sensor MITSUBISHI MONTERO 1991 Service Manual

Page 847 of 1333

Terminal
Application Numbers
Total Resistance .................... 1 & 4
Variable Resistance
Montero, Pickup 3.0L,
& Ram-50 3.0L .................... 1 & 3
All Others ........................ 2 & 4
\
\
\
\

VEHICLE SPEED SENSOR
1) Vehicle Speed Sensor (VSS) is located in speedometer
assembly. Connect an ohmmeter between sensor terminals on back of
instrument panel. See Fig. 7 or 8.
2) Rotate speedometer cable. For each revolution of
speedometer cable, sensor should make and break continuity 4 times. If
ohmmeter reading does not fluctuate between continuity and no
continuity or if sensor does not make and break continuity 4 times for
each revolution, replace sensor.
Fig. 7: VSS Sensor Connector Term. ID (Montero)
Courtesy of Mitsubishi Motor Sales of America.
Fig. 8: VSS Sensor Connector Term. ID (P/U & Ram 50)
Courtesy of Mitsubishi Motor Sales of America.
MOTORS, RELAYS & SOLENOIDS

Page 854 of 1333

right several times. Start engine, and turn steering wheel back and
forth to raise fluid temperature to approximately 122-140F (50-60C).
3) With engine idling, gradually close shutoff valve of
pressure gauge to increase hydraulic pressure. If idle speed does not
increase 200-250 RPM when fluid pressure reaches 213-284 psi (15-20
kg/cm
), replace power steering idle-up switch.
4) Gradually open shutoff valve. If engine speed does not
return to curb idle speed between 100-142 psi (7-10 kg/cm
), replace
power steering idle-up switch. Remove testing equipment. Bleed air
from system as in step 2).
IGNITION SYSTEM
NOTE: For basic ignition checks, see F - BASIC TESTING article in
ENGINE PERFORMANCE Section.
TIMING CONTROL SYSTEMS
Crank Angle Sensor
Crank angle sensor is located inside distributor on SOHC
engines and is attached to cylinder head on DOHC engines. If
malfunction occurs, Code 22 will set. For testing procedure, see
appropriate G - TESTS W/CODES article in the ENGINE PERFORMANCE
Section.
EMISSION SYSTEMS & SUB-SYSTEMS
EXHAUST GAS RECIRCULATION (EGR)
System Testing (Federal)
1) Disconnect Green-striped hose from throttle body, and
connect vacuum pump to hose end. Plug nipple where hose was connected
to throttle body. When engine is cold, 122
F (50C) or less, and at
idle, apply vacuum to disconnected hose. If idle does not change and
vacuum bleeds down, system is okay.
2) When engine is hot, 205
F (95C), and at idle, apply 1.8
in. Hg. If idle does not change and vacuum holds, system is okay.
Using a vacuum pump, apply 7.7 in. Hg. If idle becomes unstable or
engine stalls (and vacuum holds), system is okay.
System Testing (California)
1) Connect vacuum "T" fitting into Green-striped hose from
EGR valve, and connect vacuum gauge to vacuum tee. When engine coolant
temperature is 68
F (20C) or less and engine is idling, snap throttle
open to race engine. If no change in vacuum reading is detected on
gauge, system is okay.
2) When engine coolant temperature is 158
F (70C) or more
and engine is idling, snap throttle open to race engine. If vacuum
increases to 3.9 in. Hg or higher, system is okay.
3) Using vacuum pump, apply specified vacuum to open EGR
valve. See EGR VALVE SPECIFICATIONS table. If idle becomes unstable or
engine stalls, system is okay.
EGR Control Solenoid Valve (Pickup & Ram-50, California)
1) EGR control solenoid valve is located near left shock
tower. Label and disconnect vacuum hoses and wiring harness from
solenoid valve.
2) Connect hand vacuum pump to vacuum nipple where Green-
striped vacuum hose was connected. Apply vacuum and ensure vacuum does
not hold. Apply battery voltage to one terminal of solenoid, and
ground other. Ensure vacuum holds.

