tow DATSUN 610 1969 Workshop Manual

Page 4 of 171


inteN
j

@IP
B

Index

ENGINE

COOLING
SYSTE
l

IGNITION
SYSTE
I

FUEL
SYSTBl

CLUTCH

GEARUOX

PROPELLER
SHAFT
Id
DIFFERENTIAL

REAR
AXLE
nd
REAR
SUSPENSION

FRONT
SUSPENSION

STEERING

BRAKING
SYSTEM

ELECTRICAL

EQUIP
JENT

WIRING
JAGRA
IS

TROUBLE
SHOOTING

TIGHTENING

TORQUES

SERIES
C
30
MODEL
SUPPLEMENT

AUTOSERVlCE
DATA
CHART

PART
NA
ES
nd
ALTERNATIVES

CONVERSION

TABLES
S

15

2S

33

43

51

62

7S

83

91

9S

lOB

liB

I2S

129

51

End
of
manuir

IntroductIon

OUf
intention
in

writing
this
Manual
is
to

provide
the

reader
with

all
the
data
and
in

formation

required
to
maintain
and

repair
the
vehicle
However
it
must
be
realised
that

special
equipment
and
skills
arc

required
in
some
caseS
to

carry
out
the

work
detailed

in
the
text
and
we

do
not

recommend
that
such
work
be

attempted
unless
the
reader

possesses
the

necessary
skill

and

equipment
It
would
be
better
to

have
an

AUTHQRISED

DEALER
to

carry
out
the

work

using
the

special
tools
and

equipment
available
to

his
trained
staff
He
will
also
be
in

possession
of
the

genuine
spare
parts
which
may
be

needed
for

replacement

The
information
in
the
Manual
has
been
checked

against
that
provided
by
the
vehicle

manufacturer
and
any

peculiarities
have
been
mentioned
if

they
depart
rom
usual

work

shop
practice

A
fault

finding
and
trouble

shooting
chart
has
been
inserted
at

the
end
of
the
Manual
to

enable
the
reader
to

pin
point
faults
and
so
save

time
As
it
is

impossible
to
include

every

malfunction

only
the
more
usual
ones
have
been
included

A

composite
conversion
table
has
also
been
included
at

the
end
of
the
manual
and
we

would
recommend
that
wherever

possible
for

greater
accuracy
the
metric
system
units

are
used

Brevity
and

simplicity
have
been
our
aim
in

compiling
this
Manual

relying
on

the
number

ous
illustrations
and
clear
text

to
inform
and
instruct
the
reader
At
the

request
of
the

many
users
of
our
Manuals
we
have
slanted
the
book
towards

repair
and
overhaul
rather

than
maintenance

Although
every
care
has
been

taken
to
ensure

that
the
information
and
data
are

correct

WE
CANNOT
ACCEPT

ANY
LIABILITY
FOR
INACCURACIES
OR
OMISSIONS

OR
FOR
DAMAGE
OR
MALFUNCTIONS
ARISING
FROM
THE
USE
OF
THIS
BOOK

NO
MATTER
HOW
CAUSED

I

3

Page 16 of 171


reading
Slacken
one
of
the

cap
bolts
and
check
the
clearance

between
the

cap
and

cylinder
block
with
a
feeler

gauge
See

Fig
A
29

The

bearing
crush

nip
should
be
between
0
0
03mm

0
0
0012
in
if
this
is
not

the
case

then
the

bearing
must

be

replaced

beck
the

connecting
rod

bearings
in
a
similar
manner

after

tightening
the

caps
to
the

specified

torque
readings
The

bearing
clearance
should
be
between
0
15
0
045
mm
0
0006

0
0018
in

CAMSIIAFf
AND
SPROCKET

Inspect
the

camshaftjoumals
for

signs
of
wear
or

damage

and
check
the
camshaft
for
run
out

using
a
dial

gauge
in
a

similar
manner
to
that

previously
described
for
the
crankshaft

The

bending
limit
of
0
02
mm
0
0007
in
must
not
be

exceeded

Install
the
camshaft

sprocket
mount

the

assembly
in
V

blocks
as
shown

in
Fig
A
30
and
check
that
the
run
out
of

the

sprocket
does
not

exceed
0
1
mOl
0
04331
in
O1eck
the

timing
chain
and

sprocket
to
ensure
that
the
chain
is
not

stretched
or

damaged
or
the
teeth
of
the

sprocket
damaged
or

distorted
A

timing
chain
which
has
become
stretched
will

affect
the
valve

timing
and
be

noisy
in

operation
Check
the

chain
tensioner
and
chain

guides
for
wear
and

damage
replacing

the

parts
if

necessary

Replace
the

sprocket
if
the
run
out
is
exceeded
or
if
the

teeth
of

the

sprocket
are
worn
or

damaged
in

any
way

The
camshaft
end

play
should
be
within
0
08
0
38
mm

0
0031
O
oI50
in
If
the
clearance
limit
of
0
1
mm

0
0039
in
is
exceeded
it
will
be

necessary
to

replace
the
cam

shaft

locating
plate
See

Fig
A
3l

FLYWHEEL

Inspecting

Ensure
that
the
clutch
disc
contact
face
of

the
flywheel
is

not
worn
or

damaged
The
run
out
of
the

flywheel
contact
face

should
not
exceed
0
2
mOl
0
008
in
when
measured
with
a

dial

gauge

The

flywheel
ring
gear
can
be

replaced
if
the
teeth
are

damaged
or
worn
This

operation
will
entail

splitting
the

ring

gear
to
remove
it
A
hacksaw
should
be
used
to
cut
between
the

teeth
followed

by
splitting
with
a
cold
chisel

When

replacing
the

ring

gear
it
must
be
heated
to

a

temperature
of

approximately
1800
2000
F
before

fitting

and
then
allowed
to

cool

slowly

ENGINE

Assembling

Before

starting
to

assemble
the

engine
make
sure
that
all

components
are

perfectly
clean
It
is

always
advisable
to

pay

particular
attention
to
the

following
points
when

assembling

an

engine
Keep
the
work
bench
and
tools
clean
and
make
sure

that
the
tools
are
to
hand
Ensure
that
all

engine
oil

ways
are

clear
of

foreign
matter
fit
new

gaskets
and
oil
seals

throughout

All

sliding

parts
such
as

bearing
shells
must
be
smeared
with

engine
oil
before

installing

B
Ensure
that
the

specified
tightening

torque
readings
are

strictly
followed

A
mbling
the

cylinder
Head

To
install
the
valves
and
valve

springs
place
the
valve

spring
seats
into

position
and
fit

the
valve

guides
and
oil

lip

seals

Assemble
in
the
following
order
valve

springs
spring

retainers
valve
collets
and
valve
rocker

guides

Use
the

special
compressor
ST
12070000
as

shown
in

Fig
A
32
to

compress
the
valve
springs

Piston
and

connecting
rods

The

piston
piston
pins
and

connectiJ1
rods
must
be

assembled

in
accordance
with
the

cylinder
numbers

The
gudgeon
pin
is

press
fitted
to
the

connecting
rod
and

requires
a

fitting
force
from
0
5
to

1
5
tons
This

operation

will

require
the
use
of
the

special
tool
ST
1303000
as
shown
in

Fig
A
33

Apply
engine
oil
to
the
gudgeon

pin
and

connecting

rod
before

fitting

It
should
be
noted
that
the
oil

jet
of
the

connecting
rod

big

end
must
face

towards
the

right
hand
side
of
the

cylinder
block

See

Fig
A
34

Fit
the

piston
rings
the
oil
control

ring
in
the
bottom

groove
followed

by
the
centre
and

top
compression
rings
which

must

be
installed
with
the
marks

facing
upwards

Install
the

connecting
rod
bearings
and

caps
making
sure

that
the

markings
coincide
Ensure
that
the
backs
of

the
bearing

