wheel MITSUBISHI MONTERO 1998 Owner's Manual

Page 140 of 1501

* Check for short in center differential lock switch circuit.
* Check for faulty center differential lock switch.
* Check for short in ECU circuit or faulty ECU.
* Check for short in indicator control unit circuit or faulty
4WD indicator control unit.
Repair wiring harness or replace component as necessary. See
WIRING DIAGRAMS .
5) If 4WD indicator light does not come on with transfer
shift lever in "4H" position, repair wiring harness between 4WD
indicator control unit and center differential lock switch. Check for
faulty 4WD indicator control unit.
6) If 4WD indicator light does not come on with transfer
shift lever in "4H" position, repair wiring harness between 4WD
indicator control unit and free wheel engage switch. See
WIRING DIAGRAMS . Check ground wire at engage switch. Check for faulty
free wheel engage switch.
DTC 27: REAR DIFFERENTIAL LOCK DETECTION SWITCH (WITH
DIFFERENTIAL LOCK)
NOTE: DTC is set if ECU detects an open circuit in rear
differential lock detection switch system.
1) Start engine. Ensure rear differential indicator light
comes on when top of rear differential lock switch (located below
radio) is pushed. If indicator light comes on, go to step 3). If
indicator light does not come on, go to next step.
2) Turn engine off. Check wiring harness between rear
differential lock control unit and rear differential lock switch. See
WIRING DIAGRAMS . Check rear differential lock control unit power
circuit. See REAR DIFFERENTIAL CONTROL UNIT under COMPONENT TESTS. If
circuit is okay, replace rear differential lock control unit.
3) Disconnect ECU 22-pin connector. Turn ignition on. Using
DVOM, check voltage between terminal No. 46 and ground. See Figs. 5-6.
When rear differential is locked, battery voltage should not be
present. When rear differential is unlocked, battery voltage should be
present. If voltage is as specified, go to next step. If voltage is
not as specified, repair connectors and related wiring harness between
ECU and rear differential lock switch. See WIRING DIAGRAMS.
4) Check and repair ECU 22-pin connector. If connector is
okay, replace ECU.
DTC 27: REAR DIFFERENTIAL LOCK DETECTION SWITCH (WITHOUT
DIFFERENTIAL LOCK)
NOTE: DTC is set if ECU detects an interruption of battery voltage
at ECU terminal No. 46.
1) Check fuse No. 18 in main fuse block. If fuse is blown,
correct cause of blown fuse, and replace fuse. If fuse is okay, go to
next step.
2) Disconnect ECU 22-pin connector. Turn ignition on. Using
DVOM, check voltage between terminal No. 46 and ground. See Figs. 5-6.
If battery voltage is present, go to next step. If battery voltage is
not present, check and repair connectors and related wiring harness
between ECU and fuse No. 18. See WIRING DIAGRAMS.
3) Check and repair ECU 22-pin connector. If connector is
okay, replace ECU.
DTC 32: "G" SENSOR SYSTEM
NOTE: DTC is set if ECU detects "G" sensor output voltage less

Page 146 of 1501

Fig. 15: Rear Differential Control Unit Pin Voltage Chart
Courtesy of Mitsubishi Motor Sales of America.
WHEEL SPEED SENSOR (WSS)
WSS Resistance Test
1) Before testing WSS resistance, ensure pole piece-to-WSS
tip is clean. Check WSS pole piece for damage. If pole piece is
damaged, replace WSS.
2) Disconnect WSS connector. Inspect WSS wiring harness for
broken and pinched wires. See WIRING DIAGRAMS. Repair harness as
necessary. If harness is okay, go to next step.
3) Using ohmmeter, check resistance across WSS terminals.
Resistance for front WSS should be 1170-1350 ohms. Resistance for rear
WSS should be 1300-1500 ohms. If resistance is as specified, go to
GROUND CIRCUIT TEST. If resistance is not as specified, replace WSS.
Ground Circuit Test
Disconnect WSS wiring harness connector. Check resistance
between each WSS terminal and WSS housing. Resistance should be more
than 100,000 ohms. If resistance is not as specified, replace WSS.
REMOVAL & INSTALLATION
ELECTRONIC CONTROL UNIT (ECU)
Removal & Installation
1) ECU is located behind right rear quarter panel trim. See
Fig. 16 . Disconnect negative battery cable. Remove quarter panel
mounti ng screws and trim clip.
2) Carefully remove quarter panel trim. Disconnect ECU wiring
harness connector. Remove ECU mounting bolts/nuts and ECU. To install,
reverse removal procedure.

