control INFINITI FX35 2004 Service Manual

Page 1398 of 4449

ON BOARD DIAGNOSTIC (OBD) SYSTEM
EC-57
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
*1: 1st trip DTC No. is the same as DTC No.
*2: This number is prescribed by SAE J2012.
*3: In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.
*4: SRT code will not be set if the self-diagnostic result is NG.
*5: This is not displayed with GST.
*6: The troubleshooting for this DTC needs CONSULT-II.
*7: When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.
*8: For models with ICC or ASCD system.
*9: For models with ICC system.
DTC AND 1ST TRIP DTC
The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic
result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip
DTC will not be displayed.
If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not
light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required
driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the
2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words,
the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consec-
utive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd
trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the
1st trip, the DTC and 1st trip DTC are stored in the ECM memory.
Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in EC-67, "
HOW
TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .
For malfunctions in which 1st trip DTCs are displayed, refer to EC-54, "
EMISSION-RELATED DIAGNOSTIC
INFORMATION ITEMS" . These items are required by legal regulations to continuously monitor the system/
component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.
NATS MALFUNCTIONP1610 -
P16151610 - 1615 — —×EC-68
TP SEN/CIRC A/T P1705 1705 — — —AT- 1 3 6
P-N POS SW/CIRCUIT P1706 1706 — —×EC-545
TURBINE REV S/CIRC P1716 1716 — —×AT- 1 4 3
A/T INTERLOCK P1730 1730 — — —AT- 1 4 7
I/C SOLENOID/CIRC P1752 1752 — — —AT- 1 5 2
I/C SOLENOID FNCTN P1754 1754 — — —AT- 1 5 4
FR/B SOLENOID/CIRC P1757 1757 — — —AT- 1 5 6
FR/B SOLENOID/CIRC P1759 1759 — — —AT- 1 5 8
D/C SOLENOID/CIRC P1762 1762 — — —AT- 1 6 0
D/C SOLENOID FNCTN P1764 1764 — — —AT- 1 6 2
HLR/C SOL/CIRC P1767 1767 — — —AT- 1 6 4
HLR/C SOL FNCTN P1769 1769 — — —AT- 1 6 6
LC/B SOLENOID/CIRC P1772 1772 — — —AT- 1 6 8
LC/B SOLENOID FNCT P1774 1774 — — —AT- 1 7 0
BRAKE SW/CIRCUIT P1805 1805 — —×EC-550
APP SEN 1/CIRC P2122 2122 — — —EC-555
APP SEN 1/CIRC P2123 2123 — — —EC-555
APP SEN 2/CIRC P2127 2127 — — —EC-562
APP SEN 2/CIRC P2128 2128 — — —EC-562
TP SENSOR P2135 2135 — — —EC-569
APP SENSOR P2138 2138 — — —EC-576
Items
(CONSULT-II screen terms)DTC*
1
SRT codeTest value/
Test limit
(GST only)1st trip DTCReference
page CONSULT-II
GST*
2ECM*3

Page 1399 of 4449

EC-58
[VQ35DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2004 November 2004 FX35/FX45
1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and
therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehi-
cle from being tested, for example during Inspection/Maintenance (I/M) tests.
When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame
data as specified in Work Flow procedure Step II, refer to EC-78, "
WORK FLOW" . Then perform DTC Confir-
mation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is dupli-
cated, the item requires repair.
How to Read DTC and 1st Trip DTC
DTC and 1st trip DTC can be read by the following methods.
With CONSULT-II
With GST
CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.
These DTCs are prescribed by SAE J2012.
(CONSULT-II also displays the malfunctioning component or system.)
No Tools
The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC.
Example: 0340, 1148, 1706, etc.
These DTCs are controlled by NISSAN.
1st trip DTC No. is the same as DTC No.
Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indi-
cate whether the malfunction is still occurring or has occurred in the past and has returned to nor-
mal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if
available) is recommended.
A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunc-
tion is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times
the vehicle was driven after the last detection of a DTC.
If the DTC is being detected currently, the time data will be [0].
If a 1st trip DTC is stored in the ECM, the time data will be [1t].
FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA
The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant tem-
perature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake
air temperature at the moment a malfunction is detected.
Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.
The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or
GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For
details, see EC-113, "
Freeze Frame Data and 1st Trip Freeze Frame Data" .
Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the
ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority
for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once
freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no
longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the fol-
lowing priorities to update the data.
PBIB0911E