shells
are

perfectly
clean
otherwise

they
will
be
damaged
when

tightened

Assembling
the

engine

Fit
the
baffle

plate
and

cylinder
block
net
Install
the

crankcase
halves
of
the
main

bearing
shells
the

flanged
shell

is
fitted
to

the
centre

bearing
Smear
the
bearing
surfaces
with

engine
oil
and

carefully
lower
the
crankshaft
into

position

Install
the
main

bearing

caps
with
their
shells

making
sure

that
the
arrow
on
the

caps
faces
to

the
front
of

the

engine

Rotate
the
crankshaft
to
settle
the

caps
and

tighten
the

bearing

cap
bolts

gradually
in
two
or
three

separate
stages
Work
out

wards
from
the
centre

bearing
and
finally
tighten
to
the

specified

torque
reading
of
4
5
5
5

kgm
32
40
Ib
ft

in
the

sequence
shown
in

Fig
A
35
Ensure
that
the
crankshaft
rotates

freely
after

finally
tightening
the

cap
bolts
Check
the
crankshaft

end
float
which
should
be
between
0
05
0
18
mm
0
002

0
0071
in
see

Fig
A
36
Smear

the
side
oil
seals
with
sealant

and
fit
them
into
the
rear
main

bearing
cap
Install
the
rear
oil

seal

using
a
suitable
drift

and

grease
the
lip
of
the
seal

Place
the

flywheel
in

position
and
install
the
lock
washers

and

retaining
baits
Tighten
the
bolts

evenly
to
a

torque

reading
of
14
16

kgm
101
106Ib
ft

Rotate
the

engine
by
a

quarter
turn
and
install
the

piston

15

Page 18 of 171


h
W

and

connecting
rod
assemblies
Use
a

piston
ring

compressor
to

install
the

pistons
through
the

top
of
the

cylbder
bore
Make

sure
that
the

pistons
and

rings
and
the
cylinder
bores
are

lubricated
with
clean

engine
oil
The

pistons
should
be

arranged

so
that
the
F

mark
faces
to

the
front
and
with
the

piston

ring

gaps
positioned
at
1800
to
each
other
Each
piston
must

be
refitted

into
its

original
bore

NOTE

Single
inlet
valve

springs
are
used
on

the
1400
cc

engine
double

valve
springs
are
used
on
the
1600cc

and
1800
cc

engines

Screw
the
valve
rocker

pivots
with
the
locknuts
into
the

pivot
bushing
Set
the
camshaft

locating
plate
and
install
the

camshaft
in
the
cylinder
head
with
the

groove
in
the

locating

plate
directed
to

the
front
of
the

engine
Install
the
camshaft

sprocket
and
tighten
it

together
with
the
fuel

pump
earn
to
a

torque
reading
of
12
16

kgm
86
116
IbJt
a
eck
that
the

camshaft
end
play
is
within

the
specified
limits
Install
the

rocker
arms

using
a
screwdriver
to

press
down
the
valve

springs

and
fit
the
valve
rocker

springs

Gean
the

joint
faces
of
the

cylinder
block
and
head

thoroughly
before

installing
the
cylinder
head
Turn
the
crank

shaft
until
the
No
1

piston
is

at
T
D
C
on
its

compression
stroke

and
make
sure
that
the
camshaft

sprocket
notch
and
the

oblong

groove
in
the
locating
plate
are

correctly
positioned
Care

should
be
taken
to
ensure
that
the
valves
are

clear
from
the

heads
of
the

pistons
The
crankshaft
and
camshaft
must
not
be

rotated

separately
or
the
valves
will
strike
the
heads
of
the

pistons
Temporarily
tighten
the
two

cylinder
head
bolts
1
and

2
in

Fig
A
37
to
a

torque
reading
of
2

kgm
14
5
lb
ft

Fit
the
crankshaft

sprocket
and
distributor
drive

gear
and

install
the
oil
thrower
Ensure
that
the

mating
marks
on
the

crankshaft

sprocket
face
towards
the
front
Install
the

timing

chain

making
sure
that
the
crankshaft
and
camshaft

keys
are

XJinting
upwards
The
marks
on
the

timing
chain
must
be

aligned
with
the
marks
on
the

right
hand
side
of
the
crankshaft

and
camshaft

sprockets
It
should
be
noted
that
three
location

holes
are

provided
in
the
camshaft

sprocket
See

Fig
A
38
The

camshaft

sprocket
being
set
to
the
No
2
location
hole

by
the

manufacturers
A
stretched
chain
will
however
affect
the

valve

timing
and
if
this
occurs
it
will
be

necessary
to
set
the
camshaft

to
the
No
3
location
hole
in
the
camshaft

sprocket
The
chain

can

be
checked

by
turning
the

engine
until
the

No
1
piston
is

at
T
D
C
on
its

compression
stroke
In
this

position
adjustment

will
be

required
if
the
location
notch
on

the
camshaft

sprocket

is
to
the
left
of
the

groove
on
the
camshaft

locating
plate
as

shown
in
the
illustration
The
correction
is
made

by
setting
the

camshaft
on

the
No
3
location
hole
in
the
camshaft

sprocket

the
No
3
notch
should
then
be
to
the

right
of
the

groove
and

the
valve

timing
will
have
to

be
set

using
the
No
3

timing
mark

Install
the
chain

guide
and
chain
tensioner
when
the
chain

is
located

correctly
There
should
be
no

protrusion
of
the
chain

tensioner

spindle
See

Fig
A
39
A
new
tensioner
must
be

fitted
if
the

spindle

protrudes

Press
a
new
oil
seal
into
the

timing
cover
and
fit
the
cover

into

position
using
a
new

gasket
Apply
sealing
compound
to

the
front
of
the

cylinder
block
and
to
the

gasket
and
to
the

top

of

the

timing
cover

Ensure
that
the
difference
in

height
between

the

top
of
the

timing
cover
and
the

upper
face
of
the

cylinder

block
does
not

exceed
0
15
mm
0
006
in
Two
sizes
of

timing

cover
bolts
are

used
the
size
M8
0
315
in
must

be
tightened

to

a

torque
reading
of
1
0
1
6

kgm
7
2
17
Ib
ft
and
the
size
M6
0
236
in
to
a

torque
reading
of
0
4
0
8

kgm

2
9
81b
ft

Install
the
crankshaft

pulley
and
water

pump
tighten
the

pulley
nut
to
a

torque
reading
of

12
16

kgm
86
8
115
7Ib
ft

then
set

the
No
1

piston
at
T
D
C
on
its

compression
stroke

Finally
tighten
the

cylinder
head
bolts
to
the

specified

torque
reading
in
accordance
with
the

tightening
sequence
shown

in

Fig
A
3
The
bolts
should
be

tightened
in
three

stages
as

follows

First

stage

Second
stage

Third

stage
4

kgm
28
9
lbJt

6

kgm
43
4
IbJ
t

6
5
85

kgm
47
0
61
5lb
ft

The

cylinder
head
bolts
should
be

retightened
if

necessary

after
the

engine
has
been
run
for
several
minutes

Install
the
oil

pump
and
distributor
drive

spindle
into
the

front
cover
as
described
under

Engine
Lubrication

System

r
rf

i

Install
the
fuel

pump
water
inlet
elbow
and
front

engine

slinger
Fit
the
oil
strainer
into
position
coat
the
oil

sump

gasket
with
sealing
compound
and
fit
the

gasket
and
oil
sump

to
the

cylinder
block

Tighten
the
oil

sump
bolts
in
a

diagonal

pattern
to

a

torque
reading
of
0
6
0
9

kgm
4
3
6
5
IbJt

Adjust
the
valve
clearances
to
the

specified
cold

engine

ftgures
following
the

procedures
described
under
