engine oil SUZUKI SWIFT 2000 1.G SF310 Service Owner's Manual
Page 90 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-39
INFORMATION SENSORS
-1. MAP sensor
-2. TP sensor
-3. IAT sensor
-4. ECT sensor
-5. Heated oxygen sensor-1
-6. VSS
-7. Ignition coil
-8. Battery
-9. CMP sensor (in Distributor)
-10. A/C contoller (if equipped)
-11. CKP sensor
-12. CTP switch (in ISC actuator)
-13. Heated oxygen sensor-2OTHERS
A: ECM (PCM)
B: Main relay
C: EVAP canister
D: Injector resistor
E: EFE heater
F: Electric load diode CONTROL DEVICES
a: Fuel injector
b: EVAP canister purge valve
c: Fuel pump relay
d: Malfunction indicator lamp
e: ISC actuator
f: Radiator fan control relay
g: Igniter
h: EFE heater relay
i: ISC actuator relay
COMPONENT LOCATION
Page 91 of 557
6-40 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
“IG COIL METER”Main relay
Ignition switch
In fuseMalfunction indicator lamp in combination meter
TABLE A-1 MALFUNCTION INDICATOR LAMP CIRCUIT CHECK – LAMP DOES
NOT COME “ON” AT IGNITION SWITCH ON (BUT ENGINE AT STOP)
CIRCUIT DESCRIPTION
When the ignition switch is turned ON, ECM (PCM) causes the main relay to turn ON (close the contact point).
Then, ECM (PCM) being supplied with the main power, turns ON the malfunction indicator lamp (MIL). When the
engine starts to run and no malfunction is detected in the system, MIL goes OFF but if a malfunction was or is de-
tected, MIL remains ON even when the engine is running.
INSPECTION
STEPACTIONYESNO
1MIL Power Supply Check
1) Turn ignition switch ON.
Do other indicator / warning lights in
combination meter comes ON?Go to Step 2.“IG COIL METER” fuse blown,
main fuse blown, ignition
switch malfunction, “B/W”
circuit between “IG COIL
METER” fuse and
combination meter or poor
coupler connection at
combination meter.
2ECM (PCM) Power and Ground Circuit
Check
Does engine start?Go to Step 3.Go to TABLE A-3 ECM (PCM)
POWER AND GROUND
CIRCUIT CHECK.
If engine is not cranked, go to
DIAGNOSIS in SECTION 8A.
3MIL Circuit Check
1) Turn ignition switch OFF and disconnect
connectors from ECM (PCM).
2) Check for proper connection to ECM
(PCM) at terminal C02-17.
3) If OK, then using service wire, ground
terminal C02-17 in connector
disconnected.
Does MIL turn on at ignition switch ON?Substitute a known-
good ECM (PCM) and
recheck.Bulb burned out or “V/Y” wire
circuit open.
Page 93 of 557
Main fuse Ignition switch
Main fuseMalfunction indicator lamp in combination meter
Relay box“IG COIL METER”
6-42 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
TABLE A-3 ECM (PCM) POWER AND GROUND CIRCUIT CHECK – MIL
DOESN’T LIGHT AT IGNITION SWITCH ON AND ENGINE DOESN’T
START THOUGH IT IS CRANKED UP
CIRCUIT DESCRIPTION
When the ignition switch tuned ON, the main relay turns ON (the contact point closes) and the main power is sup-
plied to ECM (PCM).
INSPECTION
STEPACTIONYESNO
1Main Relay Operating Sound Check
Is operating sound of main relay heard at ignition switch ON?Go to Step 5.Go to Step 2.
2Main Relay Check
1) Turn OFF ignition switch and remove main relay (1).
2) Check for proper connection to main relay (1) at terminal
3 and 4.
3) Check resistance between each two terminals. See Fig. 1
and 2.
Between terminals 1 and 2: Infinity
Between terminals 3 and 4: 100 – 120 Ω
4) Check that there is continuity between terminals 1 and 2
when battery is connected to terminals 3 and 4. See Fig. 3.
Is main relay in good condition?Go to Step 3.Replace main
relay.
3Fuse Check
Is main “FI” fuse in good condition?Go to Step 4.Check for short in
circuits connected
to this fuse.
4ECM (PCM) Power Circuit Check
1) Turn OFF ignition switch, disconnect connectors from ECM
(PCM) and install main relay.
2) Check for proper connection to ECM (PCM) at terminals
C03-20, C02-2, C02-15 and C02-22.
