wiring INFINITI QX56 2004 Factory Manual Online
Page 1197 of 3371
EC-6Revision: August 20072004 QX56 Component Inspection ..........................................503
Removal and Installation ......................................503
DTC P1446 EVAP CANISTER VENT CONTROL
VALVE .....................................................................504
Component Description ........................................504
CONSULT-II Reference Value in Data Monitor Mode
.504
On Board Diagnosis Logic ....................................504
DTC Confirmation Procedure ...............................505
Wiring Diagram .....................................................506
Diagnostic Procedure ...........................................507
Component Inspection ..........................................508
DTC P1564 ICC STEERING SWITCH ....................510
Component Description ........................................510
CONSULT-II Reference Value in Data Monitor Mode
.510
On Board Diagnosis Logic ....................................510
DTC Confirmation Procedure ...............................510
Wiring Diagram .....................................................512
Diagnostic Procedure ...........................................514
Component Inspection ..........................................516
DTC P1564 ASCD STEERING SWITCH ................517
Component Description ........................................517
CONSULT-II Reference Value in Data Monitor Mode
.517
On Board Diagnosis Logic ....................................517
DTC Confirmation Procedure ...............................518
Wiring Diagram .....................................................519
Diagnostic Procedure ...........................................521
Component Inspection ..........................................522
DTC P1568 ICC FUNCTION ...................................524
On Board Diagnosis Logic ....................................524
DTC Confirmation Procedure ...............................524
Diagnostic Procedure ...........................................524
DTC P1572 ICC BRAKE SWITCH ..........................525
Component Description ........................................525
CONSULT-II Reference Value in Data Monitor Mode
.525
On Board Diagnosis Logic ....................................525
DTC Confirmation Procedure ...............................525
Wiring Diagram .....................................................527
Diagnostic Procedure ...........................................528
Component Inspection ..........................................532
DTC P1572 ASCD BRAKE SWITCH ......................534
Component Description ........................................534
CONSULT-II Reference Value in Data Monitor Mode
.534
On Board Diagnosis Logic ....................................534
DTC Confirmation Procedure ...............................535
Wiring Diagram .....................................................536
Diagnostic Procedure ...........................................537
Component Inspection ..........................................541
DTC P1574 ICC VEHICLE SPEED SENSOR .........542
Component Description ........................................542
On Board Diagnosis Logic ....................................542
DTC Confirmation Procedure ...............................542
Diagnostic Procedure ...........................................543
DTC P1574 ASCD VEHICLE SPEED SENSOR .....544
Component Description ........................................544On Board Diagnosis Logic .................................... 544
DTC Confirmation Procedure ................................ 544
Diagnostic Procedure ............................................ 545
DTC P1706 PNP SWITCH ....................................... 546
Component Description ........................................ 546
CONSULT-II Reference Value in Data Monitor Mode
. 546
On Board Diagnosis Logic .................................... 546
DTC Confirmation Procedure ................................ 546
Overall Function Check ......................................... 547
Wiring Diagram ..................................................... 548
Diagnostic Procedure ............................................ 549
DTC P1805 BRAKE SWITCH ................................. 551
Description ............................................................ 551
CONSULT-II Reference Value in Data Monitor Mode
. 551
On Board Diagnosis Logic .................................... 551
DTC Confirmation Procedure ................................ 551
Wiring Diagram ..................................................... 552
Diagnostic Procedure ............................................ 553
Component Inspection .......................................... 555
DTC P2122, P2123 APP SENSOR ......................... 556
Component Description ........................................ 556
CONSULT-II Reference Value in Data Monitor Mode
. 556
On Board Diagnosis Logic .................................... 556
DTC Confirmation Procedure ................................ 557
Wiring Diagram ..................................................... 558
Diagnostic Procedure ............................................ 559
Component Inspection .......................................... 561
Removal and Installation ....................................... 561
DTC P2127, P2128 APP SENSOR ......................... 562
Component Description ........................................ 562
CONSULT-II Reference Value in Data Monitor Mode
. 562
On Board Diagnosis Logic .................................... 562
DTC Confirmation Procedure ................................ 563
Wiring Diagram ..................................................... 564
Diagnostic Procedure ............................................ 565
Component Inspection .......................................... 568
Removal and Installation ....................................... 568
DTC P2135 TP SENSOR ........................................ 569
Component Description ........................................ 569
CONSULT-II Reference Value in Data Monitor Mode
. 569
On Board Diagnosis Logic .................................... 569
DTC Confirmation Procedure ................................ 570
Wiring Diagram ..................................................... 571
Diagnostic Procedure ............................................ 572
Component Inspection .......................................... 575