the

appropriate

heading
Final

adjustments
will

be
carried
out
after
the

engine

has
been
assembled

completely
and
warmed

up
to

its
nonnal

temperature

Install
the
rear

engine
slinger
exhaust
manifold
and
inlet

manifold
Refit

the
distributor
and
carburettor
assemblies
as

described
in
their
relevant
sections

Install
the
fuel

pipes
and

vacuum
hose

making
sure
that

they
are

securely
cl

ped
Refit

the
thermostat

housing
thermostat
and
water
outlet

together

with
the

gasket
Bond
the
rocker
cover

gasket
to
the
rocker

cover

using
sealant
and
fit
the
rocker
cover
to
the

cylinder

head

Install
the
spark
plugs
and
connect
the

high
tension
leads

Fit
the
left
hand

engine
mounting
bracket
and
install
the
clutch

assembly
using
the

alignment
tool
ST20600000
to
fit
the
clutch

to
the

flywheel
as
described
in
the
section
ClUfCR

Lift

the
engine
away
from
the

mounting
stand
and
into

the

engine

compartment
Install
the
alternator
bracket
adjusting

bar
alternator
fan

pulley
fan
and
fan
belt
in
the
order

given

Check
the
tension
of
the
fan
belt

by
depressing
the
belt
at
a

point
midw

y
between
the

pulleys
The

tension
is
correct
if

the
belt
is
deflected

by
8
12
mm
0
3
0
4
in
under
thumb

pressure

Fit
the

right
hand
engine
mounting
bracket
the
oil
filter

oil

pressure
switch
oil
level

gauge
and
water

drain
plug
Take

care
not
to

overtighten
the
oil
nIter
or

leakage
will
occur

Fill
the

engine
and

gearbox
to
the
correct
levels
with

recommended
lubricant

and
refill
the

cooling
system
Adjust

the

ignition
timing
and
carburettor
as
described
in
the

appro

priate
sections

17

Page 26 of 171


CoolIng
System

GENERAL

FAN
BELT
TENSION

FLUSHING
AND
DRAINING
THE
SYSTEM

THERMOSTAT

Testing

RADlA
TOR
Removal

GENERAL

The

cooling
system
is

pressurised
and

incorporates
a

water

pump
corrugated
fin

type
radiator
fan
and
a

pellet
type

thermostat

The
water

pump
is
of
the
centrifugal
type
and
has
an

aluminium
die
cast

body
The
volute
chamber
is
built
into

the

front
cover

assembly
and
a

high
pressure
sealing
mechanism

prevents
water

leakage
and
noise

The
fan

pulley
is
driven

by
the
V
belt
from
a

pulley
on

the
crankshaft

he

pellct
type
thermostat
enables
the

engine
to
warm

up

rapidlY
and
also

regulates
the

temperature
of
the
coolant
When

the
wax

pellet
in
the
thermostat
is
heated
it

expands
and
exerts

pressure
against
a
rubber

diaphragm
causing
the
valve
to

open

and
allow
the
coolant
to
flow
from
the

cylinder
head
back
to

the
radiator

As
the

pellet
is

cooled
itcontractsand
allows
the

spring
to

close
the
valve

thereby
preventing
coolant
from

leaving
the

cylinder
head

The
rad
ator
is
of
the
down

flow
type
with
an

expansion

tank
The
relIef
valve
in
the
radiator
filler

cap
controls
the

pressure
at

approximately
0
9

kg
sq
cm

l3Ib
sq
in
Always

try
to
avoid

removing
the
filler

cap
when
the

engine
is
hot
as

coolant

may
spray
out
and
cause

scalding

If
the

cap
must
be
removed
in
these
circumstances
use
a

lar
e

pic
c
of
cloth
to
hold
the

cap
and
turn

the
cap
sli

htlY

Walt
until
all

pressure
has

been
released
before

lifting
off
the

cap

F
AN
BELT
TENSION

The
fan
belt
drives
the
water

pump
and
alternator
as

well

as

the
fan
and
its
correct

adjustment
is
most

essential
A
loose

fan

belt
will

sl
ip
and

Y
e
r

and
most

probably
cause

overheating

alternatively
If
the
belt
IS
too

tight
the
pump
and
alternator

bearings
will
be
overloaded

The
belt
is

correctly
tensioned
if
it
can
be
depressed

by

approximately
10
mm

1
2
in
at
a

point
midway
between
the

fan
and
alternator
pulleys
See

Fig
R2

If

adjustment
is
neces

ary
slacken
the
alternator

mounting

and

adjustment
bolts
and

pivot
the
alternator

away
from
the

engine
to

tighten
the
belt
to

towards
the

engine
if

the
belt

is

to
be
slackened

NOTE

Always
apply
leverage
to
the
drive
end

housing
when

pivoting
the
alternator
and
never
to
the
diode
end

housing
or
the
alternator
will
be

damaged
Retighten
the
alternator
bolts
and
make
SUfe

that
the
belt

is

correctly
tensioned

FLUSHING
AND
DRAINING
THE
SYSTEM

The
radiator
and
water

passages
should
be
flushed
out

periodically
to
remove
the
accumulated
scale
or
sediment

Reverse

flushing
equipment
should
be
used
to

carry
out
a

completely
thorough
flushing
operation
but
the
owner
drivef

not

possessing
this

type
of

equipment
can
flush
out
the

system

in

the
following
manner

Drain
the
system
by
removing
the
radiator
filler

cap
and

opening
the
radiator
and

cylinder
block
drain

taps
Close
the

taps
again
and
refill
the
radiator
Run

the
engine
for
a
ShOft

period
and
then
rc
open

the
drain
taps
Continue
this

sequence

until
the
water

flowing
from
the

taps
is
clean
then
close
the

taps

and
refill
the
radiator

An
anti
freeze
mixture
should

always
be
used
in
Winter

time
The
Niss3n

long
life
coolant
L
L
c
is
an

ethylene
glycol

solution

containing
a
corrosion

preventative
which
can
remain

in
the
vehicle

throughout
the
year
but
must
not

be
mixed
with

other

products

It
is
advisable
to
check
the
radiator
and
heater
hoses
when

filling
with
anti
freeze
and
renew

them
if

signs
of
deterioration

are

apparent

WATER
PUMP

Replacement

The
water
pump
must
not
be
dismantled
and
should
be

renewed
if
it
becomes

faulty
The

pump
can
be
removed
in
the

following
manner

Drain
the

cooling
system

2
Take
the
fan
belt
off

the
pulley

3
Remove
the
fan
and

pulley

4
Remove

the
retaining
nuts
and
withdraw
the
water

pump

See

Fig
B
3

lnstallation
of

the

pump
is
a

reversal
of
the
removal

procedures

rERMOST
ATTesting

The
thermostat
is
located
in
the
water
outlet

passage

See

Fig
B
4
To
remove
the
unit
drain
the
cooling

system

remove
the
radiator
hose
and
the
water
outlet
elbow
Take
out

the
thermostat

25

Page 46 of 171


The
coil

spring
clutch

pressure
plate
can

be

lapped
with
a

surface

grinder
to
remove

dents
or

scratches

only
the
minimum

amount
of
metal
should
be
removed
to
restore
the
surface

Check
the

plate
for
distortion

by
placing
it

on
a
surface

plate
with

the
friction
face
towards
the
surface

plate
Press

the
pressure

plate
down
and
insert
a
feeler

gauge
of
1
0mm

0
0039
in

between
the

pressure
plate
and
surface

plate
If
it

is

possible
to
insert
the
feeler

gauge
then