Page 1401 of 4449

EC-60
[VQ35DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2004 November 2004 FX35/FX45
SRT Item
The table below shows required self-diagnostic items to set the SRT to “CMPLT”.
*1: If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for
models with CONSULT-II.
SRT Set Timing
SRT is set as “CMPLT” after self-diagnosis has been performed one or more times. Completion of SRT is
done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and
is shown in the table below.
OK: Self-diagnosis is carried out and the result is OK.
NG: Self-diagnosis is carried out and the result is NG.
—: Self-diagnosis is not carried out.
When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will
indicate “CMPLT”. → Case 1 above
SRT item
(CONSULT-II indica-
tion)Perfor-
mance Pri-
ority*1Required self-diagnostic items to set the SRT to “CMPLT”Corresponding DTC
No.
CATALYST 2 Three way catalyst function P0420, P0430
EVAP SYSTEM 1 EVAP control system P0442
2 EVAP control system P0456
2 EVAP control system purge flow monitoring P0441
HO2S 2Heated oxygen sensor 1 P0133, P0153
Heated oxygen sensor 1 P1143, P1163
Heated oxygen sensor 1 P1144, P1164
Heated oxygen sensor 2 P0139, P0159
Heated oxygen sensor 2 P1146, P1166
Heated oxygen sensor 2 P1147, P1167
HO2S HTR 2 Heated oxygen sensor 1 heater P0031, P0032, P0051,
P0052
Heated oxygen sensor 2 heater P0037, P0038, P0057,
P0058
Self-diagnosis resultExample
DiagnosisIgnition cycle
← ON → OFF ← ON → OFF ← ON → OFF ← ON →
All OK Case 1 P0400 OK (1) — (1) OK (2) — (2)
P0402 OK (1) — (1) — (1) OK (2)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “CMPLT” “CMPLT” “CMPLT” “CMPLT”
Case 2 P0400 OK (1) — (1) — (1) — (1)
P0402 — (0) — (0) OK (1) — (1)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “INCMP” “INCMP” “CMPLT” “CMPLT”
NG exists Case 3 P0400 OK OK — —
P0402 — — — —
P1402 NG — NGNG
(Consecutive
NG)
(1st trip)
DTC1st trip DTC — 1st trip DTCDTC
(= MIL ON)
SRT of EGR “INCMP” “INCMP” “INCMP” “CMPLT”

Page 1407 of 4449

EC-66
[VQ35DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2004 November 2004 FX35/FX45
SRT item Self-diagnostic test item DTCTest value (GST display)
Test limit ApplicationConver-
sion
TID CID
CATA-
LYSTThree way catalyst function (Bank 1)P0420 01H 01H Max.×1/128
P0420 02H 81H Min.×1
Three way catalyst function (Bank 2)P0430 03H 02H Max.×1/128
P0430 04H 82H Min.×1
EVAP
SYSTEMEVAP control system (Small leak) P0442 05H 03H Max.×
1/128mm
2
EVAP control system purge flow mon-
itoringP0441 06H 83H Min.×20mV
EVAP control system (Very small
leak)P0456 07H 03H Max.×
1/128mm
2
HO2SHeated oxygen sensor 1 (Bank 1)P0133 09H 04H Max.×10ms
P1143 0AH 84H Min.×10mV
P1144 0BH 04H Max.×10mV
P0132 0CH 04H Max.×10mV
P0134 0DH 04H Max.×1s
Heated oxygen sensor 1 (Bank 2)P0153 11H 05H Max.×10ms
P1163 12H 85H Min.×10mV
P1164 13H 05H Max.×10mV
P0152 14H 05H Max.×10mV
P0154 15H 05H Max.×1s
Heated oxygen sensor 2 (Bank 1)P0139 19H 86H Min.×10mV/
500ms
P1147 1AH 86H Min.×10mV
P1146 1BH 06H Max.×10mV
P0138 1CH 06H Max.×10mV
Heated oxygen sensor 2 (Bank 2)P0159 21H 87H Min.×10mV/
500ms
P1167 22H 87H Min.×10mV
P1166 23H 07H Max.×10mV
P0158 24H 07H Max.×10mV
HO2S
HTRHeated oxygen sensor 1 heater
(Bank 1)P0032 29H 08H Max.×20mV
P0031 2AH 88H Min.×20mV
Heated oxygen sensor 1 heater
(Bank 2)P0052 2BH 09H Max.×20mV
P0051 2CH 89H Min.×20mV
Heated oxygen sensor 2 heater
(Bank 1)P0038 2DH 0AH Max.×20mV
P0037 2EH 8AH Min.×20mV
Heated oxygen sensor 2 heater
(Bank 2)P0058 2FH 0BH Max.×20mV
P0057 30H 8BH Min.×20mV

