oxygen MITSUBISHI MONTERO 1998 Service Manual

Page 28 of 1501

\
\b\
\
\
\
\
\


EAC Electric Assist Choke 

EACV Electric Air Control Valve 

EBCM Electronic Brake Control Module 

ECA Electronic Control Assembly 

ECAT Electronically Controlled Automatic Transaxle 

ECM Electronic Control Module 

ECT Engine Coolant Temperature Sensor 

ECU Electronic Control Unit or Engine Control Unit 

EDF Electric Drive Fan relay assembly 

EDIS Electronic Distributorless Ignition System 

EEC Electronic Engine Control 

EECS Evaporative Emission Control System 

EEPROM Electronically Erasable PROM 

EFE Early Fuel Evaporation 

EFI Electronic Fuel Injection 

EGO Exhaust Gas Oxygen sensor (see HEGO) 

EGR Exhaust Gas Recirculation system 

EGRC EGR Control solenoid or system 

EGRV EGR Vent solenoid or system 

EMR Emission Maintenance Reminder Module 

ESA Electronic Spark Advance 

ESC Electronic Spark Control 

EST Electronic Spark Timing 

ETR Emergency Tensioning Retractor 

EVAP Fuel Evaporative System 

EVIC Electronic Vehicle Information Center 

EVO Electronic Variable Orifice 

EVP EGR Valve Position Sensor 

EVR EGR Valve Regulator 

EVRV Electronic Vacuum Regulator Valve 

Elect. Electronic 

Eng. Engine 

Evap. Evaporative 

Exc. Except 


\
 \
\
\
\
\
\
\f

"F" ABBREVIATION TABLE
"F" ABBREVIATION TABLE\
\
\
\
\
\
\
 
ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


F Fahrenheit (Degrees) 

F/B Fuse Block 

FBC Feedback Carburetor 

FI Fuel Injector or Fuel Injection 

FICD Fast Idle Control Device 

FIPL Fuel Injector Pump Lever 

FP Fuel Pump 

FPM Fuel Pump Monitor 

FPR-VSV Fuel Pressure Regulator Vacuum Switching Valve 

FWD Front Wheel Drive 

Fed. Federal 

Ft. Lbs. Foot Pounds 


\
 \
\
\
\
\
\
\f

"G" ABBREVIATION TABLE
"G" ABBREVIATION TABLE\
\
\
\
\
\
\


ABBREVIATION DEFINITION 

Page 29 of 1501

\
\b\
\
\
\
\
\


g grams 

GND or GRND Ground 

GRN Green 

GRY Gray 

Ga. Gauge 

Gals. gallons 

Gov. Governor 


\
 \
\
\
\
\
\
\f

"H" ABBREVIATION TABLE
"H" ABBREVIATION TABLE\
\
\
\
\
\
\
 
ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


H/D Heavy Duty 

HAC High Altitude Compensation 

HC Hydrocarbons 

HEDF High Speed Electro Drive Fan relay or circuit 

HEGO Heated Exhaust Gas Oxygen Sensor 

HEGOG HEGO Ground circuit 

HEI High Energy Ignition 

HLDT Headlight 

HO High Output 

HP High Performance 

HSC High Swirl Combustion 

HSO High Specific Output 

HTR Heater 

HVAC Heating 

Headlt. Headlight 

Hg Mercury 

Hgt. Height 

Htr. Heater 

Hz Hertz (Cycles Per Second) 


