Cam sensor INFINITI M35 2007 Factory Workshop Manual
Page 1900 of 4647
DTC P0340, P0345 CMP SENSOR (PHASE)
EC-371
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
DTC P0340, P0345 CMP SENSOR (PHASE)PFP:23731
Component DescriptionNBS004Z4
The camshaft position sensor (PHASE) senses the retraction of
camshaft (INT) to identify a particular cylinder. The camshaft position
sensor (PHASE) senses the piston position.
When the crankshaft position sensor (POS) system becomes inoper-
ative, the camshaft position sensor (PHASE) provides various con-
trols of engine parts instead, utilizing timing of cylinder identification
signals.
The sensor consists of a permanent magnet and Hall IC.
When engine is running, the high and low parts of the teeth cause
the gap with the sensor to change.
The changing gap causes the magnetic field near the sensor to
change.
Due to the changing magnetic field, the voltage from the sensor changes.
ECM receives the signals as shown in the figure.
CONSULT-II Reference Value in Data Monitor ModeNBS004Z5
Specification data are reference values.
On Board Diagnosis LogicNBS004Z6
DTC Confirmation ProcedureNBS004Z7
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
TESTING CONDITION:
Before performing the following procedure, confirm that battery voltage is more than 10.5V with igni-
tion switch ON.
WITH CONSULT-II
1. Turn ignition switch ON.
PBIB0562E
PBIB2744E
MONITOR ITEM CONDITION SPECIFICATION
ENG SPEED
Run engine and compare CONSULT-II value with the
tachometer indication.Almost the same speed as the tachometer
indication.
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0340
0340
(Bank 1)
Camshaft position sen-
sor (PHASE) circuit
The cylinder No. signal is not sent to ECM
for the first few seconds during engine
cranking.
The cylinder No. signal is not sent to ECM
during engine running.
The cylinder No. signal is not in the normal
pattern during engine running.
Harness or connectors
(The sensor circuit is open or shorted)
Camshaft position sensor (PHASE)
Camshaft (INT)
Starter motor (Refer to SC-8, "START-
ING SYSTEM" .)
Starting system circuit (Refer to SC-8,
"STARTING SYSTEM" .)
Dead (Weak) battery P0345
0345
(Bank 2)
Page 1903 of 4647
EC-374
[VQ35DE]
DTC P0340, P0345 CMP SENSOR (PHASE)
Revision: 2007 April2007 M35/M45
Specification data are reference values and are measured between each terminal and ground.
Pulse signal is measured by CONSULT-II.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)TER-
MINAL
NO.WIRE
COLORITEM CONDITION DATA (DC Voltage)
33 LGCamshaft position sensor
(PHASE) (bank 1)[Engine is running]
Warm-up condition
Idle speed
NOTE:
The pulse cycle changes depending on rpm
at idle1.0 - 4.0V
[Engine is running]
Engine speed is 2,000 rpm1.0 - 4.0V
111 S BECM relay
(Self shut-off)[Engine is running]
[Ignition switch: OFF]
For a few seconds after turning ignition
switch OFF0 - 1.5V
[Ignition switch: OFF]
More than a few seconds after turning igni-
tion switch OFFBATTERY VOLTAGE
(11 - 14V)
11 9
120R
RPower supply for ECM[Ignition switch: ON]BATTERY VOLTAGE
(11 - 14V)
PBIB1039E
PBIB1040E
Page 1905 of 4647
EC-376
[VQ35DE]
DTC P0340, P0345 CMP SENSOR (PHASE)
Revision: 2007 April2007 M35/M45
Specification data are reference values and are measured between each terminal and ground.
Pulse signal is measured by CONSULT-II.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)
Diagnostic ProcedureNBS004Z9
1. CHECK STARTING SYSTEM
Turn ignition switch to START position.
Ye s o r N o
Yes >> GO TO 2.
No >> Check starting system. (Refer to SC-8, "
STARTING SYSTEM" .)
