manual transmission ISUZU TF SERIES 2004 User Guide

Page 1875 of 4264

ENGINE MECHANICAL (6VE1 3.5L) 6A-51
19. Reconnect ground cable between engine and
chassis.
20. Reconnect harness connector to transmission and
install transmission harness bracket on engine lef
t
side.
21. Reconnect three engine harness connectors.
22. Reconnect vacuum booster hose.
23. Reconnect canister vacuum hose.
24. Install air cleaner assembly.
25. Reconnect air duct.
26. Reconnect accelerator cable to throttle valve on
common chamber.
27. Install the ECM.
 Tighten the four bolts.
Torque : 10 N
 m (1.0 kg
 m/7 lb ft)
Connect the two connectors.
Tighten the two ground cable bolts.
28. Install engine hood to the origine position.
 Refer to installation procedure for Body section
in this manual.
 Install accelerator control cable to accelerato
r
cable bracket.
 Rotate the ratchet ring in direction an arrow 90
 Confirm marking of outer cap must be uppe
r
side.
 Slider the lock in direction B.
 Confirm ratchet ring is locked.




RTW46ASH000201
Legend
(1) Cable Bracket
(2) Ratchet ring
(3) Outer Cap
(4) Lock
(5) Paint Mark
(6) Arrow Mark

29. Install the cable clips to accelerator control cable.

Page 1962 of 4264

6D1-4 ENGINE ELECTRICAL (6VE1 3.5L)
Jump Starting Procedure
1. Set the vehicle parking brake.
If the vehicle is equipped with an automatic
transmission, place the selector level in the “PARK"
position.
If the vehicle is equipped with a manual
transmission, place the shift lever in the
“ NEUTRAL" position.
Turn “OFF" the ignition.
Turn “OFF" all lights and any other accessory
requiring electrical power.
2. Look at the built –in hydrometer.
If the indication area of the built –in hydrometer is
completely clear, do not try to jump start.
3.
Attach the end of one jumper cable to the positive
terminal of the booster battery.
Attach the other end of the same cable to the
positive terminal of the discharged battery.
Do not allow the vehicles to touch each other. This
will cause a ground connection, effectively
neutralizing the charging procedure.
Be sure that the booster battery has a 12 volt rating.
4. Attach one end of the remaining cable to the
negative terminal of the booster battery.
Attach the other end of the same cable to a solid
engine ground (such as the air conditioning
compressor bracket or the generator mounting
bracket) of the vehicle with the discharged battery.
The ground connection must be at least 450 mm
(18 in.) from the battery of the vehicle whose battery
is being charged.
WARNING: NEVER ATTACH THE END OF THE
JUMPER CABLE DIRECTLY TO THE NEGATIVE
TERMINAL OF THE DEAD BATTERY.
5. Start the engine of the vehicle with the good battery.
Make sure that all unnecessary electrical
accessories have been turned “OFF".
6. Start the engine of the vehicle with the dead battery.
7. To remove the jumper cables, follow the above directions in reverse order.
Be sure to first disconnect the negative cable from
the vehicle with the discharged battery.


Battery Removal

P1010001

1. Remove negative cable.
2. Remove positive cable (2).
3. Remove retainer screw and rods.
4. Remove retainer.
5. Remove battery.
Battery Installation
1. Install battery.
2. Install retainer.
3. Install retainer screw and rods.
NOTE: Make sure that the rod is hooked on the body
side.
4. Install positive cable.
5. Install negative cable.