Page 855 of 1333

3) Using an ohmmeter, measure resistance between terminals of
solenoid valve. At room temperature, reading should be 36-44 ohms.
Replace solenoid if not to specification.
NOTE: EGR temperature sensor only determines if EGR is operating.
An inoperative sensor will not affect driveability or
exhaust emissions.
EGR Temperature Sensor (California)
1) Remove EGR temperature sensor from EGR valve. Place EGR
temperature sensor in water. While increasing water temperature,
measure resistance between wire terminals.
2) At a temperature of 122
F (50C), resistance should be 60,
000-80,000 ohms. At 212F (100C), resistance should be 11,000-14,000
ohms. Replace EGR temperature sensor if resistance differs
significantly from specifications.
EGR Valve
1) Remove EGR valve. Check valve for sticking, carbon
deposits and damage. Clean valve with solvent if necessary. Apply 19.8
in. Hg to valve diaphragm. If valve does not hold vacuum, replace
valve.
2) Apply specified vacuum to valve diaphragm. See CLOSED IN.
HG in EGR VALVE SPECIFICATIONS table. If valve begins to open below
specification, replace valve.
3) Apply specified vacuum to valve diaphragm. See OPEN IN. HG
in EGR VALVE SPECIFICATIONS table. If valve is not completely open at
or above specification, replace valve.
EGR VALVE SPECIFICATIONS TABLE
\
\
\
\
\
\

Application Closed Open
In. Hg In. Hg
Montero ....................... 2.4 ........... 6.7
Pickup & Ram-50 ............... 1.2 ........... 9.4
\
\
\
\
\
\

FUEL EVAPORATION
System Test
1) Disconnect Red-striped purge hose from throttle body, and
connect to hand vacuum pump. Plug nipple on throttle body where purge
hose was removed.
2) With engine coolant temperature at 140
F (60C) or less
and engine idling, apply 14.8 in. Hg. Vacuum should hold. Raise engine
speed to 3000 RPM and again apply 14.8 in. Hg. Vacuum should hold.
3) With engine coolant temperature at 158
F (70C) or more
and engine idling, apply 14.8 in. Hg. Vacuum should hold. Turn engine
off. Start engine and within 3 minutes of starting engine, apply
vacuum. Vacuum should bleed down.
4) With engine running for more than 3 minutes after
starting, raise engine speed to 3000 RPM and apply 14.8 in. Hg. Vacuum
should hold momentarily and then bleed down.
NOTE: In step 4), vacuum should bleed down continuously if vehicle
is at an altitude of 7200 ft. (2200 m) or higher or if
intake air temperature is 122
F (50C) or higher.
Purge Control Solenoid Valve
1) Purge control solenoid valve is located near left shock
tower. Label and disconnect both vacuum hoses from solenoid valve.
Disconnect electrical connector. Connect hand vacuum pump to solenoid

