sensor SUZUKI SWIFT 2000 1.G SF310 Service Service Manual

Page 109 of 557

6-58 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Fig. 1 for Step 2 Fig. 2 for Step 3
C01-8
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check Heater for Operation.
1) Check voltage at terminal C01-8. See Fig. 1.
2) Warm up engine to normal operating temperature.
3) Stop engine.
4) Turn ignition switch ON and Check voltage atIntermittent trouble
Check for intermittent
referring to
“Intermittent and
Poor Connection”Go to Step 3.
terminal C01-8. See Fig. 1. Voltage should be
over 10 V.
5) Start engine, run it at idle and check voltage at the
same terminal. Voltage should be below 1.9 V.
Are check results are specified?in Section 0A.
3Check Heater of Sensor-1.
1) Disconnect HO2S-1 coupler with ignition switch
OFF.
2) Check for proper connection to HO2S-1 at “B/W”
and “P/B” wire terminals.
3) If OK, then check heater resistance. See Fig. 2.
Is it 11.7 – 14.3 Ω at 20C, 68F?“P/B” wire open or
shorted to ground or
poor connection at
C01-8. If wire and
connection are OK,
substitute a
known-good ECM
(PCM) and recheck.Replace HO2S-1.

Page 110 of 557

To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-59
DTC P0136 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION
(SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition is detected.
A. Max. output voltage of HO2S-2 is lower than specified value or
Min. output voltage is higher than specified value while vehicle
driving.
B. Engine is warmed up and HO2S-2 voltage is 4.5 V or more.
(circuit open)
2 driving cycle detection logic, monitoring once / 1 driving.Exhaust gas leakage
“G” or “R” circuit open or short
Heated oxygen sensor-2 malfunction
Fuel system malfunction

Page 111 of 557

6-60 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Usual driving: Driving at 30 – 40 mph, 50 – 60 km/h including short stop according to traffic signal. (under driving condition other than high-load,
high-engine speed, rapid accelerating and decelerating)1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)and 50 mph
(80 km / h)
Above 20 mph
(32 km / h) Usual driving
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF.
Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–No exhaust gas leakage and loose connection
2) Warm up engine to normal operating temperature.
3) Drive vehicle under usual driving condition for 5 min. and check HO2S-2 output voltage and “short term fuel
trim” with “Data List” mode on scan tool, and write it down.
4) Stop vehicle (don’t turn ignition switch OFF).
5) Increase vehicle speed to higher than 20 mph, 32 km / h and then stop vehicle.
6) Repeat above steps 5) 4 times.
7) Increase vehicle speed to about 50 mph (80 km / h) in 3rd gear or 2 range.
8) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 10sec.
or more.
9) Stop vehicle (don’t turn ignition switch OFF) and run engine at idle for 2 min.
After this step 9), if “Oxygen Sensor Monitoring TEST COMPLETED” is displayed in “READINESS TESTS”
mode and DTC is not displayed in “DTC” mode, confirmation test is completed.
If “TEST NOT COMPLTD” is still being displayed, proceed to next step 10).
10) Drive vehicle under usual driving condition for 10 min. (or vehicle is at a stop and run engine at idle for 10 min.
or longer)
11) Stop vehicle (don’t turn ignition switch OFF). Confirm test results according to “Test Result Confirmation Flow
Table” in “DTC CONFIRMATION PROCEDURE” of DTC P0420.

Page 113 of 557

6-62 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
DTC P0141 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT
MALFUNCTION (SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition it met.
A. Low voltage at terminal C02-19 for specified time after engine
start or while engine running at high load.
B. High voltage at terminal C02-19 while engine running under
other than above condition.
2 driving cycle detection logic, continuous monitoring.HO2S-2 heater circuit open or shorted
to ground
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF once and then ON.
2) Clear DTC, start engine and warm up engine to normal operating temperature.
3) Keep it at 2000 r / min for 2 min.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.

Page 114 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-63
Fig. 1 for Step 2
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check HO2S-2 Heater and Its Circuit.
1) Warm up engine to normal operating temperature.
2) Stop engine.
3) Turn ignition switch ON and check voltage at
terminal C02-19 See Fig. 1. Voltage should be
over 10 V.
4) Start engine, run it at idle and check voltage at the
same terminal after 1 min. from engine start.
Voltage should be below 1.9 V.
Are check result as specified?Intermittent trouble.
Check for intermittent
referring to
“Intermittent and
Poor Connection”
in Section 0A.Go to Step 3.
3Check Heater or Sensor-2.
1) Disconnect HO2S-2 coupler with ignition switch
OFF.
2) Check for proper connection to HO2S-2 at “B/W”
and “Lg / B” wire terminals.
3) If OK, then check heater resistance.
Is it 11.7 – 14.3 Ω at 20C, 68F?“Lg / B” wire open or
shorted to ground or
poor connection at
C02-19. If wire and
connection are OK,
substitute a known-
good ECM (PCM)
and recheck.Replace HO2S-2.

