ABS DAEWOO NUBIRA 2004 Service Manual Online
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: NUBIRA, Model: DAEWOO NUBIRA 2004Pages: 2643, PDF Size: 80.54 MB
Page 809 of 2643

ENGINE CONTROLS 1F – 563
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1397
ABS WSS NO SIGNAL
Circuit Description
The Engine Control Module (ECM) determines linear
wheel speed fail threshold. The ECM detects a good or
failed wheel speed sensor under power conditions.
Conditions for Setting the DTC
S Vehicle speed is greater than 10km/h (6.2 mph).
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored as Freeze Frame
data.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Check for the following conditions:S Poor connection at the ECM – Inspect the harness
connections for backed–out terminals, improper
mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connec-
tion.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the G sensor display on the scan tool while moving
connectors and wiring harnesses related to the sen-
sor. A change in the display will indicate the loca-
tion of the fault.
An open signal circuit of open PWM serial data line be-
tween the ECM and the EBCM will be the cause of this
DTC.
Test Description
The number(s) below refer to specific step(s) on the diag-
nostic table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
6. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
Page 810 of 2643

1F – 564IENGINE CONTROLS
DAEWOO V–121 BL4
DTC P1397 – ABS WSS No Signal
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition ON, with the engine OFF.
2. Install a scan too.
Are any additional Diagnostic Trouble Codes
(DTCs) set?–Go to
applicable DTC
tableGo to Step 3
31. Review and record the scan tool Failure Re-
cords data.
2. Operate the vehicle within Failure Records
conditions as noted.
3. Using the scan tool, monitor specific DTC info
for DTC P1391.
Does the scan tool indicate that DTC P1391 failed?–Go to Step 4Go to
”Diagnostic
Aids”
41. Turn the ignition OFF.
2. Disconnect the engine control module (ECM)
and check for an open or short in the wire be-
tween ECM connector terminal K7 and Elec-
tronic Brake Control Module (EBCM) connector
terminal 25.
Is the problem found?–Go to Step 5Go to Step 6
5Repair an open or short in the wire between ECM
connector terminal K7 and EBCM connector termi-
nal 25.
Is the repair complete?–Go to Step 7–
61. Turn the ignition OFF.
2. Replace the ECM.
Is the repair complete?–Go to Step 7–
71. Using the scan tool, clear the DTCs.
2. Start the engine and idle at normal operating
temperature.
3. Operate the vehicle within the conditions for
setting this DTC as supported in the text.
Does the scan tool indicate that this diagnostic ran
and passed?–Go to Step 8Go to Step 2
8Check if any additional DTCs are set.
Are any DTCs displayed that have not been diag-
nosed?–Go to
Applicable DTC
tableSystem OK
Page 811 of 2643

ENGINE CONTROLS 1F – 565
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1404
EXHAUST GAS RECIRCULATION CLOSED VALVE
PINTLE ERROR
Circuit Description
An Exhaust Gas Recirculation (EGR) system is used to
lower Oxides of Nitrogen (NOx) emission levels caused by
high combustion temperatures. It accomplishes this by
feeding small amounts of exhaust gases back into the
combustion chamber.When the air/fuelmixture is diluted
with the exhaust gases, combustion temperatures are re-
duced.
A linear EGR valve is used on this system. The linear EGR
valve is designed to accurately supply exhaust gases to
the engine without the use of intake manifold vacuum. The
valve controls exhaust flow going into the intake manifold
from the exhaust manifold through an orifice with an En-
gine Control Module (ECM) controlled pintle. The ECM
controls the pintle position using inputs from the Throttle
Position (TP) and Manifold Absolute Pressure (MAP) sen-
sors. The ECM then commands the EGR valve to operate
when necessary by controlling an ignition signal through
the ECM. This can be monitored on a scan tool as the De-
sired EGR Position.
The ECM monitors the results of its command through a
feedback signal. By sending a 5 volt reference and a
ground to the EGR valve, a voltage signal representing the
EGR valve pintle position is sent to the ECM. This feed-
back signal can also be monitored on a scan tool and is the
actual position of the EGR pintle. The Actual EGR Position
should always be near the commanded or Desired EGR
Position.
Conditions for Setting the DTC
S Difference between current and learned low posi-
tion is greater than 10%.S Desired EGR position is equal to 0.
S Engine is running.
S Ignition voltage is between 11.7 and 16 volts.
S Intake Air Temperature (IAT) is greater than 3°C
(37.4°F).
S DTCs P0112, P0113, P0405, P0406, and P0502
are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive trip with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history Diagnostic Trouble Code (DTC) is stored.
S EGR is disabled.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after three consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 80 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Due to moisture associated with exhaust systems, the
EGR valve may freeze and stick in cold weather. After the
vehicle is brought into a warm shop for repairs, the valve
warms and the problem disappears. By watching the Actu-
al EGR and Desired EGR Positions on a cold vehicle with
a scan tool, the fault can be easily verified. Check the
Page 822 of 2643