Page 148 of 1501

Fig. 17: Identifying Hydraulic Unit Brakeline Connections
Courtesy of Mitsubishi Motor Sales of America.
WHEEL SPEED SENSOR (WSS)

Page 149 of 1501

Removal & Installation
Disconnect WSS connector. Remove WSS bolts. Remove WSS from
vehicle. To install, reverse removal procedure. Sensors are not
interchangeable. Adjust wheel WSS-to-rotor gap. See WHEEL SPEED SENSOR
(WSS) under ADJUSTMENTS. To complete installation, reverse removal
procedure. Tighten WSS bolts to specification. See
TORQUE SPECIFICATIONS .
WHEEL SENSOR ROTOR
Removal & Installation
Remove brake disc. Remove disc assembly. Remove wheel
bearings. Remove axle hub. Remove bolts attaching sensor rotor to hub
assembly. To install, reverse removal procedure.
OVERHAUL
HYDRAULIC UNIT
DO NOT attempt to overhaul or disassemble hydraulic unit. If
hydraulic unit is defective, replace entire assembly.
TORQUE SPECIFICATIONS
TORQUE SPECIFICATIONS\
\
\
\
\
\
\

Application INCH Lbs. (N.m)\
"G" Sensor Mounting Bolt ................................. 80 (9.0)\
Wheel Speed Sensor (WSS) Bolt .................... 84-120 (9.5-14.6\
)
\
\
\
\
\
\
\

WIRING DIAGRAMS

Page 161 of 1501

1) Check input speed sensor. See INPUT SPEED SENSOR under
COMPONENT TESTING. If resistance is as specified, reconnect speed
sensor connector and go to next step. If resistance is not as
specified replace input speed sensor and recheck DTCs.
2) Connect voltmeter between solenoid and sensor connector
terminals No. 9 and No. 10. See Fig. 9. Lift and support vehicle to
allow drive wheels to spin freely. With transmission in "D" position,
engine at 1000 RPM and wheel speed at 19 MPH (30 km/h). Measured
voltage should be .3-2.5 volts.
3) If voltage is as specified, go to next step. If voltage is
not as specified, replace input speed sensor. If DTC still exists,
check speed sensor rotor. See MITSUBISHI R4AW3 & V4AW3 OVERHAUL
article. If DTC still exists after speed sensor rotor is replaced,
check for noise interference and repair.
4) Check and repair wiring harness and connectors between
input speed sensor and TCM. If wiring is okay, recheck DTC. If DTC
still exists, replace TCM.
Fig. 9: Identifying Sensor & Solenoid Connector Terminals
Courtesy of Mitsubishi Motor Sales of America.
DTC 32: OUTPUT SPEED SENSOR
1) Check output speed sensor. See OUTPUT SPEED SENSOR under
COMPONENT TESTING. If resistance is as specified, reconnect speed
sensor connector and go to next step. If resistance is not as
specified replace output speed sensor and recheck DTCs.
2) Connect voltmeter between solenoid and sensor connector
terminals No. 3 and No. 4. See Fig. 9. Lift and support vehicle to
allow drive wheels to spin freely. With transmission in "D" position,
engine at 1000 RPM and wheel speed at 19 MPH (30 km/h). Measured

