acc DAEWOO LACETTI 2004 Service Manual PDF
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: LACETTI, Model: DAEWOO LACETTI 2004Pages: 2643, PDF Size: 80.54 MB
Page 523 of 2643

ENGINE CONTROLS 1F – 277
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0656
FUEL LEVEL GAUGE CIRCUIT FAULT
Circuit Description
The engine control module(ECM) uses the fuel level input
from the Fuel Level Sensor to calculate expected vapor
pressures within the fuel system. Vapor pressure vary as
the fuel level changes. Vapor pressure is critical in deter-
mining if the evaporative emission (EVAP) system is oper-
ating properly. Fuel Level is also used to determine if the
Fuel level is too high or too low to be able to accurately de-
tect EVAP system faults. This Diagnostic Trouble
Code(DTC) detects a stuck fuel level sender.
Conditions for Setting the DTC
S The fuel tank level output circuit is a short to ground
or a short to battery or an open condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC was set as Failure Records data
only.
S This information will not be stored in the Freeze
Frame data.Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Inspect harness connectors for backed–out terminal, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection.
Inspect the wiring harness for damage.
A stuck Fuel Level Sensor may cause the DTC to set. If
DTC P0656 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful in deter-
mining vehicle operating conditions when the DTC was
first set.
Resistance check for the Fuel Level Sensor.
S Empty = 100 ohms or over.
S Half full = about 32.5 ohms.
S Full = 10 ohms or less.
Page 554 of 2643

1F – 308IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1402
EXHAUST GAS RECIRCULATION BLOCKED
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S The vehicle is part load.
S The engine controls system is in closed loop.
S Engine Coolant Temperature(ECT) is greater than
60°C(140°F).
S Intake Air Temperature(IAT) is greater than
15°C(59°F).
S Manifold Absolute Pressure is greater than 75kPA.
S The EGR is greater than 10%.
S Mass Air Flow is between 71~174mg/tdc.
S Engine Speed Is Between 1,950~2,600rpm.
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0300, P0335,
P0336, P0341, P0342, P1671, P1672, P1673 are
NOT SET.
S EGR is disabled.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
Page 556 of 2643

1F – 310IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1403
EXHAUST GAS RECIRCULATION VALVE FAILURE
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S The vehicle is part load.
S The engine controls system is in closed loop.
S Engine Coolant Temperature(ECT) is greater than
60°C(140°F).
S Intake Air Temperature(IAT) is greater than
15°C(59°F).
S Manifold Absolute Pressure is greater than 75kPA.
S The open EGR value is higher than 10%.
S Mass Air Flow is between 71~174mg/tdc.
S Engine Speed Is Between 1,950~2,600rpm.
S EGR potentiometer voltage is less than 0.4V.
S EGR potentiometer voltage is higher than 1.75V or
integral term of EGR controller blocked in high or
low limit.
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0300, P0335,
P0336, P0341, P0342, P1671, P1672, P1673 are
NOT SET.
Page 559 of 2643

ENGINE CONTROLS 1F – 313
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1404
EXHAUST GAS RECIRCULATION CLOSED
Circuit Description
An Exhaust Gas Re–circulation (EGR) system is used to
lower oxides of nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber. When the air/fuel mixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with a engine
control module(ECM) controlled pintle. The ECM controls
the pintle position using inputs from the Throttle Position
(TP) and the Manifold Absolute Pressure (MAP) sensor.
The ECM then commands the EGR valve to operate when
necessary by controlling an ignition signal through the
ECM. This can be monitored on a scan tool as the Desired
EGR position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The actual EGR position
should always be near the commanded or Desired EGR
position.
This Diagnostic Trouble Code(DTC) will detect an open or
short circuit.
Conditions for Setting the DTC
S EGR circuit is a short to battery condition exist.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Page 562 of 2643

1F – 316IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1511
IDLE CHARGE ACTUATOR CIRCUIT FAULT
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (0°, 19°). The charac-
teristics of the air flow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical accelcable.
The DC–motor commands the actuator for idle
Conditions for Setting the DTC
S The engine is running.
S The throttle position is set between 0.25 and 5.65.
S DTCs P0222 and P0223 are not set.
S The reference range of MTIA higher than 59.5% or
less than –70% for longer than 5 seconds.
(1.4L DOHC)
S The reference range of MTIA higher than 35% or
less than –35% at least 5 seconds. (1.6L DOHC)
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An Intermittent problem may be caused by a poor connec-
tion, rubbed through wire insulation, or wire that is broken
inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions.
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal to wire connection
S Physical damage to the wiring harness
Page 565 of 2643