Page 1408 of 4449

ON BOARD DIAGNOSTIC (OBD) SYSTEM
EC-67
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION
How to Erase DTC
With CONSULT-II
The emission related diagnostic information in the ECM can be erased by selecting “ERASE” in the “SELF-
DIAG RESULTS” mode with CONSULT-II.
If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individu-
ally from the ECM and TCM (Transmission control module).
NOTE:
If the DTC is not for A/T related items (see EC-15
), skip steps 2 through 4.
1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10
seconds and then turn it ON (engine stopped) again.
2. Turn CONSULT-II ON and touch “A/T”.
3. Touch “SELF-DIAG RESULTS”.
4. Touch “ERASE”. [The DTC in the TCM (Transmission control module) will be erased.] Then touch “BACK”
twice.
5. Touch “ENGINE”.
6. Touch “SELF-DIAG RESULTS”.
7. Touch “ERASE”. (The DTC in the ECM will be erased.)
With GST
The emission related diagnostic information in the ECM can be erased by selecting MODE 4 with GST.
NOTE:
If the DTC is not for A/T related items (see EC-15
), skip step 2.
1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10
seconds and then turn it ON (engine stopped) again.
SCIA5334E

Page 1410 of 4449

ON BOARD DIAGNOSTIC (OBD) SYSTEM
EC-69
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
ON BOARD DIAGNOSTIC SYSTEM FUNCTION
The on board diagnostic system has the following four functions.
When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is
malfunction on engine control system.
Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as
NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means
of operating fail-safe function.
The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the
driver to repair the malfunction.
MIL Flashing Without DTC
If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diag-
nostic test mode. EC-70, "
HOW TO SWITCH DIAGNOSTIC TEST MODE" .
How to switch the diagnostic test (function) modes, and details of the above functions are described later. EC-
70, "HOW TO SWITCH DIAGNOSTIC TEST MODE" .
The following emission-related diagnostic information is cleared when the ECM memory is erased.
Diagnostic trouble codes
1st trip diagnostic trouble codes
Freeze frame data
1st trip freeze frame data
System readiness test (SRT) codes
Test values
Others
Diagnostic Test
ModeKEY and ENG.
StatusFunction Explanation of Function
Mode I Ignition switch in
ON position
Engine stoppedBULB CHECK This function checks the MIL bulb for damage (blown,
open circuit, etc.).
If the MIL does not come on, check MIL circuit.
Engine running MALFUNCTION
WARNINGThis is a usual driving condition. When a malfunction is
detected twice in two consecutive driving cycles (two trip
detection logic), the MIL will light up to inform the driver
that a malfunction has been detected.
The following malfunctions will light up or blink the MIL in
the 1st trip.
Misfire (Possible three way catalyst damage)
One trip detection diagnoses
Mode II Ignition switch in
ON position
Engine stoppedSELF-DIAGNOSTIC
RESULTSThis function allows DTCs and 1st trip DTCs to be read.
Engine running HEATED OXYGEN SENSOR 1
MONITORThis function allows the fuel mixture condition (lean or
rich), monitored by heated oxygen sensor 1, to be read.
Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