Page 162 of 1501

voltage should be .3-2.5 volts.
3) If voltage is as specified, go to next step. If voltage is
not as specified, replace the output speed sensor. If DTC still
exists, check speed sensor rotor. See MITSUBISHI R4AW3 & V4AW3
OVERHAUL article. If DTC exists after speed sensor rotor is replaced,
check for noise interference and repair.
4) Check and repair wiring harness and connectors between
output speed sensor and TCM. If wiring is okay, recheck DTCs. If DTCs
still exists, replace TCM.
DTC 41 & 42: OPEN OR SHORT IN SOLENOID NO. 1 CIRCUIT
NOTE: A stuck solenoid will not set a DTC. DTCs are only set for
circuit malfunctions, not mechanical failures.
1) Disconnect solenoid and sensor connector. Using ohmmeter,
check resistance between solenoid connector terminal No. 6 and ground.
See Fig. 9 . Resistance should be 11-15 ohms at 77
F (25C). If
resistance is as specified, go to next step. If resistance is not as
specified, replace solenoid No. 1 and recheck DTC.
2) Check wiring harness and connectors between solenoid No. 1
and TCM. If wiring and solenoid No. 1 is okay, replace TCM.
DTC 43 & 44: OPEN OR SHORT IN SOLENOID NO. 2 CIRCUIT
NOTE: A stuck solenoid will not set a DTC. DTCs are only set for
circuit malfunctions, not mechanical failures.
1) Disconnect solenoid and sensor connector. Using ohmmeter,
check resistance between solenoid connector terminal No. 7 and ground.
See Fig. 9 . Resistance should be 11-15 ohms at 77
F (25C). If
resistance is as specified, go to next step. If resistance is not as
specified, replace solenoid No. 2 and recheck DTC.
2) Check wiring harness and connectors between solenoid No. 2
and TCM. If wiring and solenoid No. 2 is okay, replace TCM.
DTC 47 & 48: OPEN OR SHORT IN LOCK-UP SOLENOID CIRCUIT
NOTE: A stuck solenoid will not set a DTC. DTCs are only set for
circuit malfunctions, not mechanical failures.
1) Disconnect solenoid and sensor connector. Using ohmmeter,
check resistance between solenoid connector terminal No. 8 and ground.
See Fig. 9 . Resistance should be 11-15 ohms at 77
F (25C). If
resistance is as specified, go to next step. If resistance is not as
specified, replace lock-up solenoid and recheck DTC.
2) Check wiring harness and connectors between lock-up
solenoid and TCM. If wiring and lock-up solenoid is okay, replace TCM.
DTC 49: TORQUE CONVERTER CLUTCH (TCC) ENGAGEMENT MALFUNCTION
1) Using scan tool, verify vehicle tachometer and scan tool
vehicle RPM values are identical. If tachometer values are identical,
go to next step. If tachometer values are different, test ignition
signal circuit. See DTC 21 & 22: SHORT OR OPEN IN IGNITION SIGNAL
CIRCUIT.
2) Lift and support vehicle to allow drive wheels to spin
freely. With transmission in "D" position, run engine to 1300-1900
RPM. Verify scan tool and speedometer read 31 MPH (50 km/h). If values\
are identical, go to next step. If values are different, test input
speed sensor. See DTC 31: INPUT SPEED SENSOR.
3) Check lock-up solenoid for proper operation. See SOLENOIDS

Page 163 of 1501

under COMPONENT TESTING. If lock-up solenoid is okay, go to next step.
If lock-up solenoid is bad, replace and retest system.
4) Check wiring harness and connectors between lock-up
solenoid and TCM. If wiring harness and connectors are okay, check TCC
engagement hydraulic pressure, valve body malfunction or TCC slipping.
DTC 50: TCC DISENGAGEMENT MALFUNCTION
1) Using scan tool, verify vehicle tachometer and scan tool
vehicle RPM values are identical. If tachometer values are identical,
go to next step. If tachometer values are different, test ignition
signal circuit. See DTC 21 & 22: SHORT OR OPEN IN IGNITION SIGNAL
CIRCUIT.
2) Lift and support vehicle to allow drive wheels to spin
freely. With transmission in "D" position, run engine to 1300-1900
RPM. Verify scan tool and speedometer read 31 MPH (50 km/h). If values\
are identical, go to next step. If values are different, test input
speed sensor. See DTC 31: INPUT SPEED SENSOR.
3) Check lock-up solenoid for proper operation. See SOLENOIDS
under COMPONENT TESTING. If lock-up solenoid is okay, go to next step.
If lock-up solenoid is bad, replace and retest system.
4) Check wiring harness and connectors between lock-up
solenoid and TCM. If wiring harness and connectors are okay, check
valve body malfunction or TCC sticking.
DTC 51: 1ST GEAR RATIO SIGNAL INCORRECT
1) If DTC 31 is set, go to DTC 31: INPUT SPEED SENSOR. If DTC
31 is not set and DTC 32 is set, go to DTC 32: OUTPUT SPEED SENSOR. If
neither DTC 31 nor DTC 32 is set, go to next step.
2) Test input speed sensor. See INPUT SPEED SENSOR under
COMPONENT TESTING. If resistance is as specified, go to next step. If
resistance is not as specified, replace input speed sensor and recheck
DTC. If DTC still exists, go to step 5).
3) Test output speed sensor. See OUTPUT SPEED SENSOR under
COMPONENT TESTING. If resistance is as specified, go to next step. If
resistance is not as specified, replace output speed sensor and
recheck DTC. If DTC still exists, go to step 5).
4) If referenced here from another DTC, go back to referenced
DTC. Check No. 2 one-way clutch system. See NO. 2 ONE-WAY CLUTCH in
MITSUBISHI R4AW3 & V4AW3 OVERHAUL article.
5) Check output speed sensor and No. 2 speed sensor shielding
wire. Repair as necessary. If shielding wire is okay, recheck DTC. If
DTC still exists, replace sensor rotor. If DTC still exists after
sensor rotor is replaced, check for interference noise and repair.
DTC 52: 2ND GEAR RATIO SIGNAL INCORRECT
If DTC 51 is set also, go to DTC 51: 1ST GEAR RATIO SIGNAL
INCORRECT test. If DTC 51 is not set, check 2nd brake and No. 1 one-
way clutch systems for a mechanical failure. See 2ND BRAKE and NO. 1
ONE-WAY CLUTCH in MITSUBISHI R4AW3 & V4AW3 OVERHAUL article.
DTC 53: 3RD GEAR RATIO SIGNAL INCORRECT
If DTC 51 is set also, go to DTC 51: 1ST GEAR RATIO SIGNAL
INCORRECT test. If DTC 51 is not set, check direct clutch system for a
mechanical failure. See DIRECT CLUTCH in MITSUBISHI R4AW3 & V4AW3
OVERHAUL article.
DTC 54: 4TH GEAR RATIO SIGNAL INCORRECT

