Transmission control module ISUZU TF SERIES 2004 Workshop Manual
[x] Cancel search | Manufacturer: ISUZU, Model Year: 2004, Model line: TF SERIES, Model: ISUZU TF SERIES 2004Pages: 4264, PDF Size: 72.63 MB
Page 660 of 4264

8A-2 ELECTRICAL-BODY AND CHASSIS
PAGE
Fuse and Slow Blow Fuse Location (Relay and Fuse Box) .................................... 8A- 31
Fuse Location ............................................................................................................. 8A- 33
Diode Location ........................................................................................................... 8A- 34
Fuse Block Circuit ...................................................................................................... 8A- 35
Fuse Block Circuit (C24SE) ....................................................................................... 8A- 35
Fuse Block Circuit (6VE1) ......................................................................................... 8A- 37
Fuse Block Circuit (4JA1-TC/4JH1-TC) - RHD ......................................................... 8A- 39
Fuse Block Circuit (4JA1-TC/4JH1-TC) – LHD ......................................................... 8A- 41
Fuse Block Circuit (4JH1-L) ...................................................................................... 8A- 43
Grounding Point ............................................................................................................. 8A- 45
Ground Point .............................................................................................................. 8A- 45
Ground Point Location .............................................................................................. 8A- 61
Main Cable harness Routing .......................................................................................... 8A- 63
C24SE / 6VE1 / 4JA1-L / 4JH1-TC .............................................................................. 8A- 63
Instrument Harness .................................................................................................... 8A- 71
System Repair .................................................................................................................8A- 73
Start and Charging ..................................................................................................... 8A- 73
Engine Control Module (ECM) ................................................................................... 8A- 89
Exhaust Gas Recalculation (EGR): 4JA1-L Only ...................................................... 8A- 109
Lighting ....................................................................................................................... 8A- 114
Front Fog Light ........................................................................................................... 8A- 136
Rear Fog Light ............................................................................................................ 8A- 144
Head Light Leveling ................................................................................................... 8A- 149
Illumination ................................................................................................................. 8A- 154
Hazard Warning Flasher, Turn Signal Light, Back Up Light,
Horn and Stop Light ................................................................................................. 8A- 161
Dome Light, Spot Light and Warning Buzzer .......................................................... 8A- 181
Windshield Wiper and Washer .................................................................................. 8A- 196
Transmission Control Module (TCM) ....................................................................... 8A- 214
Meter, Warning Light and Indicator Light ................................................................ 8A- 223
Heater and Air Conditioning ...................................................................................... 8A- 281
Power Door Lock ....................................................................................................... 8A- 293
Page 670 of 4264

8A-12 ELECTRICAL-BODY AND CHASSIS
ABBREVIATIONS
Abbreviation Meaning of abbreviation Abbreviation Meaning of abbreviation
A Ampere (S) LH Left hand
ABS Anti-lock brake system LWB Long wheel base
ASM Assembly MPI Multipart fuel injection
AC Alternating current M/T Manual transmission
A/C Air conditioner QOS Quick On Start system
ACC Accessories RH Right hand
CARB Carburetor RR Rear
C/B Circuit breaker RWAL Rear wheel anti-lock brake system
CSD Cold start device SRS Supplemental restraint system
DIS Direct ignition system ST Start
EBCM Electronic brake control module STD Standard
ECGI Electronic control gasoline injection SW Switch
ECM Engine control module SWB Short wheel base
ECU Electronic control unit TCM Transmission control module
EFE Early fuel evaporation V Volt
42 Two-wheel drive VSV Vacuum switching valve
44 Four-wheel drive W Watt (S)
FL Fusible link WOT Wide open throttle
FRT Front W/ With
H/L Headlight W/O Without
IC Integrated circuit
IG Ignition
kW Kilowatt
Page 872 of 4264

8A-214 ELECTRICAL-BODY AND CHASSIS
TRANSMISSION CONTROL MODULE (TCM)
PARTS LOCATION (RHD)
RTW48AXF017801 & RTW48AXF017901
Page 1381 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–9
ABBREVIATION CHARTS
A bbreviations A ppellation
A/C Air conditioner
A/T Automatic transmission
ACC Accessory
BLK Black
BLU Blue
BRN Brown
CAN Controller Area Network
CEL Check engine lamp
CKP Crankshaft position sensor
DLC Data link connector
DTC Diagnosis trouble code
DVM Digital voltage meter
ECM Engine control module
ECT Engine coolant temperature
EEPROM Electrically erasable & programmable read only memory
EGR Ex haust gas recirculation
EVRV Electric vacuum regulating valve
GND Ground
GRY Gray
IAT Intake air temperature
IG Ignition
M/T Manual transmission
MAB High pressure solenoid valve cutoff (German abbreviation)
MAF Mass air flow
MIL Malfunction indicator lamp
OBD On-board diagnostic
ORN Orange
PNK Pink
RED Red
PSG Pump control unit (German abbreviation)
SW Switch
TCM Transmission control module
TCV Timing control valve
TDC Top dead center
TPS Throttle position sensor
VCC Voltage constunt control
VIO Violet
VSS Vehicle speed sensor
WHT Whi te
YEL Yellow
Page 1439 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–67
Engine Coolant Temperature (ECT) Sensor
The ECT sensor is a thermistor. A temperature changes
the resistance value. And it changes voltage. In other
words it measures a temperature value. It is installed on
the coolant stream. Low coolant temperature produces
a high resistance.