TER-
MINAL
NO.WIRE
COLORITEM CONDITION DATA (DC Voltage)
14 LCamshaft position sensor
(PHASE) (bank 2)[Engine is running]
Warm-up condition
Idle speed
NOTE:
The pulse cycle changes depending on rpm
at idle1.0 - 4.0V
[Engine is running]
Engine speed: 2,000 rpm1.0 - 4.0V
111 S BECM relay
(Self shut-off)[Engine is running]
[Ignition switch: OFF]
For a few seconds after turning ignition
switch OFF0 - 1.5V
[Ignition switch: OFF]
More than a few seconds after turning igni-
tion switch OFFBATTERY VOLTAGE
(11 - 14V)
11 9
120R
RPower supply for ECM[Ignition switch: ON]BATTERY VOLTAGE
(11 - 14V)
PBIB1039E
PBIB1040E
Does the engine turn over?
Does the starter motor operate?
Page 1906 of 4647
DTC P0340, P0345 CMP SENSOR (PHASE)
EC-377
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
2. CHECK GROUND CONNECTIONS
1. Turn ignition switch OFF.
2. Loosen and retighten ground two screws on the body. Refer to EC-160, "
Ground Inspection" .
OK or NG
OK >> GO TO 3.
NG >> Repair or replace ground connections.
3. CHECK CAMSHAFT POSITION (CMP) SENSOR (PHASE) POWER SUPPLY CIRCUIT
1. Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
2. Turn ignition switch ON.
3. Check voltage between CMP sensor (PHASE) terminal 3 and
ground with CONSULT-II or tester.
OK or NG
OK >> GO TO 5.
NG >> GO TO 4.
4. DETECT MALFUNCTIONING PART
Check the following.
Harness connectors E108, M15
Harness connectors F102, M72
Harness for open or short between camshaft position sensor (PHASE) and ECM
Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R
>> Repair open circuit or short to ground or short to power in harness or connectors.
1. Body ground M70 2. Body ground M16
PBIB2782E
Voltage: Battery voltage
PBIB1568E
SEF481Y
Page 1907 of 4647
EC-378
[VQ35DE]
DTC P0340, P0345 CMP SENSOR (PHASE)
Revision: 2007 April2007 M35/M45
5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT
1. Turn ignition switch OFF.
2. Check harness continuity between CMP sensor (PHASE) terminal 1 and ground.
Refer to Wiring Diagram.
3. Also check harness for short to power.
OK or NG
OK >> GO TO 7.
NG >> GO TO 6.
6. DETECT MALFUNCTIONING PART
Check the following.
Harness connectors F102, M72
Harness for open or short between CMP sensor (PHASE) and ground
>> Repair open circuit or short to power in harness or connectors.
7. CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
1. Disconnect ECM harness connector.
2. Check harness continuity between ECM terminal 33 (Bank 1) or 14 (Bank 2) and CMP sensor (PHASE)
terminal 2.
Refer to Wiring Diagram.
3. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 8.
NG >> Repair open circuit or short to ground or short to power in harness or connectors.
8. CHECK CAMSHAFT POSITION SENSOR (PHASE)
Refer to EC-379, "
Component Inspection" .
OK or NG
OK >> GO TO 9.
NG >> Replace malfunctioning camshaft position sensor (PHASE).
9. CHECK CAMSHAFT (INT)
Check the following.
Accumulation of debris to the signal plate of camshaft rear end
Chipping signal plate of camshaft rear end
OK or NG
OK >> GO TO 10.
NG >> Remove debris and clean the signal plate of camshaft
rear end or replace camshaft. Continuity should exist.
Continuity should exist.
SEC905C
Page 1908 of 4647
DTC P0340, P0345 CMP SENSOR (PHASE)
EC-379
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
10. CHECK INTERMITTENT INCIDENT
Refer to EC-153, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
>>INSPECTION END
Component InspectionNBS004ZA
CAMSHAFT POSITION SENSOR (PHASE)
1. Loosen the fixing bolt of the sensor.
2. Disconnect camshaft position sensor (PHASE) harness connector.
3. Remove the sensor.
4. Visually check the sensor for chipping.
5. Check resistance as shown in the figure.
Removal and InstallationNBS004ZB
CAMSHAFT POSITION SENSOR (PHASE)
Refer to EM-85, "CAMSHAFT" .