Page 169 of 1501

\b \
\
\
 \
\
 \
\



14  No. 1 Shift Solenoid  In 1st Or 2nd  Battery 
\b
 \
\
\
 \
\
 \
\



14  No. 1 Shift Solenoid  In 3rd Or 4th Gear  0 Volts 
\b
 \
\
\
 \
\
 \
\



15  Power Supply  Ignition ON  Battery 
\b
 \
\
\
 \
\
 \
\



15  Power Supply  Ignition OFF  0 Volts 
\b
 \
\
\
 \
\
 \
\



16  No. 2 Shift Solenoid  In 2nd Or 3rd Gear  Battery 
\b
 \
\
\
 \
\
 \
\



16  No. 2 Shift Solenoid  In 1st Or 4th Gear  0 Volts 
\b
 \
\
\
 \
\
 \
\



17  Diagnostic Test Mode  Not Specified Not Specified
\b
 \
\
\
 \
\
 \
\



18  Diagnostic Output  Scan Tool Not  Battery 

  Connected  
\b
 \
\
\
 \
\
 \
\



21  Oil Temp Warning Lamp Normal Temp. Range  0 Volts 
\b
 \
\
\
 \
\
 \
\



21  Oil Temp Warning Lamp For 5 Seconds After  Battery 

  Ign. Is On  
\b
 \
\
\
 \
\
 \
\



22  Oil Temp Sensor  Temp @ 248F (120C)  About 1.9 
\b
 \
\
\
 \
\
 \
\



22  Oil Temp Sensor  Temp @ 302F (150C)  About 1.1 
\b
 \
\
\
 \
\
 \
\



23  4WD Low Range Switch  4WD Lever In 4H-Lock  Battery 
\b
 \
\
\
 \
\
 \
\



23  4WD Low Range Switch  4WD Lever In 4L-Lock  0 Volts 
\b
 \
\
\
 \
\
 \
\



24  Neutral Safety Switch In "R" Position  Battery 
\b
 \
\
\
 \
\
 \
\



24  Neutral Safety Switch Except In "R"  0 Volts 
\b
 \
\
\
 \
\
 \
\



25  Ground  Engine Idling  0 Volts 
\b
 \
\
\
 \
\
 \
\



26  Ground  Engine Idling  0 Volts 
\b
 \
\
\
 \
\
 \
\



31  Neutral Safety Switch In "L" Position  Battery 
\b
 \
\
\
 \
\
 \
\



31  Neutral Safety Switch Except In "L"  0 Volts 
\b
 \
\
\
 \
\
 \
\



32  Neutral Safety Switch In "N" Position  Battery 
\b
 \
\
\
 \
\
 \
\



32  Neutral Safety Switch Except In "N"  0 Volts 
\b
 \
\
\
 \
\
 \
\



34  Power Mode  Power Mode Selected  Battery 
\b
 \
\
\
 \
\
 \
\



34  4WD Detection Switch  2WD  4 Volts Or 

Montero   Greater 
\b
 \
\
\
 \
\
 \
\



34  4WD Detection Switch  4WD  0-1 Volts 

Montero    
\b
 \
\
\
 \
\
 \
\



34  Free Wheel  2WD  4 Volts Or 

Montero Engage Switch   Greater 

Sport    
\b
 \
\
\
 \
\
 \
\



34  Free Wheel  4WD  0 Volts 

Montero Engage Switch   

Sport    
\b
 \
\
\
 \
\
 \
\


Page 184 of 1501

* BRAKE SYSTEM UNIFORM INSPECTION GUIDELINES *
1998 Mitsubishi Montero
GENERAL INFORMATION
Brake Systems - Motorist Assurance Program
Standards For Automotive Repair
All Makes & Models
CONTENTS
OVERVIEW OF MOTORIST ASSURANCE PROGRAM
OVERVIEW OF SERVICE REQUIREMENTS AND SUGGESTIONS
ACCELEROMETERS (G SENSOR OR LATERAL)
ACCUMULATORS
ANCHOR PINS
ANTI-LOCK BRAKE SYSTEMS
BACKING PLATES
BRAKE FLUID
BRAKE FRICTION MATERIAL
BRAKE PADS
BRAKE PEDALS
BRAKE SHOES
BRAKE SHOE HARDWARE
BRAKE STOPLIGHT SWITCHES
BULB SOCKETS
BULBS AND LEDS
CALIPER HARDWARE
CALIPERS
CONTROLLERS
DIGITAL RATIO AXLE CONTROLLERS AND BUFFERS (DRAC AND DRAB)
DISABLE SWITCHES
DRUMS
ELECTRICAL PUMPS AND MOTORS
ELECTRONIC CONTROLLERS
FLUID
FLUID LEVEL SENSOR SWITCHES
FOUR WHEEL DRIVE SWITCHES
FRICTION MATERIAL
G SENSORS
HOSES
HYDRAULIC MODULATORS
HYDRO-BOOSTERS
HYDRO-ELECTRIC BOOSTERS (POWERMASTER)
IGNITION DISABLE SWITCHES
LATERAL ACCELERATION SWITCHES
LEDS
LENSES
MASTER CYLINDERS
MODULATORS
MOTORS
PARKING BRAKE SWITCHES
PARKING BRAKE SYSTEMS
PADS