Page 2001 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-5
ABBREVIATION CHARTS

Abbreviations Appellation
A/C Air conditioner
A/T Automatic transmission
ACC Accessory
BLK Black
BLU Blue
BRN Brown
CAN Controller Area Network
CEL Check engine lamp
CKP Crankshaft position
CMP Camshaft position
DLC Data link connector
DTC Diagnosis trouble code
DVM Digital voltage meter
ECM Engine control module
ECT Engine coolant temperature
EEPROM Electrically erasable & programmable read only memory
EGR Exhaust gas recalculation
GND Ground
GRY Gray
HO2S Heated Oxygen Sensor
IAT Intake air temperature
IAC Idle air control
IG Ignition
M/T Manual transmission
MAF Mass air flow
MIL Malfunction indicator lamp
OBD On-board diagnostic
ORN Orange
PNK Pink
PROM Programmable read only memory
RED Red
SW Switch
TPS Throttle position sensor
TCM Transmission control module
VCC Voltage Constant Control
VIO Violet
VSS Vehicle speed sensor
WHT White
WOT Wide open throttle
YEL Yellow

Page 2062 of 4264

6E-66 3.5L ENGINE DRIVEABILITY AND EMISSIONS
 Does it rely on some mechanical/vacuum
device to operate?
 Physical:
 Where are the circuit components (componen
t
locators and wire harness routing diagrams):

Are there areas where wires could be
chafed or pinched (brackets or frames)?

Are there areas subjected to extreme
temperatures?

Are there areas subjected to vibration or
movement (engine, transmission or
suspension)?

Are there areas exposed to moisture, road
salt or other corrosives (battery acid, oil o
r
other fluids)?

Are there common mounting areas with
other systems/components?
 Have previous repairs been performed to
wiring, connectors, components or mounting
areas (causing pinched wires between panels
and drivetrain or suspension components
without causing and immediate problem)?
 Does the vehicle have aftermarket or dealer-
installed equipment (radios, telephone, etc.)

Step 2: Isolate the problem
At this point, you should have a good idea of what could
cause the present condition, as well as could not cause
the condition. Actions to take include the following:
 Divide (and separate, where possible) the system
or circuit into smaller sections
 Confine the problem to a smaller area of the
vehicle (start with main harness connections while
removing panels and trim as necessary in order to
eliminate large vehicle sections from furthe
r
investigation)
 For two or more circuits that do not share a
common power or ground, concentrate on areas
where harnesses are routed together o
r
connectors are shared (refer to the following hints)

Hints
Though the symptoms may vary, basic electrical failures
are generally caused by:
 Loose connections:
 Open/high resistance in terminals, splices,
connectors or grounds
 Incorrect connector/harness routing (usually in
new vehicles or after a repair has been made):

 Open/high resistance in terminals, splices,
connectors of grounds
 Corrosion and wire damage:
 Open/high resistance in terminals, splices,
connectors of grounds
 Component failure:
 Opens/short and high resistance in relays,
modules, switches or loads

Aftermarket equipment affecting normal operation
of other systems You may isolate circuits by:
 Unplugging connectors or removing a fuse to
separate one part of the circuit from another part
 Operating shared circuits and eliminating those
that function normally from the suspect circuit
 If only one component fails to operate, begin
testing at the component
 If a number of components do no operate, begin
tests at the area of commonality (such as powe
r
sources, ground circuits, switches or majo
r
connectors)
What resources you should use
Whenever appropriate, you should use the following
resources to assist in the diagnostic process:
 Service manual
 Technical equipment (for data analysis)
 Experience
 Technical Assistance
 Circuit testing tools
5d. Intermittent Diagnosis
By definition, an intermittent problem is one that does
not occur continuously and will occur when certain
conditions are met. All these conditions, however, may
not be obvious or currently known. Generally,
intermittents are caused by:
 Faulty electrical connections and wiring
 Malfunctioning components (such as sticking
relays, solenoids, etc.)
 EMI/RFI (Electromagnetic/radio frequency
interference)
 Aftermarket equipment
Intermittent diagnosis requires careful analysis of
suspected systems to help prevent replacing good
parts. This may involve using creativity and ingenuity to
interpret customer complaints and simulating all
external and internal system conditions to duplicate the
problem.