the

pressure
plate
must

be

repaired
or

replaced
The

plate
can
be
skimmed
but
the

maximum
amount
of
metal
that
can
be
removed
is
1
0mm

0
0039in

CLUTCH
SPRING

Diaphragm
clutch

With
the

diaphragm
spring
assembled
to
the

pressure
plate

inspect
the

spring
height
and
load
in
the

following
manner

Place
distance

pieces
of
7
8
mm

0
307
in
on
the
base

plate
as

shown
in

Fig
E
3
and
bolt
down
the
clutch
cover

using
the

special
bolts

provided
with
the
kit
Meas
Jre
the

height
B
in

Fig
E
5

at
a
diameter
of
44mm
1

732
in
The
release

fingers

should
not

exceed
a

height
of
43
45
mm
1
693
1
772
in

from
the
base

plate
Replace
the

spring
if

the

height
is
in
excess

of
the

figures

quoted

Press
the
dutch
down
as

shown
in
Fig
E
6
to
a

depth
of

7
8mm
0
307
in
or
until
the
clutch
driven

plate

upper
surface

lines

up
with
the
clutch
cover

mounting
face
If

the
load

applied

is
less
than
350

kg
770
lbs
it
will
be

necessary
to
renew
the

diaphragm
spring
Do
not

press
the
clutch
disc
down

by
more

than
9mm
0
35
in
or
the

diaphragm
spring
may
be
broken

CLUTCH
SPRINGS
Coil

spring
clutch

The
clutch

springs
must
be

replaced
as
a

set
if

any
of
the

springs
are
found
to
be
defective
Specifications
for
the

springs

are

given
in
Technical
Data
at
the
end
of
this
section

Generally

a

spring
may
be
considered
faulty
if
when
assembled
the
load
is

reduced

by
more
than
15
or
if
the
free

length
has
altered

by

more
than
1
5mm
0
0590
in
or
if
the
deflection
B
to
A

in

Fig
E

7
exceeds
5mm

per
100mm
0
2
in

per
3
94
in

Release

Bearing

The
release

bearing
should
be
renewed
if

excessively
worn

or
if

roughness
can
be
felt
when
the

bearing
is
turned

by
hand

The

bearing
should
also
be
renewed
if
the

grease
has

leaked

away
or
if
the
clearance

between
the
clutch
cover
and
inner

diameter
of

the
sleeve
is
more
than
0
5
mm
0
0197
in

The

bearing
can
be

removed

using
a
conventional

puller

as
shown
in

Fig
E
8
Two

types
of
release

bearings
are

available

and
care
must
be
taken
when

fitting
onto

the
bearing
sleeve

The
release
bearing
should
be

pressed
into

place
on
the

diaphragm

spring
type
of
clutch
with
a
force
of
400

kg
880
lbs

applied

at
the
outer
race
as
shown

in

Fig
E
9
On
the
coil

spring
clutch

the
same

force
must

be

applied
at

the
inner
race
as
shown
in

Fig
E
IO
It
should
be

possible
to
turn
the

bearing
freely
and

smoothly
when
it
is

pressed
into

place
CLUTCH

Assembly

Coil

spring
type

Press
the

pin
into
the

eyebolt
and

through
the

lug
on

the

pressure
plate
Place
the
three
distance

pieces
on
the
surface

of
the
base
plate
of
the

special
tool
ST20050000
and

position

the

pressure
plate

pressure
springs
and
retainers

on
the

plate

Set
the

retracting
springs
on
the
cover

and
insert
the

release
levers

through
the

spring
Place

the
clutch
cover
over

the

pressure
plate
and

springs
making
sure
that
the

retracting

springs
do
not

become
dislodged
or
distorted

Compress
the

pressure
springs
by
screwing
the

special
set

bolts
into
the
holes
in

the
cover

Tighten
the
bolts

gradually

in
a

diagonal

pattern
to
avoid

distorting
the
cover
Place
the

release
levers
on

the

eye
bolts
and
screw
OR
the

securing
nuts

Place

retaining
hooks
under
the
release
levers
and
remove
the

clutch
assembly
from
the
base

plate
slackening
the
set
bolts
in

a

diagonal
pattern

COIL
SPRING
CLUTCH

Adjusting

Screw
the
centre

pillar
into
the
base

plate
and

place
the

high
finger
over
the

pillar
The
height
of
the
release
levers
must

be

adjusted
by
turning
the
eye
bolt
nuts
until
the

tops
of

the

release
levers
are

just
touching
the

tip
of
the
gauge
See
Fig
E

11
Remove
the
centre

pillar
when
the
release
levers
are

correctly
adjusted
and
screw
in
the

actuating
lever
Fig
E
12

Turn
the

actuating
mechanism
several
times
to
bed
down
the

parts
and
then
recheck
the

height
of
the
release
levers
Check

for
run
out
as
near
to
the

edge
as
possible
and

readjust
if
the

deviation
is
more

than
0
5
mrn
0
020
in

CLUTCH
InsWlation

Ensure
that
the
friction
faces
are

free
from

oil
and

grease

and
place
the
driven

plate
on
the

flywheel
The

longer
chamfered

splined
end
of
the

assembly
should
face

the

gearbox
Use
a

spare
drive
shaft
to

align
the
driven

plate
The
shaft
must

be

inserted

through
the
splined
hub
of
the
driven

plate
and
into

the

pilot
bearing
of
the

flywheel

Place
the
clutch
cover
into

position
on

the
flywheel
and

tighten
the
dutch
bolts

gradually
in
a

diagonal

pattern
to
a

torque
reading
of
1
5
2
2

kgm
11
16Ib
ft

Remove
the

dummy
shaft
and
the

restraining
hooks
from
the
release
levers

Refit
the
release

bearing
and
the
bell

housing

CLUTCH
PEDAL
Removal
and
Installation

Remove
the
clevis

pin
from
the
end
of
the
master

cylinder
pushrod
and
disconnect
the
pushrod
Remove
the

return

spring
Remove
the

pushrod
after

slackening
the

pushrod

adjuster
Coil

spring
clutch

only
Remove
the

pedal
lever

securing
bolt
slacken
the
handbrake
bracket
bolts
and
lift
out

the

pedal

Clean
all

parts
thoroughly
and
check
them
for
wear
or

damage
paying
particular
attention
to
the
rubber

parts
return

spring
and

pedal
lever
bush

Installation
of
the
clutch

pedal
is
a
reversal
of

the

removal

procedures

45

Page 52 of 171


Gearbox

GEARBOX
Removal

GEARBOX

Dismantling

GEARBOX
Inspection
and
Overhaul

GEARBOX

Assembling

THREE
SPEED
GEARBOX
GEARCHANGE
CONTROL
Removal
and

Adjusting

AUTOMATIC
TRANSMISSION

Gearchange
control

linkage

DESCRIPTION

Three

types
of
transmission
are
available
for
the
Datsun

models
covered

by
this
manual
Either
a
three

speed
gearbox

a
four

speed
gearbox
or
three

speed
automatic
transmission

can
be
fitted

The

three
and
four

speed
gearboxes
are

equipped
with

nchromesh
on
all
forward

gears
with
the
three

speed
gearbox

operated
by
a

steering
column

gearchange
system
and
the
four

speed
gearbox
by
a
floor
mounted

gear
lever

Two

types
of

synchromesh
are
used
in
the
four

speed

gearboxes
Either

Borg
Warner
or
Servo

types
may
be
fitted

The

gearboxes
differ

only
in
the

synchromesh
devices

whereby

the
baulk

rings
synchronize
the

coupling
sleeve
with
the
main

shaft

gear
on

the
Warner

gearbox
This
action
is

accomplished

by
a

synchrcrring
on
the
servo

gearbox

THREE
SPEED
