Lamp DAEWOO LACETTI 2004 Service Manual PDF
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: LACETTI, Model: DAEWOO LACETTI 2004Pages: 2643, PDF Size: 80.54 MB
Page 402 of 2643

1F – 156IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0141
REAR HEATED OXYGEN SENSOR HEATER
MALFUNCTION
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 14 and 16.
The oxygen (O2) sensor varies the voltage within a range
of about 1volt if the exhaust is rich, down to about 100mm
volts if the exhaust is lean. The O2 sensor is like an open
circuit and produces no voltage when it is below
360°C(600°F). An open O2 sensor circuit or a cold O2
sensor causes ”open loop” operation.
Conditions for Setting the DTC
S The heated O2 sensor heater resistance is less
than 0 W or greater than 160 W. (1.4L DOHC)
S The heated O2 sensor heater resistance is less
than 10 W or greater than 30 W. (1.6L DOHC)
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.S The coolant fan turns ON.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
S Normal scan tool voltage varies between 0.1volts
and 0.9 volts while in closed loop.
S Inspect the oxygen (O2) sensor wire. The O2 sen-
sor may be positioned incorrectly and contacting
the exhaust manifold.
S Check for an intermittent ground in the wire be-
tween the O2 sensor and the engine control mod-
ule.
S Perform an injector 2alance test to determine if a
restricted fuel injector may be causing the lean con-
dition.
S Vacuum of crankcase leaks will cause a lean run-
ning condition.
Page 404 of 2643

1F – 158IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0171
FUEL TRIM SYSTEM TOO LEAN
System Description
If the adaptation value threshold is permanently exceed-
ed, the deviation of the adaptive terms enables to detect
a slow default coming out. Two time counters (one for the
rich side and another one for the lean side) are increased
while the lambda controller exceeds the adaptation
thresholds. As soon as one of the time counters reaches
its maximum value, the error is detected.
The aim of this test is to simulate a failure that would result
in exceeding the adaptive terms. Two kinds of failure must
be created.
S A lean side deviation: P0171
S A rich side deviation : P0172
It is thus necessary to determine, for each kind of failure,
the limit good and the limit bad. For a given failure, mea-
sure the emission threshold until the legal emission
thresholds are exceeded.
Note that the problem is due to the emission thresholds re-
quired, it is not simple to disturb the system so that the
emission thresholds will be exceeded. The tuning has
been made thanks to a dedicated calibration but, as such
a procedure is not permitted by the regulation, it is neces-
sary to create some material malfunction (fuel pressure
regulator, fuel injector, air leakage...).
Conditions for Setting the DTC
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0132, P0337,
P0338, P0341, P0342, P0400, P1319, P1402,
P1404, P1405, P1671 and P1672 are not set.
S Coolant temperature is greater than 20°C (68°F).
(1.4L DOHC)
S Coolant temperature is greater than 80°C (176°F).
(1.6L DOHC)
S Manifold Absolute Pressure (MAP) is greater than
70 kPa (10.2 psi).
S System is in closed loop.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
Important : After repairs, use the scan tool Fuel Trim Re-
set function to reset the long–term fuel trim to 128 (0%).
S Fuel pressure – The system will be lean if the pres-
sure is too low. It may be necessary to monitor fuel
pressure while driving the vehicle at various road
speeds and/or loads to confirm.
S Map sensor – An output that causes the ECM to
sense a lower than normal manifold pressure (high
vacuum) can cause the system to go lean. Discon-
necting the MAP sensor will allow the ECM to sub-
stitute a fixed (default) value for the MAP sensor. If
the lean condition is gone when the sensor is dis-
connected, substitute a known good sensor and
recheck.
S Fuel contamination – Water, in even small amounts,
near the in–tank fuel pump inlet can be delivered to
the injector. The water causes a lean exhaust and
can set DTC P0171.
Check for poor O2S or MAP sensor connection at the
ECM. Inspect the harness connectors for the following
conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the O2S display on the scan tool
while moving the connectors and the wiring harness re-
lated to the engine harness. A change in the display will
indicate the location of the fault.
Check the brake power booster check valve for possible
leaks.
Page 408 of 2643