Removal and Installation ....................................... 575
DTC P2138 APP SENSOR ...................................... 576
Component Description ........................................ 576
CONSULT-II Reference Value in Data Monitor Mode
. 576
On Board Diagnosis Logic .................................... 576
DTC Confirmation Procedure ................................ 577
Wiring Diagram ..................................................... 578
Diagnostic Procedure ............................................ 579
Page 1198 of 3371
EC-7
C
D
E
F
G
H
I
J
K
L
M
ECA
Revision: August 20072004 QX56 Component Inspection ......................................... 582
Removal and Installation ...................................... 582
IGNITION SIGNAL .................................................. 583
Component Description ........................................ 583
Wiring Diagram .................................................... 584
Diagnostic Procedure ........................................... 589
Component Inspection ......................................... 593
Removal and Installation ...................................... 594
INJECTOR CIRCUIT ............................................... 595
Component Description ........................................ 595
CONSULT-II Reference Value in Data Monitor Mode
. 595
Wiring Diagram .................................................... 596
Diagnostic Procedure ........................................... 597
Component Inspection ......................................... 600
Removal and Installation ...................................... 600
FUEL PUMP CIRCUIT ............................................ 601
Description ........................................................... 601
CONSULT-II Reference Value in Data Monitor Mode
. 601
Wiring Diagram .................................................... 602
Diagnostic Procedure ........................................... 603
Component Inspection ......................................... 606
Removal and Installation ...................................... 606
REFRIGERANT PRESSURE SENSOR ................. 607
Component Description ........................................ 607
Wiring Diagram .................................................... 608
Diagnostic Procedure ........................................... 609
Removal and Installation ....................................... 611
ELECTRICAL LOAD SIGNAL ................................ 612
Description ........................................................... 612
CONSULT-II Reference Value in Data Monitor Mode
. 612
Diagnostic Procedure ........................................... 612
ICC BRAKE SWITCH ............................................. 613
Component Description ........................................ 613
CONSULT-II Reference Value in Data Monitor Mode
. 613
Wiring Diagram .................................................... 614
Diagnostic Procedure ........................................... 615
Component Inspection ......................................... 619
ASCD BRAKE SWITCH ......................................... 621
Component Description ........................................ 621CONSULT-II Reference Value in Data Monitor Mode
.621
Wiring Diagram .....................................................622
Diagnostic Procedure ...........................................623
Component Inspection ..........................................627
ASCD INDICATOR ..................................................628
Component Description ........................................628
CONSULT-II Reference Value in Data Monitor Mode
.628
Wiring Diagram .....................................................629
Diagnostic Procedure ...........................................630
MIL AND DATA LINK CONNECTOR ......................631
Wiring Diagram .....................................................631
EVAPORATIVE EMISSION SYSTEM .....................633
Description ............................................................633
Component Inspection ..........................................636
Removal and Installation ......................................637
How to Detect Fuel Vapor Leakage ......................637
ON BOARD REFUELING VAPOR RECOVERY
(ORVR) ....................................................................640
System Description ...............................................640
Diagnostic Procedure ...........................................641
Component Inspection ..........................................643
POSITIVE CRANKCASE VENTILATION ...............645
Description ............................................................645
Component Inspection ..........................................645
AUTOMATIC SPEED CONTROL DEVICE (ASCD) .647
System Description ...............................................647
Component Description ........................................648
SERVICE DATA AND SPECIFICATIONS (SDS) ....649
Fuel Pressure .......................................................649
Idle Speed and Ignition Timing .............................649
Calculated Load Value ..........................................649
Mass Air Flow Sensor ...........................................649
Intake Air Temperature Sensor .............................649
Engine Coolant Temperature Sensor ...................649
A/F Sensor 1 Heater .............................................649
Heated Oxygen sensor 2 Heater ..........................649
Crankshaft Position Sensor (POS) .......................649
Camshaft Position Sensor (PHASE) ....................649
Throttle Control Motor ...........................................649
Injector ..................................................................650
Fuel Pump ............................................................650
Page 1207 of 3371
EC-16Revision: August 2007
PRECAUTIONS
2004 QX56
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
UBS00GZ5
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WAR NIN G:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
On Board Diagnostic (OBD) System of Engine and A/TUBS00GZ6
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-68, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PrecautionUBS00GZ7
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect battery ground cable.
SEF 2 89 H
Page 1210 of 3371
PRECAUTIONS
EC-19
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Do not operate fuel pump when there is no fuel in lines.