PBIB0563E
Terminal No. (Polarity) Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)
Except 0 or ∞ 1 (+) - 3 (-)
2 (+) - 3 (-)
PBIB0564E
Page 1929 of 4647
EC-400
[VQ35DE]
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2007 April2007 M35/M45
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionNBS004ZO
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeNBS004ZP
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge vol-
ume control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor
Vehicle speed*
2
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No loadIdle
(Accelerator pedal: Not depressed even
slightly, after engine starting.)0%
2,000 rpm —
Page 1937 of 4647
EC-408
[VQ35DE]
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VALVE
Revision: 2007 April2007 M35/M45
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VA LV E
PFP:14920
DescriptionNBS004ZW
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeNBS004ZX
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge vol-
ume control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor
Vehicle speed*
2
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No loadIdle
(Accelerator pedal: Not depressed even
slightly, after engine starting.)0%
2,000 rpm —
Page 2028 of 4647
DTC P1217 ENGINE OVER TEMPERATURE
EC-499
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
DescriptionNBS00532
SYSTEM DESCRIPTION
NOTE:
If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC
U1000, U1001. Refer to EC-161, "
DTC U1000, U1001 CAN COMMUNICATION LINE" .
If DTC P1217 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
Refer to EC-164, "
DTC U1010 CAN COMMUNICATION" .
Cooling Fan Control
*1: The ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to ECM through CAN communication line.
ECM controls cooling fan speed corresponding to vehicle speed, engine coolant temperature, air conditioner
ON signal, refrigerant pressure, target A/C evaporator temperature and A/C evaporator temperature.
Cooling fan control signal is sent to IPDM E/R from ECM by CAN communication line. Then, IPDM E/R sends
ON/OFF pulse duty signal to cooling fan control module. Corresponding to this ON/OFF pulse duty signal,
cooling fan control module gives cooling fan motor operating voltage to cooling fan motors. Cooling fan speed
is controlled by duty cycle of cooling fan motor operating voltage sent from cooling fan control module.
COMPONENT DESCRIPTION
Cooling Fan Control Module
Cooling fan control module (1) receives ON/OFF pulse duty signal
from IPDM E/R. Corresponding to this ON/OFF pulse duty signal,
cooling fan control module sends cooling fan motor operating volt-
age to cooling fan motor. The revolution speed of cooling fan motor
is controlled by duty cycle of the voltage.
: Vehicle front
Cooling fan motor-1 (2)
Cooling fan motor-2 (3)
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
Cooling fan
control
IPDM E/R
Cooling fan relay
Cooling fan control
module Battery
Battery voltage*
1
Wheel sensor
Vehicle speed*2
Engine coolant temperature sensor Engine coolant temperature
Air conditioner switch
Air conditioner ON signal*
2
Refrigerant pressure sensor Refrigerant pressure
Unified meter and A/C amp.
Target A/C evaporator temperature*
2
Intake sensor
A/C evaporator temperature*2
PBIB3352E
Page 2039 of 4647
EC-510
[VQ35DE]
DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)
Revision: 2007 April2007 M35/M45
DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)PFP:17001
DescriptionNBS0053A
SYSTEM DESCRIPTION
*: ECM determines the start signal status by the signals of engine speed and battery voltage.
This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump is altered
between two flow rates by the FPCM operation. The FPCM determines the voltage supplied to the fuel pump
(and therefore fuel flow) according to the following conditions.
COMPONENT DESCRIPTION
The FPCM adjusts the voltage supplied to the fuel pump to control
the amount of fuel flow. When the FPCM increases the voltage sup-
plied to the fuel pump, the fuel flow is increased. When the FPCM
decreases the voltage, the fuel flow is decreased.
CONSULT-II Reference Value in Data Monitor ModeNBS0053B
Specification data are reference values.
On Board Diagnosis LogicNBS0053C
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
Fuel pump controlFuel pump control module
(FPCM) Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery Battery voltage*
Conditions Amount of fuel flow Supplied voltage
Engine cranking
Engine coolant temperature is below 10°C (50°F).
Engine is running under heavy load and high speed conditionshighBattery voltage
(11 - 14V)
Except the above low Approximately 8V
SEF387X
MONITOR ITEM CONDITION SPECIFICATION
FPCM
Engine: Cranking HI
Engine: Idle
Engine coolant temperature: More than 10°C (50°F)LOW
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P1220
1220Fuel pump control module
(FPCM)An improper voltage signal from the FPCM, which
is supplied to a point between the fuel pump and
the dropping resistor, is detected by ECM.
Harness or connectors
(FPCM circuit is shorted.)
Dropping resistor
FPCM