1F – 162IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0172
FUEL TRIM SYSTEM TOO RICH
System Description
If the adaptation value threshold is permanently exceed-
ed, the deviation of the adaptive terms enables to detect
a slow default coming out. Two time counters (one for the
rich side and another one for the lean side) are increased
while the lambda controller exceeds the adaptation
thresholds. As soon as one of the time counters reaches
its maximum value, the error is detected.The aim of this
test is to simulate a failure that would result in exceeding
the adaptive terms. Two kinds of failure must be created.
S A lean side deviation: P0171
S A rich side deviation : P0172
It is thus necessary to determine, for each kind of failure,
the limit good and the limit bad. For a given failure, mea-
sure the emission threshold until the legal emission
thresholds are exceeded.Note that the problem is due to
the emission thresholds required, it is not simple to disturb
the system so that the emission thresholds will be exceed-
ed. The tuning has been made thanks to a dedicated cal-
ibration but, as such a procedure is not permitted by the
regulation, it is necessary to create some material mal-
function (fuel pressure regulator, fuel injector, air leak-
age...).
Conditions for Setting the DTC
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0132, P0337,
P0338, P0341, P0342, P0400, P1319, P1402,
P1404, P1405, P1671 and P1672 are not set.
S Coolant temperature is greater than 20°C (68°F).
(1.4L DOHC)
S Coolant temperature is greater than 80°C (176°F).
(1.6L DOHC)
S Manifold Absolute Pressure (MAP) is greater than
70 kPa (10.2 psi).
S System is in closed loop.
Action Taken When the DTC SetsS The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
Important : After repairs, use the scan tool Fuel Trim Re-
set function to reset the long–term fuel trim to 128 (0%).
Check for poor connection at the ECM. Inspect the har-
ness connectors for the following conditions:
S Backed–out terminals.
S Improper mating.
S Broken locks.
S Improperly formed.
S Damaged terminals.
S Poor terminal–to–wire connection.
Inspect the wiring harness for damage. If the harness ap-
pears to be OK, observe the O2S display on the scan tool
while moving the connectors and the wiring harness re-
lated to the engine harness. A change in the display will
indicate the location of the fault.
If a DTC P1404 is also set, check the 5 volt reference cir-
cuits for a short to voltage.
Check for a restricted exhaust system.
A shorted 5 volt reference circuit may cause a DTC P0172
to set. Check the 5 volt reference sensors for abnormal
readings.
DTC P0172 – Fuel Trim System Too Rich
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install the scan tool to the Data Link Connector
(DLC).
2. Turn the ignition ON.
Are any component related Diagnostic Trouble
Codes (DTCs) set?–Go to
applicable DTC
tableGo to Step 3
Page 411 of 2643

ENGINE CONTROLS 1F – 165
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0222
MAIN THROTTLE IDLE ACTUATOR (MTIA) LOW VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 22.55). The char-
acteristics of the air flow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idle to
about 0.2 V to 0.4 V at wide open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S MTIA voltage is less than 0.275V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An Intermittent problem may be caused by a poor connec-
tion, rubbed through wire insulation, or wire that is broken
inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions.
S Backed–out terminals
S Improper mating
S Broken locks
S Damaged terminals
S Poor terminals to wire connection
S Physical damage to the wiring harness
Page 414 of 2643

1F – 168IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0223
MAIN THROTTLE IDLE ACTUATOR (MTIA) HIGH
VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 22.55). The char-
acteristics of the air flow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idle to
about 0.2 V to 0.4 V at wide open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S MTIA voltage is higher than 4.9V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An Intermittent problem may be caused by a poor connec-
tion, rubbed through wire insulation, or wire that is broken
inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions.
S Backed–out terminals
S Improper mating
S Broken locks
S Damaged terminals
S Poor terminals to wire connection
S Physical damage to the wiring harness
Page 417 of 2643

ENGINE CONTROLS 1F – 171
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0261
INJECTOR 1 LOW VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 1 circuit is an open or a short to ground
condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0261 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 419 of 2643

ENGINE CONTROLS 1F – 173
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0262
INJECTOR 1 HIGH VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 1 circuit is a short to battery condition
exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0262 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 421 of 2643

ENGINE CONTROLS 1F – 175
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0264
INJECTOR 2 LOW VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 2 circuit is an open or a short to ground
condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0264 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 423 of 2643

ENGINE CONTROLS 1F – 177
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0265
INJECTOR 2 HIGH VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 2 circuit is a short to battery condition
exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0265 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 425 of 2643

ENGINE CONTROLS 1F – 179
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0267
INJECTOR 3 LOW VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 3 circuit is an open or a short to ground
condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0267 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.