Tighten fuel hose clamps to the specified torque.
Do not depress accelerator pedal when starting.
Immediately after starting, do not rev up engine unneces-
sarily.
Do not rev up engine just prior to shutdown.
When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.
–Keep the antenna as far as possible from the electronic
control units.
–Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.
–Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.
–Be sure to ground the radio to vehicle body.
Wiring Diagrams and Trouble DiagnosisUBS00GZ8
When you read wiring diagrams, refer to the following:
GI-15, "How to Read Wiring Diagrams"
PG-4, "POWER SUPPLY ROUTING CIRCUIT" for power distribution circuit
When you perform trouble diagnosis, refer to the following:
GI-11, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
GI-27, "How to Perform Efficient Diagnosis for an Electrical Incident"
BBIA0402E
SEF 7 09 Y
SEF 7 08 Y
Page 1222 of 3371
ENGINE CONTROL SYSTEM
EC-31
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
CAN communicationUBS00GZJ
SYSTEM DESCRIPTION
CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle mul-
tiplex communication line with high data communication speed and excellent error detection ability. Many elec-
tronic control units are equipped onto a vehicle, and each control unit shares information and links with other
control units during operation (not independent). In CAN communication, control units are connected with 2
communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.
Each control unit transmits/receives data but selectively reads required data only.
Refer to LAN-5, "
CAN Communication Unit" , about CAN communication for detail.
Page 1226 of 3371
BASIC SERVICE PROCEDURE
EC-35
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
INSPECTION PROCEDURE
1. INSPECTION START
1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for
scheduled maintenance.
2. Open engine hood and check the following:
–Harness connectors for improper connections
–Wiring harness for improper connections, pinches and cut
–Vacuum hoses for splits, kinks and improper connections
–Hoses and ducts for leaks
–Air cleaner clogging
–Gasket
3. Confirm that electrical or mechanical loads are not applied.
–Headlamp switch is OFF.
–Air conditioner switch is OFF.
–Rear window defogger switch is OFF.
–Steering wheel is in the straight-ahead position, etc.
4. Start engine and warm it up until engine coolant temperature
indicator points the middle of gauge.
Ensure engine stays below 1,000 rpm.
5. Run engine at about 2,000 rpm for about 2 minutes under no
load.
6. Make sure that no DTC is displayed with CONSULT-II or GST.
OK or NG
OK >> GO TO 3.
NG >> GO TO 2.
2. REPAIR OR REPLACE
Repair or replace components as necessary according to corresponding Diagnostic Procedure.
>> GO TO 3.
SEF 9 83 U
SEF 9 76 U
SEF 9 77 U
Page 1232 of 3371
BASIC SERVICE PROCEDURE
EC-41
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
21. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HARNESS
1. Turn ignition switch OFF and disconnect battery ground cable.
2. Disconnect ECM harness connector.
3. Disconnect A/F sensor 1 harness connector.
4. Check harness continuity between the following terminals. Refer to EC-431, "
Wiring Diagram" .
5. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 22.
NG >> 1. Repair open circuit or short to ground or short to power in harness or connectors between ECM
and A/F sensor 1.
2. GO TO 4.
22. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING
1. Reconnect ECM harness connector.
2. Perform EC-44, "
Accelerator Pedal Released Position Learning" .
>> GO TO 23.
23. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING
Perform EC-44, "
Throttle Valve Closed Position Learning" .
>> GO TO 24.
24. PERFORM IDLE AIR VOLUME LEARNING
Refer to EC-44, "
Idle Air Volume Learning" .
Is Idle Air Volume Learning carried out successfully?
Ye s o r N o
Yes (With CONSULT-II)>>GO TO 25.
Yes (Without CONSULT-II)>>GO TO 26.
No >> 1. Follow the instruction of Idle Air Volume Learning.
2. GO TO 4.
Bank 1 Bank 2
A/F sensor 1 terminal ECM terminal A/F sensor 1 terminal ECM terminal
1161 76
275277
42424
535557
656658
Continuity should exist.
Page 1262 of 3371
TROUBLE DIAGNOSIS
EC-71
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
TROUBLE DIAGNOSISPFP:00004
Trouble Diagnosis IntroductionUBS00GZW
INTRODUCTION
The engine has an ECM to control major systems such as fuel con-
trol, ignition control, idle air control system, etc. The ECM accepts
input signals from sensors and instantly drives actuators. It is essen-
tial that both input and output signals are proper and stable. At the
same time, it is important that there are no malfunctions such as vac-
uum leaks, fouled spark plugs, or other malfunctions with the engine.