Page 2067 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
 The diagnostic test has been completed since the
last ignition cycle.
 The diagnostic test has passed during the curren
t
ignition cycle.
 The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
 The diagnostic test has been completed since the
last ignition cycle.
 The fault identified by the diagnostic test is currently
active.
 The fault has been active during this ignition cycle.
 The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
 Vehicle Speed Sensor (VSS)
 Inlet Air Temperature (IAT) Sensor
 Crankshaft Position (CKP) Sensor
 Throttle Position Sensor (TPS)
 Engine Coolant Temperature (ECT) Sensor
 Camshaft Position (CMP) Sensor
 Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
 Idle Air Control (IAC) Valve
 Control module controlled EVAP Canister Purge
Valve
 Electronic Transmission controls
 A/C relays
 VSS output
 MIL control
Refer to ECM and Sensors in General Descriptions.

Page 2208 of 4264

6E-212 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0171 B O2 Sensor System Too
Lean (Bank 1) 44

P0174 B O2 Sensor System Too
Lean (Bank 2) 1. No DTC relating to MAF sensor, IAT sensor, ECT sensor,
TPS, CMP sensor, CKP sensor, VSS, injector control
circuit, ignition control circuit, O2 sensor circuit low voltage
& high voltage (bank 1 & 2) and O2 sensor circuit no
activity (bank 1 & 2).
2. Engine speed is more than 600rpm.
3. Intake air temperature is more than 50C.
4. Engine coolant temperature is between 35C and 120C.
5. Engine load is more than 20%.
6. EVAP purge solenoid valve on-duty is below 100%.
7. Air-fuel ratio correction volume is more than 150%
for 20 seconds. No fail-safe function.




CIRCUIT DESCRIPTION
To provide the best possible combination of driveability,
fuel economy, and emission control, a “closed loop"
air/fuel metering system is used. While in “closed loop,"
the Engine Control Module (ECM) monitors the HO2S
signals and adjusts fuel delivery based upon the HO2S
signal voltages. A change made to fuel delivery will be
indicated by the long and short term fuel trim values
which can be monitored with a Tech 2. Ideal fuel trim
values are around 0%; if the HO2S signals are
indicating a lean condition the ECM will add fuel,
resulting in fuel trim values above 0%. If a rich condition
is detected, the fuel trim values will be below 0%,
indicating that the ECM is reducing the amount of fuel
delivered. If an excessively lean condition is detected,
the ECM will set DTC P0171 or P0174.
The ECM's maximum authority to control long term fuel
trim allows a range between –15% (automatic
transmission) or –12% (manual transmission) and
+20%. The ECM monitors fuel trim under various
engine speed/load fuel trim cells before determining the
status the fuel trim diagnostic.

DIAGNOSTIC AIDS
Check for the following conditions:
 Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
 Damaged harness – Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the HO2S display on the Tech 2 while moving
connectors and wiring harnesses related to the
engine harness. A change in the display will indicate
the location of the fault.

Page 2213 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-217
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0172 B O2 Sensor System Too
Rich (Bank 1) 45
P0175 B O2 Sensor System Too
Rich (Bank 2) 1. No DTC relating to MAF sensor, IAT sensor, ECT sensor,
TPS, CMP sensor, CKP sensor, VSS, injector control
circuit, ignition control circuit, O2 sensor circuit low voltage
& high voltage (bank 1 & 2) and O2 sensor circuit no
activity (bank 1 & 2).
2. Engine speed is more than 600rpm.
3. Intake air temperature is more than 50C.
4. Engine coolant temperature is between 35C and 120C.
5. Engine load is more than 20%.
6. EVAP purge solenoid valve on-duty is below 100%.
7. Air-fuel ratio correction volume is below 50% for 20
seconds. No fail-safe function.


