRIPTION

The
vehicle
is
fitted
with
disc
brakes
for
the
front
wheels

and
leading
trailing
shoe

type
drum
brakes

for
the
rear
wheels

A
conventional

single
master

cylinder
is
fitted
to

the

Standard
and
DeLuxe
models
See

Fig
D
I
for
details
The

DeLuxe
models
are
however
additio

ally
equipped
with
a

Master
Vae
servo

unit
which

provides
a

much
higher
braking

performance
with
minimum
force

required
on
the
brake

pedal

A
tandem
master

cylinder
and
Master
Vac
servo
unit
are

fitted
as
standard

equipment
to
the
Datsun
CL30UA
and
CL3

OUT
models
Fig
D
2

gives
an

exploded
view
of
this

type
of

master

cylinder

The
handbrake
is
of
the
mechanical
type
with
the
handle

linked
to
the
rear
shoe

operating

lever
through
a
system
of

rods
and
wires
See

Fig
D
3

As
on

previous
models
a

brake

pressure
differential
warn

ing
light
switch
is

incorporated
with
dual
brake
circuits
The

front
and
rear
brake

systems
are
connected
to
the
switch
which

provides
a

warning
via
a

warning
light
on
the
instnllnent
panel

when
a

pressure
difference
of
13
to
17

kg
sq
cm
IB5
to
242

lb
sq
in
occurs
between
the
front
and
rear

systems

Brake

piping
layouts
of
the
single
and
tandem
master

cylinder
systems
are
shown
in

Figs
D
4
and
0
5

FRONT
DISC
BRAKE
Friction

pads

The
disc
brakes
are
self

adjusting
but
the
friction

pads

should
be
checked
for
wear
after
the
fIrst
6
000
un
4
000
miles

and
then

every
5
000
km
3
000
miles
The

pads
must
be

replaced
if
the
friction

lining
on

any
pad
has
worn
to
less
than

1
0
mm
0
04
in

The
thickness
of
the

pads
can

easily
be
checked
after
remov

ing
the
anti
rattle

clip
from
the
calliper
plate

Full

servicing
procedures
are

given
in
the
section
BRAKING

SYSTEM
for
vehicles
fitted
with
Ll4
Ll6
and
Ll8

engines

FRONT
DISC
BRAKE
Removal
and
Installation

Refer
to

the
section
BRAKING
SYSTEM
for
the
Ll4
L16

and
LIB

engines
for
full
details
of
the
removal

and
installation

procedures

Check
the
thickness
of
the
friction

pads
as

previously

described

and

replace
them
if

necessary
Check

the
brake
disc
for

scoring
and
out
of

round
The

standard
diSc
thickness
is
10
0
mm
0
394

in
and
must
not

be

reground
below
8
40
mm
0
331
in
The
run
out

of
the

disc
should
be
less
than
0
06
mm

0
0024
in
and
can
be

checked

with
a
dial

gauge
positioned
near

the
outer

diameter

of
the
disc
as

previously
described

REAR
DRUM
BRAKE
Removal
and
Installation

The
rear
drum
brakes
See

Fig
D
6
can
be
removed
and

inspected
as
described
in
the

section
BRAKING
SYSTEM
for

vehicles
fItted

with
L14
L16
LIB

engines

Examine
the
brake
drums
for

scoring
and
out
of

round

The

maximum
inner
diameter
of
the

drum
must
not

exceed

229
6
mm
9
040

in
after

reconditioning
Out
of
round
should

be
below
0
05
mm
0
002
in

Renew

the
brake
shoe

linings
if

they
are
contaminated
or

incorrectly
seated
or
if
the

thickness
of
the

lining
has
been

reduced
to

1
5
mm

0
06
in
or
less
Oil
or

grease
can
be
re

moved
from
the

linings
by
cleaning

thoroughly
with
carbon

tetrachloride
or

petrol

Check
the
shoe

return

springs
and

replace
them
if

they

have
become
weakened
Check
the

bores
of
the
wheel

cylinders

for

signs
of
wear

damage
or
corrosion
Renew
the

cylinders

and

pistons
if
the
clearance

between
the
two

parts
exceeds
to

0

15
mm

0
006
in
Renew
the
c

ps
when

overhauling
the

wheel

cylinders

MASTER
V
AC
SERVO
UNIT

Removing
and

Dismantling

The
servo

unit
should
be
removed
and
overhauled
at

yearly

intervals
A
Master
Vac

repair
kit

is
available
and
all

parts

marked
in

Fig
D
7
should
be
renewed
after

dismantling
the

unit
These
items
are
all

supplied
as

part
of
the
repair
kit

The
unit
can
be

removed
as

follows

Remove
the
clevis

pin
from
the

push
rod
and
detach
the

Master
V
ac

unit
from
the
brake

pedal

2
Disconnect

the
brake
tube
from
the
master

cylinder
and

the
vacuum
hooe
from
the
Master
Vac

3
Take

off
the

retaining
nuts

and
remove
the
Master
Vac
and

spacer
then

separate
the
master

cylinder
from
the
Master

Vac

Mark

the
front

cylinder
shell

and
the
rear
shell

and
stud

assembly
before

dismantling
the
unit
then

proceed
as

follows

S31