GEARBOX
Removal

I
Jack

up
the
vehicle
and

support
it
on
stands

2
Disconnect
the
hand
brake
cable
at
the

equalizer
bracket

Slacken
the
two
exhaust

pipe
centre

clamps
and
turn
the

centre
section
of
the
exhaust
assembly
to
the
left
as
shown

in

Fig
F
2

3
Disconnect
the

propeller
shaft
from
the
rear
axle
drive

flange
by
removing
the
four

securing
bolts
Seal
off

the

gearbox
extension

housing
to

prevent
the
loss
of
oil
and

withdraw
the
shaft
to
the
rear

4
Disconnect
the

speedometer
drive
cable
from

the
adaptor

in
the

gearbox
extension

housing
Fig
F3

S
Disconnect
the
lower
shift
rods
from
the
shift
levers

Fig
F
4
and
remove
the
cross
shaft

assembly
from
the

gearbox
casing
Remove
the
clutch
slave

cylinder
from
the

clutch

housing
Fig
F
5

6

Support
the

engine
with

ajack
positioned
underneath
the

oil

sump
making
sure

that
the

jack
does
not
foul
the
drain

plug
A
block
of
wood
should
be

placed
between
the

sump

and

jack
to

avoid

damaging
the

sump

7
Remove
the
bolts

securing
the
rear

engine
mounting
to

the
crossmember
Position

ajack
under
the

gearbox
and

remove
the
bolts

attaching
the
crossmember
to
the

body

Lower
the

jack
under
the

engine
so
that
the

engine
is

tilted
to
the
rear
Remove
the
starter

motor
and
the
bolts

securing
the

clutch

housing
to
the

engine
Lower
the

jack

slowly
and
withdraw
the

gearbox
towards
the
rear
of
the

vehicle
THREE
SPEED
GEARBOX

Dismantling

Drain
the

gearbox
oil
Remove
the
dust
cover
release

the
retainer

spring
and
remove

the
withdrawal
lever

complete

with
release

bearing
from
the
clutch

housing
See
section

CLUTCH

Remove
the

gearbox
bottom
cover
the

speedometer
drive

pinion
assembly
and
the
rear
extension

housing
Take
out

the

cross
shaft

retaining
rings
and
unscrew
the
nuts

securing
the

operating
lever
lock

pins
Use
a
hammer
and

punch
to
drive

out
the

pins
and
withdraw
both
cross
shafts

Fig
F
6

Remove
the
fr
mt
cover

and
withdraw
the
counter
shaft

Lift
out

the
countersbaft

gear
cluster

together
with
the
needle

roller

bearings
and

spacers
Fig
F
7
Remove
the
reverse
idler

gear
shaft
lock
bolt
and
remove
the
shaft
and
the
idler

gear

Fig
F
B
Drive
out
the

pins
securing
the
selector
forks
to
the

selector
rods

Unscrew
the
interlock

plug
and
remove
the
detent
ball

and

spring
Fig
F
9
Remove
the
first
reverse

speed
and
second

third

speed
selector
rods
and
lift
out

the
selector
forks

Withdraw
the
main
shaft
assembly
and
the
drive
shaft

assembly
from
the

gearbox
See

Fig
F
1O
and
F
11

To
dismantle
the
mainshaft
release
the

circlip
from
the

front
of
the
mainshaft
as
shown
in

Fig
F
12
and
remove
the

second
and
third

speed
synchronizer
hub
and
second

speed

gearwheel
Fig
F
13
Remove
the

circlip
securing
the
speedo

meter
drive

gear
and
withdraw
the

gear
together
with
the
ball

and

spacer
Fig
F
14
Remove
the
mainshaft

bearing
using
a

press
Hold
the
rnainshaft
reverse

gear
and

tap
the
shaft
on
a

piece
of
wood
to
release
the
reverse

gear
assembly
together

with
the
first

speed
gearwheel

GEARBOX

Inspection
and
Overhaul

Oean
all

parts
thoroughly
and
examine
the

gearbox
case

and
extension
housing
for
cracks

If
the

joint
faces
are
burred
or

pitted
it

may
be

necessary

to

replace
the
units
if

repair
cannot
be
carried
out
satisfactorily

Remove
any
adhesive
which
remains
on

the
faces

The
rear
extension

housing
bush
should
be
renewed
if

worn

unevenly
Clean
the

bearings
and

dry
with
compressed
air

taking
care
that
the
bearings
do
not

spin
Turn
the
ball

bearings

to
make
sure

that
they
run

smoothly
and
without
play
Replace

the
needle

bearings
if
worn
or

damaged
in
any

way

It
is
advisable
to
renew

the
needle
roller

bearings
after

they

have
been
installed
for
a
considerable

period
as
it
is
difficult

51

Page 66 of 171


Check
the
run
out
at
the

ceac
of
the
crownwheel
if
the
back

lash
or

tooth
contact

pattern
is
incorrect
The
run
out
should

not
exceed
0
08mm
0
003
in
Measure
the

turning
torque

of

the
drive

pinion
which
should
be
within
7

IOkg
cm
6
9Ib
in

Shims
and

adjusting
washers
must
be

changed
if
the
tooth

contact

pattern
and
backlash
is
incorrect
the
necessary
details

for
these

operations
can

be
found
towacds
the
end
of
this

section
under
the

heading
TOOTH
CONTACT
PATTERN

To
dismantle
the
differential
remove

the

flange
clamp
bolt

and
extract

the
side

flange
as
shown
in

Fig
GA

using
the

special
stand
ST
33730000
and

sliding
hammec
ST
36230000

Remove
the

bearing

caps
with
a
suitable

puller
as
shown

in

Fig
G
5
Remove
the
left
hand

cap
first
followed

by
the

right
hand

cap
The

caps
should

be
marked

to
ensure
that

they

are

refitted
in
their

original
positions
Withdraw
the
differential

cage
from

the
carrier

Fig
G
6

Slacken
the
drive

pinion
and
hold
the

flange
with
a

suitable
wrench
as

shown
in
Fig
G
7
Withdraw

the
flange
with

a
standard

puller
Press
the
drive

pinion
out
of
the
differential

carrier

together
with
the
rear

bearing
inner
races
the

spacers

and
the
shims
Place
a

press
plate
between

the
drive

pinion
head

and
rear

bearing
and

press
out
the

pinion
shaft

The
inner
races

need
not
be
removed
if
the
tooth
contact

pattern
is
correct
and
the
crownwheel
drive

pinion
carrier

rear

bearing
and
shims
etc
are
to

be
re
used
The
front
and

rear
outer
races
of
the

pinion
bearings
can
be
removed
with
the

special
tool
ST
30610000
or
with
a

suitable
drift

To
dismantle
the
differential

cage
remove

the

right
hand

bearing
cone
as
shown
in

Fig
G
8
The

special
puller
ST
3306

0000
and

adaptor
ST
33052000
should
be
used
for

this

pur

pose

taking
care
not
to

damage
the

edge
of
the

bearing
innec

race
Flatten
the

lock

straps
slacken
the

crownwheel
bolts
in

a

diagonal
pattern
and
remove

the
crownwheeL

Remove
the
left
hand

bearing
cone
in
a
similar

manner
to

the

right
hand

bearing
cone
Make
sure
that
the

parts
do
not

become
mixed
and
can
be
assembled
in
their

original

positions

Punch
out
the
differential
shaft
lock

pin
from
the
crownwheel

side

using
a

suitable
drift
Great
care
must

be
taken
when

carrying
out
this

operation
as
the

pin
is
caulked
into
the
hole

in
the
differential

cage

Remove
the
shaft
the
differential

pinion

gears
and
the
side

gears
and
thrust
washers

Separate