1F – 576IENGINE CONTROLS
DAEWOO V–121 BL4
HARD START
Definition : The engine cranks OK, but does not start for
a long time. The engine eventually runs or may start and
immediately die.Important : Ensure that the driver is using the correct
starting procedure. Before diagnosing, check service bul-
letins for updates.
Step
ActionValue(s)YesNo
1Were the Important Preliminary Checks performed?–Go toStep 2Go to
”Important Pre-
liminary
Checks”
21. Connect the scan tool to the Data Link Con-
nector (DLC).
2. Check the Engine Coolant Temperature (ECT)
sensor and the Intake Air Temperature (IAT)
sensor using the scan tool.
3. Compare the coolant temperature and the IAT
with the ambient temperature when the engine
is cold.
Do the ECT and the IAT readings differ from the am-
bient temperature by more than the value specified?5°F (3°C)Go toStep 3Go toStep 4
31. Measure the resistance of the ECT and the IAT
sensor.
2. Compare the resistance value to specifications
using the Temperature Vs. Resistance tables
for diagnostic trouble codes (DTCs) P0118 and
P0113.
3. If the resistance is not the same, replace the
faulty sensor.
Is the repair complete?–System OK–
41. Check for a sticking throttle shaft or a binding
linkage that may cause a high Throttle Position
(TP) sensor voltage. Repair or replace as
needed.
2. Check the TP sensor voltage reading with the
throttle closed.
Does the voltage measure within the value speci-
fied?0.4–0.8 vGo toStep 5Go toStep 26
51. Check the Manifold Absolute Pressure (MAP)
sensor response and accuracy.
2. Replace the MAP sensor as needed.
Is the repair complete?–System OKGo toStep 6
6Check the fuel pump operation.
Does the fuel pump operate for the specified time
when the ignition switch is turned ON?2 secGo toStep 7Go to
”Fuel Pump
Relay Circuit
Check”
7Check the fuel system pressure.
Is the fuel pressure within the specifications?41–47 psi
(284–325 kPa)Go toStep 8Go toStep 29
8Check for water contamination in the fuel.
Is fuel contaminated?–Go toStep 9Go toStep 10
9Replace the contaminated fuel.
Is the repair complete?–System OK–
Page 829 of 2643

ENGINE CONTROLS 1F – 583
DAEWOO V–121 BL4
HESITATION, SAG, STUMBLE
Definition : Involves a momentary lack of response as the
accelerator is pushed down. This can occur at any vehicle
speed. It is usually the most severe when first trying to
make the vehicle move, as from a stop. Hesitation, sag,
or stumble may cause the engine to stall if severe enough.Important : Before diagnosing this condition, check ser-
vice bulletins for Programmable Read–Only Memory
(PROM) updates.
Step
ActionValue(s)YesNo
1Were the Important Preliminary Checks performed?–Go toStep 2Go to
”Important Pre-
liminary
Checks”
21. Check the fuel system pressure. If the pres-
sure is not within the value specified, service
the fuel system as needed.
2. Inspect the Throttle Position (TP) sensor for
binding or sticking. The TP sensor voltage
should increase at a steady rate as the throttle
is moved toward Wide Open Throttle (WOT).
Is the problem found?41–47 psi
(284–325 kPa)Go toStep 3Go toStep 4
3Repair or replace any components as needed.
Is the repair complete?–System OK–
41. Check the Manifold Absolute Pressure (MAP)
sensor response and accuracy.
2. Inspect the fuel for water contamination.
3. Check the Evaporative (EVAP) Emission canis-
ter purge system for proper operation.
Is the problem found?–Go toStep 5Go toStep 6
5Repair or replace any components as needed.
Is the repair complete?–System OK–
61. Disconnect all of the fuel injector harness con-
nectors.
2. Connect an injector test light between the har-
ness terminals of each fuel injector.
3. Note the test light while cranking the engine.
Does the test light blink on all connectors?–Go toStep 8Go toStep 7
71. Repair or replace the faulty fuel injector drive
harness, the connector, or the connector termi-
nal.
2. If the connections and the harnesses are good,
replace the engine control module (ECM) for
an internal open in the fuel injector driver cir-
cuit.
Is the repair complete?–System OK–
8Measure the resistance of each fuel injector. The re-
sistance will increase slightly at higher tempera-
tures.
Is the fuel injector resistance within the value speci-
fied?11.6–12.4 ΩGo toStep 10Go toStep 9
9Replace any of the fuel injectors with a resistance
that is out of specifications.
Is the repair complete?–System OK–
10Perform an injector balance test.
Is the problem found?–Go toStep 11Go toStep 12
Page 834 of 2643