3) If OK, then measure voltage between terminal C03-20 and
ground, C02-22 and ground with ignition switch ON.
Is each voltage 10 – 14 V?Go to Step 5.“B/W”, “W/R” or
“Bl / B” circuit
open.
Page 108 of 557
To generatorTo other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-57
DTC P0135 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT
MALFUNCTION (SENSOR-1)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition is met.
A:
Low voltage at terminal C01-8 when engine is
running at high load.
B:
High voltage at terminal C01-8 when engine is
running under condition other than above.
2 driving cycle detection logic, Continuous
monitoring.HO2S-1 heater circuit open or shorted to ground
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON, start engine and keep it at idle for 1 min.
3) Start vehicle and depress accelerator pedal fully for 5 sec. or longer.
4) Stop vehicle.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
Page 110 of 557
To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-59
DTC P0136 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION
(SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition is detected.
A. Max. output voltage of HO2S-2 is lower than specified value or
Min. output voltage is higher than specified value while vehicle
driving.
B. Engine is warmed up and HO2S-2 voltage is 4.5 V or more.
(circuit open)
2 driving cycle detection logic, monitoring once / 1 driving.Exhaust gas leakage
“G” or “R” circuit open or short
Heated oxygen sensor-2 malfunction
Fuel system malfunction
Page 113 of 557
6-62 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
DTC P0141 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT
MALFUNCTION (SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition it met.
A. Low voltage at terminal C02-19 for specified time after engine
start or while engine running at high load.
B. High voltage at terminal C02-19 while engine running under
other than above condition.
2 driving cycle detection logic, continuous monitoring.HO2S-2 heater circuit open or shorted
to ground
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF once and then ON.
2) Clear DTC, start engine and warm up engine to normal operating temperature.
3) Keep it at 2000 r / min for 2 min.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.
Page 115 of 557
6-64 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Sensed
information
Exhaust
gasFuel
injector
A/F
mixtureSignal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
INJECTORHEATED
OXYGEN
SENSOR-1
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture
becomes
leanerOxygen
concentration
increases ECM
(PCM)
ECM
(PCM)
Main
fuseIgnition switch“IG COIL METER”
Main relayTo other circuits
Injector resistor
To other
sensorFuel
injector
Heated oxygen sensor-1
HO2S-1
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.
Page 119 of 557
Ignition coil
Igniter
Ignition switch
Main
fuse
Injector resistor
Fuel injector
Crankshaft
position sensor
Camshaft
position sensor
Ground
at engine “I / G COIL METER”
Main relay
6-68 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more
cylinders)
DTC P0301 CYLINDER 1 MISFIRE DETECTED
DTC P0302 CYLINDER 2 MISFIRE DETECTED
DTC P0303 CYLINDER 3 MISFIRE DETECTED
CIRCUIT DESCRIPTION
ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylin-
der No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from
how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire.
When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to
the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at
that rate.
After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under
the same driving conditions.
Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three
way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2
driving cycle detection logic.
Page 120 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-69
Below
specified value DTC DETECTING CONDITION
POSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–Engine coolant temp.: –10 – 11 0C, 14 – 230F
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.
Page 126 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-75
Fig. 1 for Step 3 Fig. 2 for Step 5
“a”: Air gap
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Is DTC P1500 (Engine starter signal circuit
malfunction) detected?Go to DTC P1500
Diag. Flow Table.Go to Step 3.
3Check CMP Sensor for Resistance.
1) Measure resistance of CMP sensor by referring to
“CMP SENSOR (PICK UP COIL) RESISTANCE”
in SECTION 6F.
Is resistance within specified value?Go to Step 4.Faulty CMP sensor.
4Check Wire Harness.
1) With ignition switch at OFF position, disconnect
ECM (PCM) electrical connectors.
2) Measure resistance from terminal “C01-2” to
“C01-10” of ECM (PCM) connector. See Fig. 1.
Is resistance within 185 – 275 Ω at 20C (68F)?Go to Step 5.“W” or “Or” wire open
or short.
Poor connection of
CMP sensor
connector terminal.
5Check Air Gap Between Rotor Tooth and Sensor. See
Fig. 2.
1) Remove Distributor cap.
2) Visually inspect CMP sensor signal rotor for
damage.
3) Measure air gap by referring “SIGNAL ROTOR
AIR GAP” in Section 6F.
Was any damage found?Faulty CMP sensor
signal rotor.Poor connection of
ECM (PCM)
connector terminal.
If OK, substitute a
known-good ECM
(PCM) and recheck
CMP.