It is much more difficult to diagnose an incident that occurs intermit-
tently rather than continuously. Most intermittent incidents are
caused by poor electric connections or improper wiring. In this case,
careful checking of suspected circuits may help prevent the replace-
ment of good parts.
A visual check only may not find the cause of the incidents. A road
test with CONSULT-II (or GST) or a circuit tester connected should
be performed. Follow EC-72, "
WORK FLOW" .
Before undertaking actual checks, take a few minutes to talk with a
customer who approaches with a driveability complaint. The cus-
tomer can supply good information about such incidents, especially
intermittent ones. Find out what symptoms are present and under
what conditions they occur. A Diagnostic Worksheet like the example
on EC-75
should be used.
Start your diagnosis by looking for conventional malfunctions first.
This will help troubleshoot driveability malfunctions on an electroni-
cally controlled engine vehicle.
MEF036D
SEF 2 33 G
SEF 2 34 G
Page 1264 of 3371
TROUBLE DIAGNOSIS
EC-73
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Description for Work Flow
STEP DESCRIPTION
STEP IGet detailed information about the conditions and the environment when the incident/symptom occurred using the
EC-74, "
DIAGNOSTIC WORKSHEET" .
STEP IIBefore confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the
(1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-62, "
HOW TO ERASE EMISSION-
RELATED DIAGNOSTIC INFORMATION" .) The (1st trip) DTC and the (1st trip) freeze frame data can be used
when duplicating the incident at STEP III & IV.
If the incident cannot be verified, perform EC-127, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer.
(The Symptom Matrix Chart will be useful. See EC-84, "
Symptom Matrix Chart" .)
Also check related service bulletins for information.
STEP IIITry to confirm the symptom and under what conditions the incident occurs.
The DIAGNOSTIC WORK SHEET and the freeze frame data are useful to verify the incident. Connect CONSULT-II
to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results.
If the incident cannot be verified, perform EC-127, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IVTry to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st
trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST.
During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG)
mode and check real time diagnosis results.
If the incident cannot be verified, perform EC-127, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip)
DTC cannot be displayed by this check, however, this simplified check is an effective alternative.
The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.
STEP VTake the appropriate action based on the results of STEP I through IV.
If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX.
If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-79, "
Basic Inspection" .) Then per-
form inspections according to the Symptom Matrix Chart. (Refer to EC-84, "
Symptom Matrix Chart" .)
STEP VIIdentify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the
system for mechanical binding, loose connectors or wiring damage using (tracing) “Harness Layouts”.
Gently shake the related connectors, components or wiring harness with CONSULT-II set in “DATA MONITOR
(AUTO TRIG)” mode.
Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II.
Refer to EC-96, "
ECM Terminals and Reference Value" , EC-118, "CONSULT-II Reference Value in Data Monitor" .
The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit
inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to “Circuit Inspection” in
GI-27, "
How to Perform Efficient Diagnosis for an Electrical Incident" .
Repair or replace the malfunction parts.
If malfunctioning part cannot be detected, perform EC-127, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCI-
DENT" .
STEP VIIOnce you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and
circumstances which resulted in the customer's initial complaint.
Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is
still detected in the final check, perform STEP VI by using a method different from the previous one.
Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM
and TCM (Transmission control module). (Refer to EC-62, "
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC
INFORMATION" and AT- 4 0 , "HOW TO ERASE DTC" .)
Page 1270 of 3371
TROUBLE DIAGNOSIS
EC-79
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Basic InspectionUBS00GZZ
1. INSPECTION START
1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for
scheduled maintenance.
2. Open engine hood and check the following:
–Harness connectors for improper connections
–Wiring harness for improper connections, pinches and cut
–Vacuum hoses for splits, kinks and improper connections
–Hoses and ducts for leaks
–Air cleaner clogging
–Gasket
3. Confirm that electrical or mechanical loads are not applied.
–Head lamp switch is OFF.
–Air conditioner switch is OFF.
–Rear window defogger switch is OFF.
–Steering wheel is in the straight-ahead position, etc.
4. Start engine and warm it up until engine coolant temperature
indicator points the middle of gauge.
Ensure engine stays below 1,000 rpm.
5. Run engine at about 2,000 rpm for about 2 minutes under no
load.
6. Make sure that no DTC is displayed with CONSULT-II or GST.
OK or NG
OK >> GO TO 3.
NG >> GO TO 2.
2. REPAIR OR REPLACE
Repair or replace components as necessary according to corresponding Diagnostic Procedure.
>> GO TO 3.
SEF 9 83 U
SEF 9 76 U
SEF 9 77 U