1F – 588IENGINE CONTROLS
DAEWOO V–121 BL4
ROUGH, UNSTABLE, OR INCORRECT LDLE, STALLING
Definition : The engine runs unevenly at idle. If the condi-
tion is bad enough, the vehicle may shake. Also, the idle
varies in rpm (called ”hunting”). Either condition may be
severe enough to cause stalling. The engine idles at incor-
rect idle speed.Important : Before diagnosing the symptom, check ser-
vice bulletins for updates.
Step
ActionValue(s)YesNo
1Were the Important Preliminary Checks performed?–Go toStep 2Go to
”Important Pre-
liminary
Checks”
21. Connect the scan tool to the Data Link Con-
nector (DLC).
2. Monitor the Front Heated Oxygen Sensor
(HO2S1) reading at different throttle positions.
Does the HO2S sensor change quickly from rich to
lean at the different throttle positions?–Go toStep 5Go toStep 3
3Check the HO2S1 sensor for contamination from
fuel or improper use of Room Temperature Vulcaniz-
ing (RTV) sealant.
Is the HO2S1 sensor contaminated?–Go toStep 4Go toStep 5
4Replace the contaminated HO2S sensor as needed.
Is the repair complete?–System OK–
51. Check for a sticking throttle shaft or binding
throttle linkage that may cause incorrect
Throttle Position (TP) sensor voltage.
2. Check the TP sensor voltage reading with the
throttle closed.
Is the TP sensor voltage within the value specified?0.4–0.8 vGo toStep 6Go to
”Diagnostic
Aids for DTC
P0123”
61. Check the Engine Coolant Temperature (ECT)
sensor voltage reading using the scan tool.
2. Compare the ECT reading with the ambient
temperature when the engine is cold.
Does the ECT temperature reading differ from the
ambient temperature by more than the value speci-
fied?5°F (3°C)Go toStep 7Go toStep 9
7Check for high resistance in the ECT sensor circuit
or the sensor itself.
Is the problem found?–Go toStep 8Go toStep 9
8Replace the ECT sensor or repair the circuit as
needed.
Is the repair complete?–System OK–
9Check the Manifold Absolute Pressure (MAP) sen-
sor for response and accuracy.
Is the problem found?–Go toStep 10Go toStep 11
10Replace the MAP sensor or repair the MAP sensor
circuit as needed.
Is the repair complete?–System OK–
Page 843 of 2643

ENGINE CONTROLS 1F – 597
DAEWOO V–121 BL4
8. Turn the lock ring counterclockwise to clear the
tank tabs.
9. Remove the fuel pump assembly from the tank.
Installation Procedure
1. Clean the gasket mating surface on the fuel tank.
2. Position the new gasket in place.
3. Install the fuel pump into the fuel tank in the same
location as removed for ease of line and connector
installation.
4. Position the lock ring in place and turn it clockwise
until it contacts the tank stop.
5. Connect the fuel pump assembly connector.
6. Install the fuel pump outlet line.
7. Install the fuel tank return line.
8. Install the fuel pump access cover.
9. Connect the negative battery cable.
10. Perform an operational check of the fuel pump.
11. Install the rear seat. Refer to Section 9H, Seats.
FUEL FILTER
Removal Procedure
CAUTION : The fuel system is under pressure. To
avoid fuel spillage and the risk of personal injury or
fire, it is necessary to relieve the fuel system pressure
before disconnecting the fuel lines.
1. Relieve the fuel system pressure. Refer to ” Fuel
System Pressure Relief ” in this section.
2. Disconnect the negative battery cable.
3. Remove the fuel filter mounting bracket assembly
bolt.
4. Remove the fuel filter cover.
5. Disconnect the inlet/outlet fuel lines by moving the
line connector lock forward and pulling the hose off
of the fuel filter tube.
Page 856 of 2643