ENGINE CONTROLS 1F – 319
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1512
IDLE CHARGE ACTUATOR MECHANICAL ERROR
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (0°, 19°). The charac-
teristics of the air flow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical accelcable.
The DC–motor commands the actuator for idle
Conditions for Setting the DTC
S The engine is running.
S The MTIA set point is between 0.25 and 5.65.
S DTCs P0222 and P0223 are not set.
S The reference range of MTIA higher than 59.5% or
less than –70% for longer than 10 seconds.
(1.4L DOHC)
S The reference range of MTIA higher than 35% or
less than –35% at least 10seconds. (1.6L DOHC)
S Mechanical problems exists.
– problem of accel cable hose
– problem inside MTIA : seizing by friction,
snooted, fouling.
Action Taken When the DTC SetsS The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fail. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An Intermittent problem may be caused by a poor connec-
tion, rubbed through wire insulation, or wire that is broken
inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions.
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal to wire connection
S Physical damage to the wiring harness
Page 566 of 2643

1F – 320IENGINE CONTROLS
DAEWOO V–121 BL4
DTC P1512 – Idle Charge Actuator Mechanical Error
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
2Turn the Turn the ignition switch to ON.
Is the Malfunction Indicator Lamp(MIL) on steady?–Go to Step 4Go to Step 3
31. Connect the scan tool the DLC.
2. Turn the Turn the ignition switch to ON.
Does the scan tool display serial data?–Go to Step 4Try with
another scan
tool
4Start the engine.
Does the engine start?–Go to Step 5Go to
”Engine Cranks
But Will Not
Run”
51. Turn the ignition switch to LOCK.
2. Connect the scan tool to the DLC.
3. Turn the Turn the ignition switch to ON.
Are any Diagnostic Trouble Codes (DTCs) dis-
played?–Go to Step 6Try with
another scan
tool
6Refer to the applicable DTC table.
Is only one DTC identified as valid trouble code
P1512?–Go to Step 7Go to Applica-
ble DTC Table
and Go to
”Multiple DTC”
7Check if the accel cable of MTIA is not on accel cable
stop repair the accel cable as necessary.
Is it necessary?–Go to Step 9Go to Step 8
81. Turn the ignition switch to LOCK.
2. Replace the throttle body assembly.
3. Clear any DTCs from ECM.
4. Perform the diagnostic system check.
Is the repair complete?–Go to Step 10–
91. Using the scan tool, clear the Diagnostic
Trouble Codes (DTCs).
2. Start the engine and idle at normal operating
temperature.
3. Operate the vehicle within the Conditions for
setting this DTC as specified in the supporting
text.
Does the scan tool indicate that this diagnostic has
run and passed?–Go to Step 10Go to Step 2
10Check if any additional DTCs are set.
Are any DTCs displayed that have not been diag-
nosed?–Go to
Applicable DTC
tableSystem OK
Page 567 of 2643

ENGINE CONTROLS 1F – 321
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1513
IDLE CHARGE ACTUATOR FUNCTIONAL ERROR
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (0°, 19°). The charac-
teristics of the air flow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical accelcable.
The DC–motor commands the actuator for idle
Conditions for Setting the DTC
S Mechanical problems exists.
– problem of accel cable hose
– problem inside MTIA : seizing by friction,
snooted, fouling.
S Absolute adaptation or relative is not correct after
16 attemps.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.S The ECM will store conditions which were present
when the DTC was set as Failure Records data
only.
S This information will not be stored in the Freeze
Frame data.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An Intermittent problem may be caused by a poor connec-
tion, rubbed through wire insulation, or wire that is broken
inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions.
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal to wire connection
S Physical damage to the wiring harness
Page 593 of 2643