the
left
and

right
hand

gears

and
washers
so
that

they
can
be
reassembled
in
their

original

positions

Replacing
oil

seals
with

the
differential
installed

The
oil
seals
can

be

replaced
if
necessary
with
the
differ

ential
fitted
to
the
vehicle

Front
oil

seal

Drain
the
oil
from
the
differential

unit
and
jack
up
the

vehicle
at
the
rear
Remove
the

propeller
shaft
from
the

differential

flange
Disconnect
the
handbrake
left
hand
rear

cable
Slacken
and
remove
the
drive

pinion
nuts
whilst

holding

the
drive
flange
with
a
suitable
wrench
or

special
tool
ST

31530000
Withdraw
the
drive

flange
with
a
conventional
two
l

arm

puller
as
shown
in

Fig
G
9
Use
the
oil
seal

puller
ST

33290000
to
withdraw
the
oil
seal
from
the
retainer

Replace

the
oil
seal

using
a
suitable
drift
or

special
tool
ST
33270000

Fill
the
oil
seal

lips
with

grease
when
installing
Fit
the
oil
seal

retainer
and
replace
the
various

parts
in
reverse

order
to

the

removal

procedure

Side
oil
seal

Detach
the
drive
shaft
from
the
side
flange
of
the
differ

ential
carrier
Extract
the
side

flange
with
the
slide
hammer

ST
36230000
and

adaptor
ST
33730000
as
shown
in

Fig
G
lO

Remove
and
replace
the
oil
seal
in
a
similar
manner
to

that

previously
described
for
the
front

oil
seal

taking
care
to

apply

grease
between
the
oil
seal

lips

DIFFERENTIAL

Inspection

Clean
the

parts
thoroughly
and

inspect
them
for

signs
of

wear
or

damage

Check
the
gear
teeth
for
scores
cracks
or

excessive
wear

Check
the
tooth
contact

pattern
of
the
crownwheel
and

pinion
for
correct

meshing
depth
The
crownwheel
and

pinion
are

supplied
as
a
set

and
should
either

part
be

damaged
it
will
be

necessary
to
renew
the

complete
set

2
Check
the

pinion
shaft
and

gear
mating
faces
for
scores
or

wear

Inspect
the
inner

faces
of
the
side

gears
and
their

seating
faces
on

the
differential

cage

3

Any
small
defects
on
the
faces
of
the
thrust
washers
can

be
corrected

using
emery
cloth
The
thrust
washers
must

be

replaced
however
if

the
backlash
between
the
side

gear

and

pinion
exceeds
0
2mm
0
008
in
and
the
clearance

between
the
side

gear
and
thrust
washer
exceeds
O
3mm

0
012
in
Three
sizes
of
washers
are
available
and
the

thicknesses
are
detailed
in
Technical
Data
at

the
end
of

this
section

4
Measure
the
run
out
of
the
crownwheel
at
the
rear
with
a

dial

gauge
Replace
the
crownwheel
and
drive
pinion
as
a

set
if

the
run
out
exceeds
the

permissible
value
of
O
08mm

0
003
in

5
Examine
the
differential
carrier

and

cage
for
cracks
or

distortion
Renew

any
part
found
to

be
defective

It
is

advisable
to
renew
all
oil
seals

DIFFERENTIAL

Assembly
and

Adjustment

Assembly
is
a
reversal
of
the
removal

procedure
noting

the
following
points

Arrange
the
shims
and
washers
etc
in
their
correct

order

and

thoroughly
clean
the
surfaces
to

which
the
shims
washers

bearings
and

bearing
retainecs
are
to
be
installed

Differential

cage

Fit
the
differential
side

gear
and
bevel

gear
in
the

cage

using
the
correct
thrust
washers
Insert
the

pinion
shaft
so
that

the
lock

pin
hole

corresponds
with
the
hole
in
the
differential

65

Page 70 of 171


The

standard
width
of
the
side

bearings
is
20
0mm

0
7874

this
width
must
be

measured
before

attempting
to

calculate
the
thickness

of
the

adjusting
shims
Use
a

dial

gauge

and
surface

plate
to
ohtain

the
measurement
Place
a

weight
of

approximately
2

5

kg
5
5
lb
on
the

bearing
to

obtain

steady

readings

Install
the
differential

cage

assembly
in

the
carrier

Fit
the

sckcted

shims
and
O

rings
into
both

differential
side

bearing

covers

and
install
the
covers

in
the

carrier

using
the

special
tool

ST
33720000

Fig
G
16
l
Make
sure

that
the
side

bearing

outer

races
are
not

damaged

by
the

roller
Measure
the
backlash

between
the

teeth
of

the
crown
wheel

and
drive

pinion
with
a

dial

gauge
as
shown
in

Fig
G
I
Sct
the
dial

gauge
to
0
10

f
O

mm

0
004
0
008
in

I
If
the

backlash
is

less
than
the

specifIed

value
move
he
left
side

adjusting
shim
to
the

right
side
and
vice

versa

if
the
backlash

exceeds
the
specified
figure

Check

that
the
run
out
at
the
rear

of
the

crownwheel
does

not

excecd
O
OSmm
0
002

in
for

the
1800ce
model
or

O
08mm
0

003
in

for
the
1400
Check
the

drive

pinion

turning

torque
Thc

turning
torque
should
be

higher

by
I
3

kg

em

compared
with
the

turning
torque
obtained
before

fitting

the
differential

cage
in
the
carrier
The

higher
value
can

be

provided
if

necessary
by

dmnging
the

jde
cover

shims
Note

howcver

that
any
decrease
or
increase
in

the
thickncss
of
shims

wjJl

alter
tht
budlush

between
the
teeth
of
the
crownwhee1

and

pinion

Check

the
tooth
contact

pat
tern

of
the
crown
wheel
and

pinion
as

described
under
the

appropriate
heading

DIFFERENTIAL

Installation

Secure
the
differential

carrier
on
the
rear

suspension
mem

ber

using
the
four

bolts
and
washers
Fit
the
differential

mounting
member
to
thc

mounting
holes

by
pushing
it
forwards

with
a

suitable
lever

Fig
G
18

Tighten
the

nuts
to
a

torque

reading
of
8

5

kgm
61
5

Ib
ft

Tighten
the
bolts

attaching
the

gear
carrier
to
the

suspension
member
to
a

torque
reading
of

6
7

kg
36
5Ilb
ft
t

The

rcmainder
of
the
installation

operations
are
a
reversal

of

thc
removal

procedure
Fill
the
differential
with

the
correct

quantity
of
recommended
oil

DIFFERENTIAL
CARRIER

Removal
and

Dismantling

Estate
car
alld
Vanl

To

remove
the
differential

carrier
disconnect
and
remove

rhe

propeller
shaft
as

previously
described

and
remove

the
two

rear
axle

shafts
as

described
in

the
section
REAR
AXLL
With

draw

the
nuts

securing
the
differential

and
remove

the
carrier

from
the
rear
axle

Mount

the
unit
on
the

special
attachment
as
shown
in

Fig
G
19
and

carry
out
a

preliminary
check
before

dismantling

Oleck
the
tooth
contact
of
the

crownwheel

and

pinion
by

applying
lead
oxide

to
three
or
four

teeth
of
the

crownwheel

Turn
the
crown

wheel
several
times

to
obtain
an

impression
of

the

tooth
contact

pattern
Check
the
backlash

between
the
teeth

of
the
crownwheel
and

pinion
with
a

dial

gauge
Hold
the
drive

pinion
with
one

hand
and
move

the
crown
wheel

backwards
and
forwards
to

check

that
the