1F – 610IENGINE CONTROLS
DAEWOO V–121 BL4
Notice : Do not use methyl ethyl ketone because it can
damage the parts.
6. Clean the IAC valve O–ring seal area, the pintle
valve seat, and the air passage with a suitable fuel
system cleaner.
Installation Procedure
Important : If installing a new IAC valve, be sure to re-
place it with an identical part. The IAC valve pintle shape
and diameter are designed for the specific application.
Measure the distance between the tip of the IAC valve
pintle and the mounting flange. If the distance is greater
than 1.1 inches (28 mm), use finger pressure to slowly re-
tract the pintle. The force required to retract the pintle will
not damage the IAC valve. The purpose of the 1.1–inch
(28–mm) setting is to prevent the IAC pintle from bottom-
ing out on the pintle seat. This 1.1–inch (28–mm) setting
is also an adequate setting for controlled idle on a restart.
1. Lubricate a new O–ring with engine oil. Install the
new O–ring onto the valve.
2. Install the IAC valve into the throttle body.
3. Install the IAC valve retaining bolts.
Tighten
Tighten the idle air control valve retaining bolts to 3
NSm (27 lb–in).
4. Connect the IAC valve connector.
5. Install the air intake resonator.
6. Connect the negative battery cable.
7. Start the engine and check for the proper idle
speed.
MANIFOLD ABSOLUTE PRESSURE
SENSOR (1.4L/1.6L DOHC)
Removal Procedure
1. Disconnect the negative battery cable.
2. Remove the manifold Absolute pressure (MAP)
sensor electrical connector.
3. Disconnect the MAP sensor vacuum hose.
4. Remove the MAP sensor bolt.
5. Remove the MAP sensor.
Page 857 of 2643

ENGINE CONTROLS 1F – 611
DAEWOO V–121 BL4
Installation Procedure
1. Install the manifold absolute pressure (MAP) sen-
sor with the bolt.
Tighten
Tighten the MAP sensor bolt to 8 NSm (71 lb–in).
2. Connect the MAP sensor vacuum hose.
3. Connect the MAP sensor electrical connector.
4. Connect the negative battery cable.
MANIFOLD ABSOLUTE PRESSURE
SENSOR (1.8L DOHC)
Removal Procedure
1. Disconnect the negative battery cable.
2. Disconnect the fuel rail. Refer to”Fuel Rail and In-
jectors” in this section.
3. Disconnect the manifold absolute pressure (MAP)
sensor connector from the MAP sensor.
4. Remove the MAP sensor retaining bolt.
5. Remove the MAP sensor from the intake manifold.
Installation Procedure
1. Connect the MAP sensor connector to the MAP
sensor.
2. Install the MAP sensor into the intake manifold.
3. Install the MAP sensor retaining bolt.
Tighten
Tighten the MAP sensor retaining bolt to 4 NSm (35
lb–in).
4. Connect the fuel rail. Refer to ”Fuel Rail and Injec-
tors” in this section.
5. Connect the negative battery cable.
EXHAUST GAS RECIRCULATION
VALVE (1.4L/1.6L DOHC)
Removal Procedure
1. Disconnect the negative battery cable.
2. Disconnect the electrical exhaust gas recirculation
valve electrical connector.
3. Remove the EEGR valve retaining bolts.
4. Remove the EEGR valve.
Page 869 of 2643