CIRCUIT DESCRIPTION
To provide the best possible combination of driveability,
fuel economy, and emission control, a “closed loop"
air/fuel metering system is used. While in “closed loop,"
the Engine Control Module (ECM) monitors the heated
oxygen sensors (HO2S) signals and adjusts fuel
delivery based upon the HO2S signal voltages.
A
change made to fuel delivery will be indicated by the
long and short term fuel trim values which can be
monitored with a Tech 2. Ideal fuel trim values are
around 0%; if the HO2S signals are indicating a lean
condition the ECM will add fuel, resulting in fuel trim
values above 0%. If a rich condition is detected, the fuel
trim values will be below 0%, indicating that the ECM is
reducing the amount of fuel delivered. If an excessively
rich condition is detected on Bank 1, the ECM will se
t
DTC P0172 or P0175.
The ECM's maximum authority to control long term fuel
trim allows a range between –15% (automatic
transmission) or –12 (manual transmission) and +20%.
The ECM's maximum authority to control short term fuel
trim allows a range between –11% and +20%. The ECM
monitors fuel trim under various engine speed/load fuel
trim cells before determining the status of the fuel trim
diagnostic.

DIAGNOSTIC AIDS
Check for the following conditions:
 Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
 Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the HO2S display on the Tech 2 while moving
connectors and wiring harnesses related to the
engine harness. A change in the display will indicate
the location of the fault.

Page 2301 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-305
Diagnostic Trouble Code (DTC) P1601 (Flash Code 65) CAN Bus Off

Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P1601 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P1601 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
Check any accessory parts which may cause electric
interference.
Was the problem found?
- Remove the
accessory parts
and verify repair Go to Step 5
5
1. Using the Tech 2, ignition "On" and engine "Off".
2. Select "AW30-40LE" in the system selection menu
"Powertrain".
3. Select "Read DTC Info Ordered By Priority" in the
"Diagnositic Trouble Code".
Was the any DTC's P1767 or U2104 stored in this
ignition cycle?
- Refer to
"Automatic
Transmission
Workshop
Manual" & Go to
DTC Chart
P1767 or U2104 Go to Step 6
6
Check for poor/faulty connection at the TCM or ECM
connector. If a poor/faulty connection is found, repair
as necessary.
Was the problem found?
E-60(A)




- Verify repair Go to Step 7

Page 2307 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-311
Diagnostic Trouble Code (DTC) U2104 (Flash Code 67) CAN Bus Reset
Counter Over-Run

Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC U2104 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC U2104 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
1. Using the Tech 2, ignition "On" and engine "Off".
2. Select "AW30-40LE" in the system selection menu
"Powertrain".
3. Select "Read DTC Info Ordered By Priority" in the
"Diagnositic Trouble Code".
Was the any DTC's P1767 or U2104 stored in this
ignition cycle?
- Refer to
"Automatic
Transmission
Workshop
Manual" & Go to
DTC Chart
P1767 or U2104 Go to Step 5
5
Check any accessory parts which may cause electric
interference.
Was the problem found?
- Remove the
accessory parts
and verify repair Go to Step 6
6
Check for poor/faulty connection at the TCM or ECM
connector. If a poor/faulty connection is found, repair
as necessary.
Was the problem found?
E-60(A)




- Verify repair Go to Step 7

Page 2337 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-341
SURGES AND/OR CHUGS SYMPTOM
DEFINITIONS: Engine power variation under steady
throttle or cruise. Feels like the vehicle speeds up and
slows down with no charge in the accelerator pedal.




time rpm
Surge


Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?
- Verify repair Go to Step 3
3
Was a visually/physical check performed?
- Go to Step 4 Go to Visual /
physical Check
4
Be sure that the driver understands transmission
torque converter clutch and A/C compressor operation
as explained in the owner's manual. Inform the
customer how the torque converter clutch (TCC) (if
A/T model) and the A/C clutch operate.
Is the customer experiencing a normal condition?
- System OK Go to Step 5
5
1. Using the Tech 2, ignition "On" and engine "On".
2. Monitor the "Mass Air Flow" in the data display.
Does the Tech 2 indicate correct "Mass Air Flow" as
shown in the following graph, when engine speed is
increasing little by little?


Characteris tic of MAF Sens or -Ref erence (No Engine Load)-
0 5 10 15 20 25 30 35 40 45 50
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Eng i ne Speed ( r pm) ( T ech2 R eadi ng )
Mass Air Flow (g/s)
( T ec h2 R eadi ng)
- Go to Step 7 Go to Step 6

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 ... 190 next >