\
 \
\
\
\
\
\
\f

"I" ABBREVIATION TABLE
"I" ABBREVIATION TABLE\
\
\
\
\
\
\


ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


I.D. Inside Diameter 

IAC Idle Air Control 

IACV Idle Air Control Valve 

IC Integrated Circuit 

ID Identification 

IDM Ignition Diagnostic Monitor 

IGN Ignition system or circuit 

ILC Idle Load Compensator 

In. Hg Inches of Mercury 

INCH Lbs. Inch Pounds 

INFL REST Inflatable Restraint 

INJ Injector or Injection 

IP Instrument Panel 

IPC Instrument Panel Cluster 

ISA Idle Speed Actuator 

ISC Idle Speed Control 

ISS Idle Stop Solenoid 

ITS Idle Tracking Switch 

IVSV Idle Vacuum Switching Valve 

Page 31 of 1501

mm Millimeters 

M/T Manual Transaxle or Transmission 

MA PFI Mass Air Sequential Port Fuel Injection system 

MA or MAF Mass Airflow 

MAF Mass Air Flow sensor 

MAFS Mass Airflow Sensor 

MAP Manifold Absolute Pressure sensor 

MAT Manifold Air Temperature 

MCU Microprocessor Control Unit 

MCV Mixture Control Valve 

MEM-CAL Memory Calibration Chip 

MFI Multiport Fuel Injection 

MIL Malfunction Indicator Light 

MLP Manual Lever Position 

MPFI Multi Point Fuel Injection 

MPH Miles Per Hour 

MPI Multi-Point (Fuel) Injection 

Man. Manual 

Mech. Mechanical 

Mem. Memory 

Mtr. Motor 


\
 \
\
\
\
\
\
\f

"N" ABBREVIATION TABLE
"N" ABBREVIATION TABLE\
\
\
\
\
\
\
 
ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


N.m Newton-Meter 

NA Not Available 

NDS Neutral Drive Switch 

NGS Neutral Gear Switch 

NOx Oxides of Nitrogen 

NPS Neutral Pressure Switch 

No. Number 

Nos. Numbers 


\
 \
\
\
\
\
\
\f

"O" ABBREVIATION TABLE
"O" ABBREVIATION TABLE\
\
\
\
\
\
\


ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


O Oxygen 

O.D. Outside Diameter 

O/S Oversize 

O2 Oxygen 

OC Oxidation Catalyst 

OCC Output Circuit Check 

OD Overdrive 

ODO Odometer 

OHC Overhead Camshaft 

ORG Orange 

OSC Output State Check 

Opt. Option or Optional 

oz. Ounce 

ozs. Ounces 


\
 \
\
\
\
\
\
\f

Page 33 of 1501

RVB Rear Vacuum Break 

RWAL Rear Wheel Anti-Lock Brake 

RWD Rear Wheel Drive 

Recirc. Recirculate or Recirculation 

Reg. Regulator 

Rly. Relay 


\
 \
\
\
\
\
\
\f

"S" ABBREVIATION TABLE
"S" ABBREVIATION TABLE\
\
\
\
\
\
\
 
ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


SAW Spark Angle Word 

SBC Single Bed Converter 

SBEC Single Board Engine Controller 

SC Super Charged 

SCC Spark Control Computer 

SCS Air Suction Control Solenoid 

SDM Supplemental Restraint System Diagnostic Module 

SDU SRS Diagnostic Unit 

SEN Sensor 

SES Service Engine Soon 

SFI Sequential (Port) Fuel Injection 

SIG RTN Signal Return circuit 

SIL Shift Indicator Light 

SIR Supplemental Inflatable Restraint 

SMEC Single Module Engine Controller 

SOHC Single Overhead Cam 

SOL or Sol. Solenoid 

SPFI Sequential Port Fuel Injection 

SPK Spark Control 

SPOUT Spark Output Signal 

SRS Supplemental Restraint System (Air Bag) 

SS 3/4-4/3 Shift Solenoid circuit 

SSI Solid State Ignition 

STAR Self-Test Automatic Readout 

STI Self Test Input circuit 

STO Self-Test Output 

SUB-O2 Sub Oxygen Sensor 

Sen. or Sens. Sensor 

Sol. Solenoid 

Sprchg. Supercharger 

Strg. Steering 

Susp. Suspension 

Sw. Switch 

Sys. System 


\
 \
\
\
\
\
\
\f

"T" ABBREVIATION TABLE
"T" ABBREVIATION TABLE\
\
\
\
\
\
\


ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


T.V. Throttle Valve 

TAB Thermactor Air By-Pass 

TAC Thermostatic Air Cleaner 

TAD Thermactor Air Diverter 

TAN Tan 

TBI Throttle Body Injection 

Page 101 of 1501

A/C SYSTEM GENERAL SERVICING
1998 Mitsubishi Montero
1998 AIR CONDITIONING & HEAT
Mitsubishi - A/C System General Servicing
Diamante, Eclipse, Galant, Mirage, Montero, Montero Sport &
3000GT
A/C COMPRESSOR APPLICATIONS
A/C COMPRESSOR APPLICATION TABLE\
\
\
\
\
\

Application Compressor
Diamante ......................... Sanden MSC105CVS Scroll
Eclipse
2.0L Non-Turbo ............. Nippondenso 10PA17C 10-Cyl.
2.0L Turbo & 2.4L .............. Sanden MSC105CVS Scroll
Galant ............................ Sanden MSC90C12 Scroll
Mirage ............................... Sanden MSC90 Scroll
Montero ....................... Nippondenso 10PA15 10-Cyl.
Montero Sport ...................... Sanden MSC105C Scroll
3000GT .............................. Sanden MSC105 Scroll
\
\
\
\
\
\