Page 115 of 557

6-64 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Sensed
information
Exhaust
gasFuel
injector
A/F
mixtureSignal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
INJECTORHEATED
OXYGEN
SENSOR-1
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture
becomes
leanerOxygen
concentration
increases ECM
(PCM)
ECM
(PCM)
Main
fuseIgnition switch“IG COIL METER”
Main relayTo other circuits
Injector resistor
To other
sensorFuel
injector
Heated oxygen sensor-1
HO2S-1
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.

Page 117 of 557

6-66 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Is there DTC(s) other than fuel system
(DTC P0171 / P0172)?Go to applicable
DTC Diag. Flow
Table.Go to Step 3.
3Check HO2S-1 Output Voltage.
1) Connect scan tool to DLC with ignition switch OFF.
2) Warm up engine to normal operating temperature and keep
it at 2000 r / min. for 60 sec.
3) Repeat racing engine (Repeat depressing accelerator pedal
5 to 6 times continuously and take foot off from pedal to
enrich and enlean A / F mixture). See Fig. 1.
Does HO2S-1 output voltage deflect between below 0.3 V and
over 0.6 V repeatedly?Go to Step 4.Go to DTC
P0130 Diag.
Flow Table
(HO2S-1 circuit
check).
4Check Fuel Pressure (Refer to section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure. See Fig. 2.
With fuel pump operating
and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi.
At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg / cm
2,
12.8 – 20.0 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 Fuel
Pressure Check.
5Check Fuel Injectors and Circuit.
1) Turn ignition switch OFF and disconnect fuel injector
connector.
2) Check for proper connection to fuel injector at each terminals.
3) If OK, then check injector resistance. See Fig. 3.
Injector resistance: 0.5 – 1.5 Ω at 20C (68F)Go to Step 6.Check injector
circuit or replace
fuel injector.
4) Connect injector, connector.
5) Check that fuel is injected out in conical shape from fuel
injector when running engine.
6) Check injector for fuel leakage after engine stop.
Fuel leakage: Less than 1 drop / min.
Is check result satisfactory?
6Check EVAP Canister Purge Valve.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there when engine is cool and
running at idle. See Fig. 4.
Is vacuum felt?Check EVAP
control system
(See Section
6E1).Go to Step 7.
7Check intake manifold absolute pressure sensor for
performance (See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 8.Repair or
replace.

Page 118 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-67
Fig. 1 for Step 3 Fig. 2 for Step 4 Fig. 3 for Step 5
Fig. 4 for Step 6
1. Throttle body
2. Fuel feed hose
GoodNo good
STEPACTIONYESNO
8Check engine coolant temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 9.Replace engine
coolant temp. sensor.
9Check intake air temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 10.Replace intake air
temp. sensor.
10Check throttle position sensor for performance (See
Step 4 of DTC P0121 Diag. Flow Table).
Is it in good condition?Go to Step 11.Replace throttle
position sensor.
11Check PCV valve for valve clogging (See Section
6E1).
Is it good condition?Substitute a known-
good ECM (PCM) and
recheck.Replace PCV valve.

Page 119 of 557

Ignition coil
Igniter
Ignition switch
Main
fuse
Injector resistor
Fuel injector
Crankshaft
position sensor
Camshaft
position sensor
Ground
at engine “I / G COIL METER”
Main relay
6-68 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more
cylinders)
DTC P0301 CYLINDER 1 MISFIRE DETECTED
DTC P0302 CYLINDER 2 MISFIRE DETECTED
DTC P0303 CYLINDER 3 MISFIRE DETECTED
CIRCUIT DESCRIPTION
ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylin-
der No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from
how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire.
When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to
the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at
that rate.
After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under
the same driving conditions.
Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three
way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2
driving cycle detection logic.

Page 120 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-69
Below
specified value DTC DETECTING CONDITION
POSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–Engine coolant temp.: –10 – 11 0C, 14 – 230F
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.

Page:   < prev 1-10 ... 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 ... 230 next >