backlash
is
Io

ithin
thL

speL
ified
limits

Shims
and

adjusting
washers
must
bL
altered
if

the
tooth
con

tact

pattern
and
backlash

is

incorre
L
the
neL

cssary
details
for

these

operations
can
be
found
towards
the

end
of

this
section

under
the

appropriate
he
Jdjn

s
Fil1JJly
mark
the

bearing
caps

with
a
hammer

and

punch
to
ensure
correct

t1ignment
on
re

assembly

Remove
the

bearing

caps
nd
withdraw

the
differ

ntial

cage
make

a
note
of

the
left
and

right
hand

positions
so
h
Jt

the

bearing
caps
and
outer
race
can

be
re

assembled
in

their

original
positions

Withdraw

the
side

beJrings
with
the
s

cjal

puller
as

shown

in

Fig
G
20

taking
care
not
to

catch
the

edge
of
the

bearing

inner
races

Place
the

assembly
in
a
vice
and
detach

the
crownwheel

by
slackening
the

retaining
bolts
in
a

diagonal

patter
Fig
G
lf

Drive

out
th

pinion
shaft
lock

pin
from

left
to

right
using
a

suitable

punch
or

special
tool
ST
23520000

Fig
C
22

With

draw
the

pinion
shaft
and
take
out

the

pinions
side

gears
and

thrust
washers

Store
the

gears
and
thrust
washers
so
that

they

can

be
assembled
in
their

original

positions

Check
the
initial

turning
torque
of
the

drive

pinion
with

the

preload
gauge
ST
3190000

and
measure

the

height
of

the

drive

pinion
with
the

special
gauge
ST
31941000

Compare
the

figures
obtained
with
those

givcn
in

Technical
Data
at

the
end

of
this
section

Hold
the
drive

pinion
with

the

speciaJ
wrench
ST
3
J
530000

as
shown
in

Fig
C

23
and
unscrew
the

drivc

pinion
nut

then

pull
out
the
drive

pjnion
flange

Tap
the
drive

pinion
assembly
to
the
rear
with
a

plastic

mallet
and
withdraw
it

together
with

the
rear

bearing
inner
race

bearing
spacer
and
adjusting
washer

Remove

and
discard
the
oil
seal
and

withdraw
thc
front

bearing
inner
race
Drive
out
the
outer
races

of
the
front
and

rear

bearings
with
a
suitable

drift

Fig
G
25

The
drive

pinion
rear

bearing
inncr
race
can
be
removed

with
the

special
tool
ST
300310000
as

shown
in

Fig
G
24

DIFFE
l
ENTlAL

Inspection

Clean
all

components
thoroughly
and

examine
for

signs

of
wear
or

damage

Check
the
teeth
of
the

crownwhcel

and

pinion
for

scoring

and

hipping
Ii
should
be

noted
that
the
crownwhecl

and

pinion
are

supplied
as
a

matched
set
and
if
either

part
is

damaged

the

complete
set
must
be

replaced

Examine
the

inner
faces
of
the
side

gears
and
seats
on
the

differential
case

Inspect
the

bearing
races
and

rollers
and

replace

them
if

necessary

Small
defects

on
the
faces
of

the
thrust

washers
can
be

corrected

using
emery
cloth
however
if

the
clearance
between

side

gear
and

thrust
washer

exceeds
0
1
O
2mm
0
0039

0
0079

in
it
ill
be

necessary
to

replace
the
washer

Various

sizes
of
washers
are
available

and
the
thicknesses
arc
detailed

under
the

heading
DIFFERENTIA
L

GEAR
CAGE

Assembling

69

Page 92 of 171


SteerIng

DEsn
IPTION

S
i
EERlNG
MaintenaDce

STEERING
WHEEL
AND
STEERING
GEAR

Removal
and
Installation

STEERING
GEAR

Dismantling

STEERING
GEAR

Inspection
and
Adjustment

DESCRIPTION

A
worm
and

recirculating
ball

type
steering
system
is

fitted
to

the
vehicle
the

component
parts
of
the

steering
gear

are
shown
in

Fig
K
I

The

steering
linkage
consists
of
the
centre
tie
rod

pitman

ann
idler
arm
outer
tie
rods
and
the
knuckle
arms
as
shown

in

Fig
K
2

A

collapsible
steering
column
assembly
can
be
fitted
to
the

vehicle
to

protect
the
driver
from

injury
in
a
head
on

collision

Details
of
this

type
of

assembly
are

given
under
the

appropriate

heading

STEERING
Maintenance

O1eck
the
oil

level
in
the

steering
box
every
10
000
km

6
000
miles
and

top
up
with
recommended
lubricant
if

necessary

Grease
the

steering
linkage
every
50
000
km
30
OOO

miles
It
will
be

necessary
to

replace
the

plug
in
the
tie
rod
ball

joints
with
a

grease
nipple
for
this

operation
as

previously

described
in
the
section
FRONT
SUSPENSION

Use
a

grease
gun
to

completely
replace
the
old

grease
with

new

grease
making
SUfe
that
the

grease
is
not
forced
from
under

the
cover

clamp
if
a

high

pressure
gun
is
used

STEERING
WHEEL
AND
STEERING
GEAR
Removal

1
Take
out
the

retaining
bolts
and
remove
the
horn
ring

remove
the

steering
wheel
nut

Fig
K
3
and

pull
off

the

steering
wheel
The
special
tool
ST
27180000
should
be

used
if
available

2
Disconnect
the

battery
leads
remove

the
steering
column

shell
covers

and
the
turn

signal
and

lighting
switch
assembly

3
On
vehicles
fitted
with

steering
column

gear
change

assemblies
the

gear
lever
must
be
removed
from
the

control
rod

assembly
Unscrew
the
retaining
boltg
and

disconnect
the

gear
lever

4
Remove
the
bolts
from
the

steering
column

upper
clamp

Fig
K
4
and
the
bolts

holding
the
lower

plate
Fig
K
5

5
If
the
vehicle
is
fitted
with

steering
column
gear
change

remove
the

cotterpin
from
the
trunnion
and
detach
the

gearchange
rod
and
selector
rod
from
the

change
lever
and

selector
lever
STEERING
GEAR

Assembly
and

Adjustment

COLLAPSIBLE
STEERING

COLLAPSIBLE
STEERING
Removal
and

Inspection

COLLAPSIBLE
STEERING
Installation

STEERING
LINKAGE

6
Remove
the
bolts

securing
the

steering
gear
housing
to

the
car

body
Fig
K
6
and

pull
the
steering

gear
towards

the

engine
compartment

Remove
the
gearchange
control
from
the

steering
gear

assembly
as
described
in
the
section
GEARBOX

STEERING
WHEEL
AND
STEERING
GEAR
Installation

Installation
is
a
reversal
of
the
removal

procedure
When

the
installation
has
been
completed
make
sure
that
the

steering

wheel
can

be
turned

smoothly
and
is
correctly
aligned
The

free
travel
of
the

steering
wheel
should
be
between
2S
30mm

0
9B
1
18
in
Tighten
the

steering
wheel
locknut
to
a

torque

reading
of
4
0
5
0

kgm
29
36Ib
ft
and
the

steering
column

upper
clamp
and
plate
bolts
to
a

torque
reading
of
1
3
1
8

kgm

94
1
3
Ib
ft

Ensure
that
the

steering
box
is
topped
up
to
the
correct

level
with
recommended
lubricant

STEERING
GEAR

Dismantling

Remove
the

pitman
arm

retaining
nut

and
pull
out
the
arm

The

special
puller
ST
27140000
should
be

used
if
available

Remove
the
drain

plug
from
the

steering
gear
housing
and

drain
the
oil

Slacken
the

adjusting
screw
nut
and
turn
the
sector
shaft

adjusting