Page 870 of 1333

\003
G - T E STS W /C O DES
1991 Mitsubishi Montero
1990-91 ENGINE PERFORMANCE
Chrysler Motors/Mitsubishi Self-Diagnostics
Dodge; Colt, Colt Vista, Colt Wagon
Eagle; Summit
Mitsubishi; Eclipse, Galant, Mirage, Montero, Precis (1990)
Plymouth; Colt, Colt Vista, Colt Wagon
INTRODUCTION
If no faults were found while performing F - BASIC TESTING,
proceed with self-diagnostics. If no fault codes or only pass codes
are present after entering self-diagnostics, proceed to H - TESTS W/O
CODES article for diagnosis by symptom (i.e. ROUGH IDLE, NO START,
etc.).
SELF-DIAGNOSTIC SYSTEM
Use Chrysler Motors code charts when using Chrysler's
Diagnostic Readout Box (DRB-II). If DRB-II is not available or if
working on a Mitsubishi Motors vehicle, system diagnosis can only be
accomplished using a voltmeter or appropriate scan tester. To diagnose
Chrysler Motors and Mitsubishi models using a voltmeter, see
ENTERING ON-BOARD DIAGNOSTICS (USING VOLTMETER) in this article.
SYSTEM DIAGNOSIS
SYSTEM DIAGNOSIS DESCRIPTION
NOTE: Chrysler Motors recommends using DRB-II to diagnose system.
Voltmeter usage has limited diagnostic capabilities but can
be used if DRB-II is not available or if working on a
Mitsubishi Motors vehicle.
The Engine Control Unit (ECU) monitors several different
engine control system circuits. If an abnormal input signal occurs, a
fault code is stored in ECU memory and given a fault code number. Each
circuit has its own fault number and message. A specific fault code
indicates a particular system failure, but it DOES NOT indicate that
cause of failure is necessarily within system. A fault code DOES NOT
condemn any specific component; it simply points out a probable
malfunctioning area. If a critical fault code is set, the ECU will
turn on CHECK ENGINE light. All fault codes except speed sensor are
considered critical.
Fault codes can be confirmed by using a voltmeter on Chrysler
Motors and Mitsubishi models or Chrysler's Diagnostic Readout Box
(DRB-II) on Chrysler Motors vehicles. See
ENTERING ON-BOARD DIAGNOSTICS (USING VOLTMETER) or ENTERING ON-BOARD
DIAGNOSTICS (USING DRB-II) in this article. By using the DRB-II, the
self-diagnostic capabilities of this system can simplify testing and
reduce diagnostic time.
System malfunctions encountered are identified as either hard
failures or intermittent failures as determined by the ECU.
HARD FAILURES
Hard failures cause CHECK ENGINE light to illuminate and
remain on until the malfunction is repaired. If light comes on and

Page 871 of 1333

remains on (light may flash) during vehicle operation, cause of
malfunction must be determined by using DIAGNOSTIC FAULT CHARTS (if
testing with voltmeter) or diagnostic CODE CHARTS (if testing with
DRB-II). If a sensor fails, ECU will use a substitute value in its
calculations to continue engine operation. In this condition, vehicle
is functional, but loss of good driveability may result.
INTERMITTENT FAILURES
Intermittent failures may cause CHECK ENGINE light to flicker
or illuminate and go out after the intermittent fault goes away.
However, the corresponding trouble code will be retained in ECU
memory. If related fault does not reoccur within a certain time frame,
related trouble code will be erased from ECU memory. Intermittent
failures may be caused by a sensor, connector or wiring related
problems. See INTERMITTENTS in H - TESTS W/O CODES article.
PRETEST INSPECTION
Before proceeding with diagnosis, the following precautions
must be followed:
* Vehicle must have a fully charged battery and functional
charging system.
* Visually inspect connectors and circuit wiring being worked
on.
* DO NOT disconnect battery or ECU. This will erase any fault
codes stored in ECU.
* DO NOT cause short circuits when performing electrical tests.
This will set additional fault codes, making diagnosis of original
problem more difficult.
* DO NOT use a test light in place of a voltmeter.
* When checking for spark, ensure coil wire is NO more than
1/4" from ground. If coil wire is more than 1/4" from ground,
damage to vehicle electronics and/or ECU may result.
* DO NOT prolong testing of fuel injectors. Engine may
hydrostatically (liquid) lock.
* When a vehicle has multiple fault codes, always repair lowest
number fault code first.
* If DRB-II is being used to diagnose system, always perform
verification test after repairs are made.
ENTERING ON-BOARD DIAGNOSTICS (USING VOLTMETER)
1) Before entering on-board diagnostics, refer to PRETEST
INSPECTION in this article. Turn ignition switch to OFF position.
Locate self-diagnostic connector. See SELF-DIAGNOSTIC TEST CONNECTOR
LOCATION table. Using an analog voltmeter, connect voltmeter positive
lead to self-diagnostic connector terminal No. 1 and negative lead to
terminal No. 12 (ground). See Fig. 6.
2) Turn ignition switch to ON position and disclosure of ECU
memory will begin. If 2 or more systems are non-functional, they are
indicated by order of increasing code number. Indication is made by
12-volt pulses of voltmeter pointer. A constant repetition of short
12-volt pulses indicates system is normal. If system is abnormal,
voltmeter will pulse between zero and 12 volts.
3) Signals will appear on voltmeter as long and short 12-volt
pulses. Long pulses represent tens; short pulses represent ones. For
example 4 long pulses and 3 short pulses indicates Code 43. See