The ECM supplies 5 volts signal to the ECT sensor
through resisters in the ECM and measures the voltage.
The signal voltage will be high when the engine
temperature is cold, and it will be low when the engine
temperature is hot.
Vehicle Speed Sensor (VSS)
M/T & A /T 4WD
A/T 2WD
The VSS is a magnet rotated by the transmission output
shaft. The VSS uses a hall element. It interacts with the
magnetic field treated by the rotating magnet. It outputs
pulse signal. The 12 volts operating supply from the
meter fuse.
The engine control module (ECM) calculates the vehicle
speed by VSS.
The 2WD model fitted with automatic transmission,
vehicle speed sensor signal is transmitted to from the
TCM to the ECM via vehicle speed meter. (1) Engine Coolant Temperature (ECT) Sensor
(2) Thermo Unit for Water Temperature Gauge
12
Characteristic of ECT Sensor -Reference-
10 100 1000 10000 100000
-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
Engine Coolant Temp (deg. C) (Tech2 Reading)
Resistance (ohm) (Solid Line)
Page 1613 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–241
Condition for setting the DTC and action taken when the DTC sets
Circuit Description
The VSS is a magnet rotated by the transmission output
shaft. The VSS uses a hall element. It interacts with the
magnetic field treated by the rotating magnet. It outputs
pulse signal. The 12 volts operating supply from the
meter fuse.
The engine control module (ECM) calculates the vehicle
speed by VSS.
Diagnostic Aids
An intermittent may be caused by the following:
Poor connections.Misrouted harness.
Rubbed through wire insulation.
Broken wire inside the insulation.
Check for the following conditions:
Poor connection at ECM-Inspect harness connectors
for backed out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal to wire connection.
Damaged harness-Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the DTC P0500 display on the Tech2 while moving
connectors and wiring harnesses. A change in the
display will indicate the location of the fault.
Diagnostic Trouble Code (DTC) P0500 (Symptom Code 1) (Flash Code 24)
Vehicle Speed Sensor Circuit High Input
Flash
CodeCode Symptom
CodeMIL DTC Name DTC Setting Condition Fail-Safe (Back Up)
24 P0500 1 ON
at next
ignitio n
cy cleVehicle Spe ed Se nsor Circuit
High InputVehicle speed is more than
200km/h.ECM uses v ehicle spe ed 5km/
h condition as substitute.
AON
at next
ignitio n
cy cleVehicle Speed Sensor Input
Signal Frequency Too HighInput signal frequency is too
high.ECM uses v ehicle spe ed 5km/
h condition as substitute.
BON
at next
ignitio n
cy cleVehicle Spe ed Se nsor Inco r-
re ct Signal1. Engine speed is more than
3200rpm (4JA1-TC) o r
3600rpm (4JH1-TC).
2. Fuel injection quantity is
more than 30mg/strk
(4JA1-TC) or 41mg/strk
(4JH1-TC).
3. Vehicle speed is below
1.5km/h.Fuel injection quantity is
re duced.
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
2 1. Connect the Tech 2.
2. Review and record the failure information.
3. Select “F0: Read DTC Infor As Stored By ECU” in
“F0: Diagnostic Trouble Codes”.