ENGINE CONTROLS 1F – 623
DAEWOO V–121 BL4
GENERAL DESCRIPTION
AND SYSTEM OPERATION
IGNITION SYSTEM OPERATION
This ignition system does not use a conventional distribu-
tor and coil. It uses a crankshaft position sensor input to
the engine control module (ECM). The ECM then deter-
mines Electronic Spark Timing (EST) and triggers the di-
rect ignition system ignition coil.
This type of distributorless ignition system uses a ”waste
spark” method of spark distribution. Each cylinder is
paired with the cylinder that is opposite it (1–4 or 2–3). The
spark occurs simultaneously in the cylinder coming up on
the compression stroke and in the cylinder coming up on
the exhaust stroke. The cylinder on the exhaust stroke re-
quires very little of the available energy to fire the spark
plug. The remaining energy is available to the spark plug
in the cylinder on the compression stroke.
These systems use the EST signal from the ECM to con-
trol the electronic spark timing. The ECM uses the follow-
ing information:
S Engine load (manifold pressure or vacuum).
S Atmospheric (barometric) pressure.
S Engine temperature.
S Intake air temperature.
S Crankshaft position.
S Engine speed (rpm).
ELECTRONIC IGNITION SYSTEM
IGNITION COIL
The Electronic Ignition (EI) system ignition coil provides
the spark for two spark plugs simultaneously. The EI sys-
tem ignition coil is not serviceable and must be replaced
as an assembly.
CRANKSHAFT POSITION SENSOR
This direct ignition system uses a magnetic crankshaft
position sensor. This sensor protrudes through its mount
to within approximately 0.05 inch (1.3 mm) of the crank-
shaft reluctor. The reluctor is a special wheel attached to
the crankshaft or crankshaft pulley with 58 slots machined
into it, 57 of which are equally spaced in 6 degree intervals.
The last slot is wider and serves to generate a ”sync
pulse.” As the crankshaft rotates, the slots in the reluctor
change the magnetic field of the sensor, creating an in-
duced voltage pulse. The longer pulse of the 58th slot
identifies a specific orientation of the crankshaft and al-
lows the engine control module (ECM) to determine the
crankshaft orientation at all times. The ECM uses this in-
formation to generate timed ignition and injection pulses
that it sends to the ignition coils and to the fuel injectors.
CAMAHAFT POSITION SENSOR
The Camshaft Position (CMP) sensor sends a CMP sen-
sor signal to the engine control module (ECM). The ECM
uses this signal as a ”sync pulse” to trigger the injectors in
the proper sequence. The ECM uses the CMP sensor sig-
nal to indicate the position of the #1 piston during its power
stroke. This allows the ECM to calculate true sequential
fuel injection mode of operation. If the ECM detects an in-
correct CMP sensor signal while the engine is running,
DTC P0341 will set. If the CMP sensor signal is lost while
the engine is running, the fuel injection system will shift to
a calculated sequential fuel injection mode based on the
last fuel injection pulse, and the engine will continue to run.
As long as the fault is present, the engine can be restarted.
It will run in the calculated sequential mode with a 1–in–6
chance of the injector sequence being correct.
IDLE AIR SYSTEM OPERATION
The idle air system operation is controlled by the base idle
setting of the throttle body and the Idle Air Control (IAC)
valve.
The engine control module (ECM) uses the IAC valve to
set the idle speed dependent on conditions. The ECM
uses information from various inputs, such as coolant tem-
perature, manifold vacuum, etc., for the effective control
of the idle speed.
FUEL CONTROL SYSTEM
OPERATION
The function of the fuel metering system is to deliver the
correct amount of fuel to the engine under all operating
conditions. The fuel is delivered to the engine by the indi-
vidual fuel injectors mounted into the intake manifold near
each cylinder.
The two main fuel control sensors are the Manifold Abso-
lute Pressure (MAP) sensor, the Front Heated Oxygen
Sensor (HO2S1) and the Rear Heated Oxygen Sensor
(HO2S2).
The MAP sensor measures or senses the intake manifold
vacuum. Under high fuel demands the MAP sensor reads
a low vacuum condition, such as wide open throttle. The
engine control module (ECM) uses this information to ri-
chen the mixture, thus increasing the fuel injector on–time,
to provide the correct amount of fuel. When decelerating,
the vacuum increases. This vacuum change is sensed by
the MAP sensor and read by the ECM, which then de-
creases the fuel injector on–time due to the low fuel de-
mand conditions.
HO2S Sensors
The HO2S sensor is located in the exhaust manifold. The
HO2S sensor indicates to the ECM the amount of oxygen
in the exhaust gas and the ECM changes the air/fuel ratio
to the engine by controlling the fuel injectors. The best air/
fuel ratio to minimize exhaust emissions is 14.7 to 1, which
allows the catalytic converter to operate most efficiently.