Page 874 of 1333

PROCEDURE chart after repairs. Ensure charts apply to engine
being tested.
DRB-II KEY FUNCTIONS
* YES or Down Arrow & NO or Up Arrow
Keys will move lines on screen up or down allowing you to
choose an item or scroll through all selections
available.
* F1 & F2 Keys
Keys are used to scroll through sensor displays.
* ATM Key
Key will return you to previous screen.
* ENTER Key
Allows you to select a test or display. The flashing
arrow must be on the display you wish to select. Pressing
ENTER in the sensor state will cause display to change
from a 3-line display to a 1-line display.
* F3 Key
Key is used to display a help screen. This key may be
used at any time.
* Number Keys
Keys are used for choosing a display or test by the
number for the test or display.
* READ/HOLD Key
Key is used to freeze any sensor display.
* MODE & ATM Key
Pressing MODE and ATM key at the same time will cause
DRB-II to reset to copyright screen.
ENTERING ON-BOARD DIAGNOSTICS (USING DRB-II)
* PLEASE READ THIS FIRST *
1) Before entering on-board diagnostics, refer to PRETEST
INSPECTION in this article. Turn ignition off. Locate self-diagnostic
connector. See SELF-DIAGNOSTIC TEST CONNECTOR LOCATION table in this
article. Using appropriate Mitsubishi cartridge and adapter, connect
DRB-II to diagnostic connector.
2) Ensure all accessories are off. Turn ignition on. All
character positions will illuminate and copyright information will
appear on screen for a few seconds.
3) If DRB-II screen displays an error message, refer to DRB-
II ERROR SCREENS in this article. The DRB-II will offer 4 menus:
VEHICLES TESTED, HOW TO USE, CONFIGURE and SELECT VEHICLE.
VEHICLES TESTED
Press "1" key or ENTER key when VEHICLES TESTED appears on
DRB-II. DRB-II shows models covered by cartridge. Screen will display
for 5 seconds and return to DRB-II menu. To return to DRB-II menu
sooner, press ATM key.
HOW TO USE
Press "2" key or press down arrow to display HOW TO USE
option and press ENTER. Press and hold F3 key. DRB-II displays
instructions for cartridge usage. To return to DRB-II menu, press ATM
key.
CONFIGURE

Page 875 of 1333

Press "3" key or press down arrow to display CONFIGURE option
and press ENTER. Configure allows user to customize DRB-II display.
For example, If metric system is more useful, select METRIC from the
menu. All selections in CONFIGURE option remain active until user
changes selection.
SELECT VEHICLE
1) This allows the user to enter information about vehicle
being tested. Usually, this option has more than one display screen.
Use ENTER key to enter vehicle information.
2) When all information about vehicle is entered, DRB-II will
display an information summary the technician has entered. DRB-II will
show an additional option marked CONFIRM. If information is correct,
press CONFIRM. DRB-II will display MAIN MENU.
MAIN MENU
The MAIN MENU represents all diagnostic functions available.
Functions are SYSTEM TESTS, READ FAULTS, STATE DISPLAYS, ACTUATOR
TESTS and ADJUSTMENTS. SYSTEM TESTS is NOT available.
READ FAULTS
This allows technician to read fault codes stored in ECU
memory.
STATE DISPLAYS
1) This allows technician to view conditions at signal level.
The 2 types of signals are analog and digital. Analog signals are
monitored at pins corresponding to vehicle harness splices (e.g. fuel
pump relay).
2) Digital signals correspond to data transmitted by the
system controllers. Both signals are displayed in common units (e.g.
temperature). Use up and down arrow keys on DRB-II to scroll through
displays available.
3) The following ENGINE state displays are available on DRB-
II:
* Module Information - This mode allows technician to read ECU
part number and application.
* Engine Sensors - This mode allows technician to look at
various engine sensors during engine operation.
* Inputs/Outputs - This mode allows technician to read input
and output states of various switches and sensors.
* Custom Display - This screen allows technician to set up
his/her own custom display. Two custom display screens can be
programmed into DRB-II.
* Minimum/Current/Maximum - The MIN/CURRENT/MAX display shows a
history of conditions for a specific sensor. When this option
is selected, maximum, current (static) and minimum values can\
be displayed for a specific sensor. To reset sensors to a
zero value, simply press ENTER key. This display may be used
to isolate intermittent faults. The MIN/CURRENT/MAX display
allows technician to observe operation of 6 different sensor
values. Information is displayed as a 3-digit number. The
first value displayed is the minimum reading, the second
number is the current reading and third valve is the maximum
reading. Typically sensors range between 2-252. Values less
than 2 or greater than 252 will usually indicate that a