Page 1413 of 4449

EC-72
[VQ35DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2004 November 2004 FX35/FX45
*: Maintains conditions just before switching to open loop.
To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until
engine coolant temperature indicator points to the middle of the gauge.
Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the
MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.
OBD System Operation ChartABS006KN
RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS
When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are
stored in the ECM memory.
When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are
stored in the ECM memory, and the MIL will come on. For details, refer to EC-53, "
Two Trip Detection
Logic" .
The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
the counter will reset.
The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A)
without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and
Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times
(driving pattern C) without the same malfunction recurring. The “TIME” in “SELF-DIAGNOSTIC
RESULTS” mode of CONSULT-II will count the number of times the vehicle is driven.
The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.
SUMMARY CHART
For details about patterns B and C under “Fuel Injection System” and “Misfire”, see EC-74 .
For details about patterns A and B under Other, see EC-76
.
*1: Clear timing is at the moment OK is detected.
*2: Clear timing is when the same malfunction is detected in the 2nd trip.MIL Fuel mixture condition in the exhaust gas Air fuel ratio feedback control condition
ON Lean
Closed loop system
OFF Rich
*Remains ON or OFF Any condition Open loop system
Items Fuel Injection System Misfire Other
MIL (goes off) 3 (pattern B) 3 (pattern B) 3 (pattern B)
DTC, Freeze Frame Data (no
display)80 (pattern C) 80 (pattern C) 40 (pattern A)
1st Trip DTC (clear) 1 (pattern C), *1 1 (pattern C), *1 1 (pattern B)
1st Trip Freeze Frame Data
(clear)*1, *2 *1, *2 1 (pattern B)

Page 1418 of 4449

TROUBLE DIAGNOSIS
EC-77
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
TROUBLE DIAGNOSISPFP:00004
Trouble Diagnosis IntroductionABS006KO
INTRODUCTION
The engine has an ECM to control major systems such as fuel con-
trol, ignition control, idle air control system, etc. The ECM accepts
input signals from sensors and instantly drives actuators. It is essen-
tial that both input and output signals are proper and stable. At the
same time, it is important that there are no malfunctions such as vac-
uum leaks, fouled spark plugs, or other malfunctions with the engine.
It is much more difficult to diagnose an incident that occurs intermit-
tently rather than continuously. Most intermittent incidents are
caused by poor electric connections or improper wiring. In this case,
careful checking of suspected circuits may help prevent the replace-
ment of good parts.
A visual check only may not find the cause of the incidents. A road
test with CONSULT-II (or GST) or a circuit tester connected should
be performed. Follow the Work Flow on EC-78
.
Before undertaking actual checks, take a few minutes to talk with a
customer who approaches with a driveability complaint. The cus-
tomer can supply good information about such incidents, especially
intermittent ones. Find out what symptoms are present and under
what conditions they occur. A Diagnostic Worksheet like the example
on EC-80
should be used.
Start your diagnosis by looking for conventional malfunctions first.
This will help troubleshoot driveability malfunctions on an electroni-
cally controlled engine vehicle.
MEF036D
SEF233G
SEF234G