screw
a
few
turns
in
the
anti
clockwise
direction

Remove
the
sector

shaft
cover

retaining
bolts
and

pull
the

sector
shaft
cover
and
sector
shaft
from
the
gear
housing
Fig

K
7

Remove
the
bolts

securing
the
column

jacket
to
the

gear

housing
and

carefully
withdraw
the
main
column
jacket
assembly

from
the
gear
housing
Fig
K
B

NOTE
The
ball
must
not
be
allowed
to
run
to
either
end
of

the
worm
or
the
ends
of
the
ball

guides
will
be

damaged

Pull
the
column
assembly
from
the
column
jacket
Remove

the
sector
shaft
oil
seal
and
take
out
the
rear

bearing
outer

race

from
the
column

jacket
with
a
suitable

puller

Withdraw
the

bearing
inner
races
from

the
front
and
fear

worm

bearings

Remove
the
column
shaft

bearing

91

Page 96 of 171


the

system

operates
smoothly

COLLAPSIBLE
STEERING

The

collapsible
steering
column
is

designed
so
that

compression
occurs
when
the
vehicle
is
involved
in
a

head
on

collision
See

Fig
K
13

Two
forces
can
be
considered
when
a
collision
of
this

type
takes

place
These

being
the

primary
force
in
which
the

forward
motion
of
the
car
is

suddenly
halted
and
the

secondary

force

as
the
driver
continues
in

a
forward
direction
onto
the

steering
wheel

and
column
The

collapsible
column
is

designed

so
that
it
does
not
move
to
the
rear
i
e
into
the

driving
com

partment
when

the

primary
force
or
forward

motion
of
the
car

is

suddenly
halted
When
the

secondary
force
takes

place
as

the
driver
is
thrown
forward

the
column

jacket
gradually

collapses
and

partially
absorbs
the
amount
of

impact

The

collapsible

type
of
column
is
no
more

susceptible
to

damage
than
an

ordinary
column
when
it

is
installed
in
the

vehicle
however
when
a

collapsible
column

is
removed
it
must

be

carefully
handled
A

sharp
blow
on
the
end
of
the
shaft
or

gear
change
levers

dropping
or

leaning
on

the

assembly
can

cause

the
column

jacket
to
bend

particularly
at
the
bellows

part
which
absorbs
the
shock

The

steering
movement
is
transmitted

by
the

lower
shaft

and

upper
tube
The
lower
shaft
exterior
and

upper
tube

interior
are

tightly
fitted

together
with
four

plastic

pins
com

pletely

eliminating

any
gap

When
a
collision
occurs
the

plastic
pins
shear

and
the
lower

shaft
enters

the

upper
tube
this
action
will
cause
the
shaft
end

to

spread
and
the
lower
shaft
cannot

then
be
withdrawn
unless

an

extremely
high
load
is

applied

The
shaft
is

prevented
from

moving
towards
the
drivers

compartment
when
the

primary
force

takes

place
i

e
when

the
forward
motion
of
the
vehicle
is

suddenly
halted

by
the

three

stoppers
on

the

jacket
tube
The

steering
lock
collar

mounted
to
the
shaft
contacts

the
stoppers
and

prevents
a
rear

ward
movement

A
part
of

the

jacket
tube
is

specially
formed
to
act
as
an

energy
absorbing

part
of
the

collapsible

steering
The

upper

and
lower

guide
tubes

joined
with

polyacetal
resin
are

inserted

into
the
mesh
tube
so
that

energy
generated
by
a

collision
can

be
absorbed
as

smoothly
as

possible
with
a

low
load

The

steering
column

clamp
shown
in

Fig
K
14
is
secured

to

the

jacket
tube
and

body
by
bolts
with
two
aluminium

slidings
blocks
set
to
the

body
by
plastic
pins
An

impact
from

the
drivers
side
causes

the

plastic
pins
to
shear

and
leave
the

sliding
block
in
the
column

clamp
side

allowing
the

clamp
to

move
with
the

jacket
as
it

collapses

COLLAPSffiLE
STEERING
Removal

and

Inspection

Steering
Wheel

I
Disconnect
the

battery
earth
cable

2
Disconnect
the
horn

wiring
and

remove
the
horn

pad
3
Remove
the

steering
wheel
nut

using
the

special
puller

ST

27180000

Eig
K
15
Remove
the
column
shell
covers

Fig
K
16
and
the
turn

signal
switch

assembly

Column
shaft

4
Remove
the
cotter

pin
and
detach
the
shift

rod
Automatic

Transmission
Remove
the
bolt

securing
the
worm
shaft

and

coupling
Fig
K
17

5
Take
out

the
bolts

securing
the
column
tube

flange
to
the

dash

panel
and
the
bolts

securing
the
column

clamp
With

draw
the

steering
column
shaft
towards
the
car
interior

A
careful
check
should

be
made
to
ensure

that
the

assembly

is
not

damaged
in

any
way

Pull
out
the
lower
shaft

tap
the
column

clamp
towards

the

steering
wheel
end
and
remove

the
screws

securing
the

upper
and
lower
tubes

Separate
the

upper
and
lower

tubes

Remove
the

snap
ring
from

the

upper
end
of
the
column

pull

the

upper
jacket
down
and

separate
it
from
the

upper
jacket

tube

Take
care
not
to

damage
the

bearing
Remove
the

plain

washer

and

spring
from
the

upper
shaft

Check
the

column

bearings
for

damage
and
lack
of
smooth

ness

Apply
multi

purpose
grease
to
the

bearing
if

necessary

Inspect
the

jacket
tubes
for

signs
of
deformation
renew
the

tubes
if

necessary
Check
the
dimension

A
in

Fig
K
1B
to

make
SUfe
that

the

jacket
has
not
been
crushed

Check
the

dimension
B

Fig
K
14

COLLAPSffiLE
STEERING

Assembly
and
Installation

Assembly
is
a
reversal
of

the

dismantling
procedure
noting

the

following

points

Lubricate
the
column

bearing
the

spring
and
dust
seal

sliding

parts
Ensure
that
the

upper
shaft

steering
lock
hole
and

the

steering
lock
are

correctly
positioned
Fig
K
19
When

assembling
the
lower
shaft
take
care
to

coincide
the
notch
on

the
universal

joint
with

the

punched
mark
on
the
shaft

Coat
the

upper
and
lower
shaft

serrations
with
multi

purpose

grease
Set
the

steering
in
the

straight
ahead

position
and
fit

the

column
shaft
to

the

steering
gear
See

Fig
K
20
Insert
the

column

through
the
dash
board

and
install
it
to
the

gear
so
that

the

punch
mark
at
the

top
of

the
shaft
is
forced

upwards
Slide

the

universal

joint
to

the

steering
gear
and

temporarily
install

the
column

clamp
6
Fit

the
lower
cover

flange
7
and

tighten

the
column

clamp
bolts

Check
the

steering
wheel

alignment
with
the
wheels
in
the

straight
ahead

position
If
the

steering
wheel

and

steering
lock

are

misaligned
by
more
than
35
mm

I
4
in
from
the
vertical

position
femove

the

steering
wheel
and
re
centre

it

STEERING

LINKAGE
Removal

Jack

up
the
front
of
the

vehicle
and

support
it
on

stands

2
Remove
the

cotterpins
and
castle
nuts

fastening
the
tie
rod

ball

joints
to
the
knuckle
arms

95

Page:   1-10 11-20 next >