USING R-12 & R-134a REFRIGERANT
HANDLING/SAFETY PRECAUTIONS
1) Always work in a well-ventilated, clean area. Avoid
breathing refrigerant vapors. Exposure may irritate eyes, nose and
throat. Refrigerant is colorless and is invisible as a gas.
Refrigerant is heavier than oxygen and will displace oxygen in a
confined area.
2) A/C system high pressure can cause severe injury to eyes
and skin if a hose were to burst. Always wear eye protection, gloves
and other protective clothing when working around A/C system and
refrigerant.
3) Refrigerant evaporates quickly when exposed to atmosphere,
freezing anything it contacts. If liquid refrigerant contacts eyes or
skin (frostbite), DO NOT rub eyes or skin. Immediately flush affected
area with cool water for 15 minutes and consult a doctor or hospital.
4) Never use R-134a in combination with compressed air for
leak testing. Pressurized R-134a in the presence of oxygen (air
concentrations greater than 60 percent by volume) may form a
combustible mixture. DO NOT introduce compressed air into R-134a
containers (full or empty), A/C system components or service
equipment.
5) DO NOT expose A/C system components to high temperatures,
steam cleaning for example, as excessive heat will cause
refrigerant/system pressure to increase. Never expose refrigerant
directly to open flame. If refrigerant needs to be warmed, place
bottom of refrigerant tank in warm water. Water temperature MUST NOT
exceed 125
F (52C).
CAUTION: When R-134a is exposed to an open flame, drawn into engine,
or detected with a Halide (propane) leak tester, a poisonous
gas is formed. Keep work areas well ventilated.
6) Use care when handling refrigerant containers. DO NOT
drop, strike, puncture or incinerate containers. Use Department Of

Page 183 of 1501

FR ............................................ Fill Pipe Restrictor
HO2S .......................................... Heated Oxygen Sensor
MIL .................................... Malfunction Indicator Light
PCV ................................. Positive Crankcase Ventilation
SFI ............................ Sequential Multiport Fuel Injection
SPK ................................................. Spark Controls
SPK-CC ..................................... SPK Computer Controlled
TWC .................................. Three-Way Catalytic Converter
\
\
\
\
\
\
\


Page 456 of 1501

Mirage &
Montero Sport ... Behind Right Side Of Instrument Panel (Glove Box)\
Montero ..................................... Right Front Kick Panel
All Others ................................... Behind Center Console
\
\
\
\
\
\
\

NOTE: Components are grouped into 2 categories. The first category
covers INPUT DEVICES, which control or produce voltage
signals monitored by Powertrain Control Module (PCM). The
second category covers OUTPUT SIGNALS, which are components
controlled by PCM.
INPUT DEVICES
Vehicles are equipped with different combinations of input
devices. Not all input devices are used on all models. To determine
input device usage on specific models, see appropriate wiring diagram
in L - WIRING DIAGRAMS article. The following are available input
devices.
Air Conditioning Switch
When A/C is turned on, signal is sent to PCM. With engine at
idle, PCM increases idle speed through Idle Air Control (IAC) motor.
Airflow Sensor Assembly
Assembly is mounted inside air cleaner, and incorporates
barometric pressure sensor, intake air temperature sensor and volume
airflow sensor.
Barometric (BARO) Pressure Sensor
Sensor is incorporated into airflow sensor assembly. Sensor
converts barometric pressure to electrical signal, which is sent to
PCM. PCM adjusts air/fuel ratio and ignition timing according to
altitude.
Camshaft Position (CMP) Sensor
On SOHC engines equipped with a distributor, CMP sensor is
located in distributor. On Eclipse (Turbo) and DOHC V6 engines, sensor\
is located beside camshaft, in front of engine. On all other engines,
CMP sensor is a separate unit mounted in place of distributor. PCM
determines TDC based on pulse signals received from sensor, and then
controls MFI timing.
Closed Throttle Position (CTP) Switch
CTP switch is located in the Throttle Position (TP) sensor.
PCM senses whether accelerator pedal is depressed or not. High voltage
(open) or low voltage (closed) signal is input to PCM, which then
controls Idle Air Control (IAC) motor based on input signal.
Crankshaft Position (CKP) Sensor
CKP sensor is located in distributor on SOHC engines, except
1.5L 4-cylinder with California emissions. On DOHC 4-cylinder, DOHC V6
and 1.5L 4-cylinder engines with California emissions, CKP sensor is
located beside crankshaft, in front of engine. PCM determines
crankshaft position on pulse signals received from sensor, and then
controls MFI timing and ignition timing.
Engine Coolant Temperature (ECT) Sensor
ECT sensor converts coolant temperature to electrical signal
for use by PCM. PCM uses coolant temperature information to control
fuel enrichment when engine is cold.
Heated Oxygen Sensor (HO2S)