PEDAL TRAVEL SWITCHES
PEDALS
POWERMASTER
PUMPS
PRESSURE DIFFERENTIAL SWITCHES
PRESSURE SWITCHES
RELAYS
ROTORS
SELF-ADJUSTING SYSTEMS

Page 185 of 1501

SHOE HARDWARE
SHOES
SOCKETS
SPEED SENSORS (ELECTRONIC WHEEL AND VEHICLE)
STEEL BRAKE LINES
STOPLIGHT SWITCHES
SWITCHES
TIRES
TOOTHED RINGS (TONE WHEEL)
VACUUM BOOSTERS
VACUUM HOSES
VALVES
WHEEL ATTACHING HARDWARE
WHEEL BEARINGS, RACES AND SEALS
WHEEL CYLINDERS
WIRING HARNESSES
INTRODUCTION TO MOTORIST ASSURANCE PROGRAM (MAP)
OVERVIEW OF MOTORIST ASSURANCE PROGRAM
The Motorist Assurance Program is the consumer outreach
effort of the Automotive Maintenance and Repair Association, Inc.
(AMRA). Participation in the Motorist Assurance Program is drawn from
retailers, suppliers, independent repair facilities, vehicle
manufacturers and industry associations.
Our organization's mission is to strengthen the relationship
between the consumer and the auto repair industry. We produce
materials that give motorists the information and encouragement to
take greater responsibility for their vehicles-through proper,
manufacturer-recommended, maintenance. We encourage participating
service and repair shops (including franchisees and dealers) to adopt:\
1) a Pledge of Assurance to their Customers and
2) the Motorist Assurance Program Standards of Service.
All participating service providers have agreed to subscribe
to this Pledge and to adhere to the promulgated Standards of Service
demonstrating to their customers that they are serious about customer
satisfaction.
These Standards of Service require that an inspection of the
vehicle's (problem) system be made and the results communicated to the\
customer according to industry standards. Given that the industry did
not have such standards, the Motorist Assurance Program successfully
promulgated industry inspection communication standards in 1994-95 for
the following systems: Exhaust, Brakes, ABS, Steering and Suspension,
Engine Maintenance and Performance, HVAC, and Electrical Systems.
Further, revisions to all of these inspection communication standards
are continually re-published. In addition to these, standards for
Drive Train and Transmissions have recently been promulgated.
Participating shops utilize these Uniform Inspection & Communication
Standards as part of the inspection process and for communicating
their findings to their customers.
The Motorist Assurance Program continues to work
cooperatively and proactively with government agencies and consumer
groups toward solutions that both benefit the customer and are
mutually acceptable to both regulators and industry. We maintain the
belief that industry must retain control over how we conduct our
business, and we must be viewed as part of the solution and not part
of the problem. Meetings with state and other government officials
(and their representatives), concerned with auto repair and/or
consumer protection, are conducted. Feedback from these sessions is
brought back to the association, and the program adjusted as needed.
To assure auto repair customers recourse if they were not

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 61-70 ... 210 next >