ENGINE CONTROLS 1F – 347
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0106
MANIFOLD ABSOLUTE PRESSURE RATIONALITY
Circuit Description
The Engine Control Module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure which results
from engine load (intake manifold vacuum) and the rpm
changes, and it converts these into voltage outputs. The
ECM can detect if the MAP sensor is not responding to the
Throttle Position (TP) changes by comparing the actual
MAP change to a predicted MAP change based on the
amount of TP change that occurs. If the ECM does not see
the expected MAP change or more, DTC P0106 will set.
Conditions for Setting the DTC
S Altitude compensated MAP reading is higher than
high threshold or lower than low threshold table
based on rpm and TP signal.
S DTCs P0107, P0108, P0117, P0118, P0122,
P0123, P0201, P0202, P0203, P0204, P0300,
P0351, P0352, P0402, P0404, P1404, P0405,
P0406, P0506, P0507 are not set.
S Engine running.
S Valid Barometric Pressure (BARO) update.
S Torque Converter Clutch (TCC) steady (A/T).
S A/C steady state.
S No TP sensor fail conditions present.
S No MAP fail conditions present.
S Change in Idle Air Control (IAC) is less than 5%.
S Coolant temperature is greater than –10°C (14°F).
S Change in rpm is less than 200.
S Change in TP sensor is less than 3%.
S Change in Exhaust Gas Recirculation (EGR) value
is less than 6%.
S The rpm is between 1300 and 4500.
S All of the above are stabilized for 1.5 seconds.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a fixed MAP value and use
TP sensor to control the fuel delivery. (The scan
tool will not show defaulted value.)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmospheric pressure and the signal
voltage will be high. This information is used by the ECM
as an indication of vehicle altitude. Comparison of this
reading with a known good vehicle with the same sensor
is a good way to check the accuracy of a suspect sensor.
Readings should be the same +0.4 volt.
The MAP sensor vacuum source should be thoroughly
checked for restrictions at the intake manifold.
Test Description
Numbers below refer to the step numbers on the Diagnos-
tic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the occurred. The information is then stored on the
scan tool for later reference.
2. A sensor that displays an ignition ON, engine OFF
BARO value that does not appear normal for the
altitude the vehicle is in should be considered to be
malfunctioning.
3. While starting the engine, the MAP sensor should
detect any changes in the manifold pressure. This
test is to determine if the sensor is stuck at a value.
4. A normal MAP sensor will react as quickly to the
throttle changes as they can be made. A sensor
should not appear to be lazy or catch up with the
throttle movements.
5. This step checks if the reason for no MAP change
was due to a faulty sensor or vacuum source to the
sensor.
6. The MAP sensor vacuum source should be thor-
oughly checked for restrictions. A drill bit can be
used to clean out any casting flash that may exist in
the vacuum port.
7. The MAP sensor vacuum source should be thor-
oughly checked for restrictions. A drill bit can be
used to clean out any casting flash that may exist in
the vacuum port.
9. The MAP Sensor System Performance diagnostic
may have to complete several tests before deter-
mining if the diagnostic has passed or failed the last
test. Operate the vehicle in the Conditions for Set-
ting the DTC several times to ensure that the diag-
nostic runs enough tests to pass or fail.
10. If no faults have been found at this point and no
additional DTCs were set, refer to ”Diagnostic
Aids”in this section for additional checks and infor-
mation.
Page 595 of 2643

ENGINE CONTROLS 1F – 349
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE LOW VOLTAGE
Circuit Description
The Engine Control Module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure which results
from engine load (intake manifold vacuum) and the rpm
changes, and it converts these into voltage outputs. The
ECM sends a 5 volt reference voltage to the MAP sensor.
As the manifold pressure changes, the output of MAP sen-
sor also changes. By monitoring the Map sensor output
voltage, the ECM knows the manifold pressure. A low
pressure (low voltage) output voltage will be about 1.0 to
1.5 volts while the higher pressure (high voltage) output
voltage will be about 4.5 to 4.8 volts at Wide Open
Throttle(WOT). The MAP sensor is also used, under cer-
tain conditions to measure Barometric Pressure (BARO),
allowing the ECM to make adjustments for different alti-
tude.
Conditions for Setting the DTC
S MAP is less than 12 kPa (1.7 psi)
S No TP sensor fail conditions present.
S TP sensor is greater than 0% if the rpm is less than
1000.
S TP sensor is greater than 5% if the rpm is greater
than 1000.
S System voltage is between 11.0 and 11.5 volts.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The ECM will substitute a fixed MAP value and use
TP sensor to control the fuel delivery. (The scan
tool will not show defaulted value.)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmospheric pressure and the signal
voltage will be high. This information is used by the ECM
as an indication of vehicle altitude. Comparison of this
reading with a known good vehicle with the same sensor
is a good way to check the accuracy of a suspect sensor.
Readings should be the same 12 kPa.
If a DTC P0107 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
Important : After repairs, use the scan tool FUEL TRIM
RESET function to reset long–term fuel trim to 128 (0%).
Test Description
Numbers below refer to the step numbers on the Diagnos-
tic Table.