Page 457 of 1501

HO2S detects oxygen content in exhaust gas and sends this
information to PCM. PCM uses input signals from HO2S to vary duration
of fuel injection. HO2S heater stabilizes sensor temperature
regardless of exhaust gas temperature to allow for more accurate
exhaust oxygen content readings.
Idle Air Control (IAC) Valve Position Sensor
Sensor is incorporated in IAC motor. Sensor senses IAC motor
plunger position and sends electrical signal to PCM.
Ignition Timing Adjustment Terminal
Used for adjusting base ignition timing. When terminal is
grounded, PCM timing control function is by-passed, allowing base
timing to be adjusted.
Intake Air Temperature (IAT) Sensor
IAT sensor is incorporated into airflow sensor assembly. This
resistor-based sensor measures temperature of incoming air and
supplies air density information to PCM.
Knock Sensor (KS)
KS is located in cylinder block and senses engine vibration
during detonation (knock). KS converts vibration into electrical
signal. PCM retards ignition timing based on this signal.
Manifold Differential Pressure (MDP) Sensor
MDP sensor converts negative air pressure in intake manifold
plenum into voltage signals sent to PCM. PCM monitors Exhaust Gas
Recirculation (EGR) system using these signals.
Park/Neutral Position (PNP) Switch (Automatic Transmission)
PNP switch senses position of transmission select lever,
indicating engine load due to automatic transmission engagement. Based
on this signal, PCM commands IAC motor to increase throttle angle,
maintaining optimum idle speed.
Power Steering Oil Pressure Switch
Switch detects increase in power steering oil pressure. When
power steering oil pressure increases, switch contacts close,
signaling PCM. PCM commands IAC motor, raising idle speed to
compensate for drop in engine RPM due to power steering load.
Throttle Position (TP) Sensor
TP sensor is a variable resistor mounted on throttle body.
PCM uses voltage signal from TP sensor to determine throttle plate
angle.
Vehicle Speed Sensor (VSS)
Mounted on transaxle/transmission, VSS sends a pulsing signal
to PCM for vehicle speed calculation. PCM uses this calculation for
cruise control and fuel cut-off.
Volume Airflow (VAF) Sensor
Incorporated into airflow sensor assembly, VAF sensor
measures intake airflow rate. Intake air flows through tunnel in
airflow sensor assembly. VAF sensor sends frequency signal to PCM. PCM
uses signal to adjust fuel injection rate.
OUTPUT SIGNALS
NOTE: Vehicles are equipped with various combinations of
computer-controlled components. Not all components listed
below are used on every vehicle. To determine component

Page 472 of 1501

Heated Oxygen Sensor (Front)
(Federal) Underside of vehicle, forward
of catalytic converter.
Heated Oxygen Sensor (Front)
(Left Bank) (Calif.) In left exhaust manifold.
Heated Oxygen Sensor (Front)
(Right Bank) (Calif.) In right exhaust manifold.
Heated Oxygen Sensor (Rear)
(Federal) Underside of vehicle, behind
catalytic converter.
Heated Oxygen Sensor (Rear) (Left Bank)
(Calif.) In left exhaust pipe, below
engine.
Heated Oxygen Sensor (Rear) (Right Bank)
(Calif.) In right exhaust pipe, below
engine.
Input Shaft Speed Sensor On side of transmission.
Intake Air Temperature Sensor Mounted on outside of
evaporator case.
Manifold Differential Pressure Sensor On top left rear of engine.
Output Shaft Speed Sensor On rear of transmission.

Page 545 of 1501

Fig. 14: Typical Pulsed Secondary Air Injection System
Courtesy of General Motors Corp.
OXYGEN SENSOR (O2)
The O2 sensor is mounted in the exhaust system where it
monitors oxygen content of exhaust gases. Some vehicles may use 2 O2
sensors. The O2 sensor produces a voltage signal which is proportional
to exhaust gas oxygen concentration (0-3%) compared to outside oxygen
(20-21%). This voltage signal is low (about .1 volt) when a lean
mixture is present and high (1.0 volt) when a rich mixture is present.\
As ECM compensates for a lean or rich condition, this voltage
signal constantly fluctuates between high and low, crossing a
reference voltage supplied by the ECM on the O2 signal line. This is
referred to as cross counts. A problem in the O2 sensor circuit should
set a related trouble code.
COMPUTERIZED ENGINE CONTROLS (CEC)
The CEC system monitors and controls a variety of
engine/vehicle functions. The CEC system is primarily an emission
control system designed to maintain a 14.7:1 air/fuel ratio under most
operating conditions. When the ideal air/fuel ratio is maintained, the
catalytic converter can control oxides of nitrogen (NOx), hydrocarbon
(HC) and carbon monoxide (CO) emissions.
The CEC system consists of the following sub-systems:
Electronic Control Module (ECM), input devices (sensors and switches)\
and output signals.

Page:   1-10 11-20 21-30 next >