Page 876 of 1333

sensor is shorted or disconnected. Watch minimum and maximum
values to help diagnose intermittent problems.
* Monitors - This screen shows technician sensors and system
controllers which affect fuel control, spark advance, RPM and
A/C relay. There are 4 different screens available. As an
example, screen No. 1 will show: airflow sensor, O2 sensor,
battery and fuel injector. All of these inputs affect fuel
control.
Actuator Tests
This mode allows technician to actuate injectors, fuel pump,
purge control, EGR solenoid, fuel pressure solenoid and wastegate.
Adjustments
This option provides a means for erasing fault code
information stored in ECU. Follow DRB-II instructions to accomplish
this task.
DRB-II ERROR SCREENS
ERROR SCREENS
SYSTEM FAULT ROM CHECK SUM XXXX Message
Cartridge or DRB-II failure.
SYSTEM FAULT KEYBOARD FAILURE Message
Restart DRB-II. Ensure DRB-II keys are not pressed during
power up. Another possibility is DRB-II failure.
SYSTEM FAULT ROM FAILURE XXXX
DRB-II failure.
SYSTEM FAULT EEPROM FAILURE
DRB-II failure.
SYSTEM FAILURE, COMMUNICATION FAILURE, REFER TO DIAGNOSTIC
PROCEDURES Message
Perform diagnostic connector test. See DRIVEABILITY TEST No.
8 (DR-8). Failure of Mitsubishi Motor Corporation (MMC) adapter is
another possibility.
SYSTEM FAILURE NO RESPONSE FROM ADAPTER or SYSTEM FAILURE
ADAPTER REQUIRED TO DIAGNOSE WITH THIS CARTRIDGE Message
Ensure you are using a correct Mitsubishi Motor Corporation
cartridge. Failure of MMC adapter is another possibility.
Fig. 3: 10-Way ECU Connector
Courtesy of Chrysler Motors.

Page 877 of 1333

Fig. 4: 18-Way ECU Connector
Courtesy of Chrysler Motors.
Fig. 5: 24-Way ECU Connector
Courtesy of Chrysler Motors.
Fig. 6: Self-Diagnostic Connector Terminal Identification
Courtesy of Mitsubishi Motor Sales of America.
FAULT CODES
FAULT CODES TABLE\
\
\
\
\
\

Fault Code System Fault Description
11 .................... Open or short in O2 sensor circuit
12 ............... Open or short in airflow sensor circuit
13 ...... Open or short in intake air temp. sensor circuit
14 .......................... Open or short in TPS circuit
15 (1) .... Open or short in motor position sensor circuit
21 ......... Open or short in coolant temp. sensor circuit
22 ........ No voltage change in crank angle sensor signal
23 ............... No voltage change in TDC sensor circuit
24 ( 2) .. No voltage change in vehicle speed sensor signal
25 ........... Open or short in barometric pressure sensor
31 ( 3) ........ Open or short in detonation sensor circuit
41 ..................... Open or short in injector circuit
42 .............. Open or short in fuel pump drive circuit
43 ( 4) ......... Open or short in EGR temp. sensor circuit

Page 886 of 1333

Fig. 16: Circuit Diagram NS-4 (1.5L)
Fig. 17: Flow Chart NS-4 (1.5L)
NS-5: TESTING CRANK ANGLE SENSOR CIRCUIT - 1.5L

Page:   < prev 1-10 ... 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 ... 210 next >