Page 1420 of 4449

TROUBLE DIAGNOSIS
EC-79
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
Description for Work Flow
DIAGNOSTIC WORKSHEET
Description
There are many operating conditions that lead to the malfunction of
engine components. A good grasp of such conditions can make trou-
bleshooting faster and more accurate.
In general, each customer feels differently about a incident. It is
important to fully understand the symptoms or conditions for a cus-
tomer complaint.
Utilize a diagnostic worksheet like the one on the next page in order
to organize all the information for troubleshooting.
Some conditions may cause the MIL to come on steady or blink and
DTC to be detected. Examples:
Vehicle ran out of fuel, which caused the engine to misfire.
STEP DESCRIPTION
STEP IGet detailed information about the conditions and the environment when the incident/symptom occurred using the
“DIAGNOSTIC WORK SHEET”, EC-79
.
STEP IIBefore confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the
(1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-67
.) The (1st trip) DTC and the (1st trip)
freeze frame data can be used when duplicating the incident at STEP III & IV.
If the incident cannot be verified, perform EC-135, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer.
(The Symptom Matrix Chart will be useful. See EC-88
.)
Also check related service bulletins for information.
STEP IIITry to confirm the symptom and under what conditions the incident occurs.
The DIAGNOSTIC WORK SHEET and the freeze frame data are useful to verify the incident. Connect CONSULT-II
to the vehicle in “DATA MONITOR (AUTO TRIG)” mode and check real time diagnosis results.
If the incident cannot be verified, perform EC-135, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IVTry to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st
trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST.
During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in“ DATA MONITOR (AUTO
TRIG)” mode and check real time diagnosis results.
If the incident cannot be verified, perform EC-135, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip)
DTC cannot be displayed by this check, however, this simplified check is an effective alternative.
The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.
STEP VTake the appropriate action based on the results of STEP I through IV.
If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX.
If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-83
.) Then perform inspections
according to the Symptom Matrix Chart. (Refer to EC-88
.)
STEP VIIdentify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the
system for mechanical binding, loose connectors or wiring damage using (tracing) Harness Layouts.
Gently shake the related connectors, components or wiring harness with CONSULT-II set in “DATA MONITOR
(AUTO TRIG)” mode.
Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II.
Refer to EC-100
, EC-125 .
The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit
inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in
GI-27, "
How to Perform Efficient Diagnosis for an Electrical Incident" .
Repair or replace the malfunction parts.
If malfunctioning part cannot be detected, perform EC-135, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCI-
DENT" .
STEP VIIOnce you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and
circumstances which resulted in the customer's initial complaint.
Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is
still detected in the final check, perform STEP VI by using a method different from the previous one.
Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM
and TCM (Transmission control module). (Refer to EC-67, "
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC
INFORMATION" and AT-39, "HOW TO ERASE DTC" .)
SEF907L

Page 1422 of 4449

TROUBLE DIAGNOSIS
EC-81
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
Priority Detected items (DTC)
1
U1000 U1001 CAN communication line
P0101 P0102 P0103 Mass air flow sensor
P0112 P0113 P0127 Intake air temperature sensor
P0117 P0118 P0125 Engine coolant temperature sensor
P0128 Thermostat function
P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
P0181 P0182 P0183 Fuel tank temperature sensor
P0327 P0328 Knock sensor
P0335 Crankshaft position sensor (POS)
P0340 P0345 Camshaft position sensor (PHASE)
P0460 P0461 P0462 P0463 Fuel level sensor
P0500 Vehicle speed sensor
P0605 ECM
P0705 Park/Neutral position (PNP) switch
P1229 Sensor power supply
P1610 - P1615 NATS
P1706 Park/Neutral position (PNP) switch
P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor
2
P0031 P0032 P0051 P0052 Heated oxygen sensor 1 heater
P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater
P0132 P0133 P0134 P0152 P0153 P0154 P1143 P1144 P1163 P1164 Heated oxygen sensor 1
P0138 P0139 P0158 P0159 P1146 P1147 P1166 P1167 Heated oxygen sensor 2
P0441 EVAP control system purge flow monitoring
P0444 P0445 P1444 EVAP canister purge volume control solenoid valve
P0447 P1446 EVAP canister vent control valve
P0451 P0452 P0453 EVAP control system pressure sensor
P0550 Power steering pressure sensor
P0710 P0720 P0725 P0740 P0744 P0745 P1705 P1716 P1730 P1752 P1754 P1757 P1759 P1762 P1764 P1767
P1769 P1772 P1774 A/T related sensors, solenoid valves and switches
P1065 ECM power supply
P 1111 P 1136 Intake valve timing control solenoid valve
P1122 Electric throttle control function
P1124 P1126 P1128 Electric throttle control actuator
P1217 Engine over temperature (OVERHEAT)
P1805 Brake switch
3
P0011 P0021 Intake valve timing control
P0171 P0172 P0174 P0175 Fuel injection system function
P0300 - P0306 Misfire
P0420 P0430 Three way catalyst function
P0442 P0455 P0456 EVAP control system
P0506 P0507 Idle speed control system
P1121 Electric throttle control actuator
P1148 P1168 Closed loop control
P1211 TCS control unit
P1212 TCS communication line
P1564 ICC steering switch/ASCD steering switch
P1568 ICC command valve
P1572 ICC brake switch/ASCD brake switch
P1574 ICC vehicle speed sensor/ASCD vehicle speed sensor

Page:   < prev 1-10 ... 431-440 441-450 451-460 461-470 471-480 481-490 491-500 501-510 511-520 ... 1410 next >