Is the DTC P0500 (Symptom Code 1) stored as
“Present Failure”?—Go to Step 3Refer to
Diagnostic Aids
and Go to Step
3
3 1. Using the Tech 2, ignition “On” and engine “Off”.
2. Select “F1: Clear DTC Information” in “F0:
Diagnostic Trouble Codes” with the Tech 2 and
clear the DTC information.
3. Operate the vehicle and monitor the “F0: Read
DTC Infor As Stored By ECU” in the “F0:
Diagnostic Trouble Codes”.
Was the DTC P0500 (Symptom Code 1) stored in this
ignition cycle?—Go to Step 4Refer to
Diagnostic Aids
and Go to Step
4
Page 2001 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-5
ABBREVIATION CHARTS
Abbreviations Appellation
A/C Air conditioner
A/T Automatic transmission
ACC Accessory
BLK Black
BLU Blue
BRN Brown
CAN Controller Area Network
CEL Check engine lamp
CKP Crankshaft position
CMP Camshaft position
DLC Data link connector
DTC Diagnosis trouble code
DVM Digital voltage meter
ECM Engine control module
ECT Engine coolant temperature
EEPROM Electrically erasable & programmable read only memory
EGR Exhaust gas recalculation
GND Ground
GRY Gray
HO2S Heated Oxygen Sensor
IAT Intake air temperature
IAC Idle air control
IG Ignition
M/T Manual transmission
MAF Mass air flow
MIL Malfunction indicator lamp
OBD On-board diagnostic
ORN Orange
PNK Pink
PROM Programmable read only memory
RED Red
SW Switch
TPS Throttle position sensor
TCM Transmission control module
VCC Voltage Constant Control
VIO Violet
VSS Vehicle speed sensor
WHT White
WOT Wide open throttle
YEL Yellow
Page 2047 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-51
GENERAL DESCRIPTION FOR ECM AND
SENSORS
Engine Control Module (ECM)
1 2
(1) A Port
(2) B Port
The engine control module (ECM) is located on the
common chamber. The ECM controls the following.
Fuel metering system
Ignition timing
On-board diagnostics for powertrain functions.
The ECM constantly observes the information from
various sensors. The ECM controls the systems tha
t
affect vehicle performance. And it performs the
diagnostic function of the system.
The function can recognize operational problems, and
warn to the driver through the check engine lamp, and
store diagnostic trouble code (DTC). DTCs identify the
problem areas to aid the technician in marking repairs.
The input / output devices in the ECM include analog to
digital converts, signal buffers, counters and drivers.
The ECM controls most components with electronic
switches which complete a ground circuit when turned
on.
Inputs (Operating condition read):
Battery voltage
Electrical ignition
Exhaust oxygen content
Mass air flow
Intake air temperature
Engine coolant temperature
Crankshaft position
Camshaft position
Throttle position
Vehicle speed
Power steering pressure
Air conditioning request on or off
EGR valve position
Outputs (Systems controlled):
Ignition control
Fuel control
Idle air control
Fuel pump
EVAP canister purge
Air conditioning
Diagnostics functions
The vehicle with automatic transmission, the
interchange of data between the engine control module
(ECM) and the transmission control module (TCM) is
performed via a CAN-bus system.
The following signals are exchanged via the CAN-bus:
ECM to TCM:
ECM CAN signal status
Engine torque
Coolant temperature
Throttle position
Engine speed
A/C status
CAN valid counter
TCM to ECM:
Ignition timing retard request
Garage shift status
CAN valid counter
Page 2067 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the curren
t
ignition cycle.
The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Inlet Air Temperature (IAT) Sensor
Crankshaft Position (CKP) Sensor
Throttle Position Sensor (TPS)
Engine Coolant Temperature (ECT) Sensor
Camshaft Position (CMP) Sensor
Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
Idle Air Control (IAC) Valve
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Refer to ECM and Sensors in General Descriptions.
Page 2208 of 4264

6E-212 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
P0171 B O2 Sensor System Too
Lean (Bank 1) 44
P0174 B O2 Sensor System Too
Lean (Bank 2) 1. No DTC relating to MAF sensor, IAT sensor, ECT sensor,
TPS, CMP sensor, CKP sensor, VSS, injector control
circuit, ignition control circuit, O2 sensor circuit low voltage
& high voltage (bank 1 & 2) and O2 sensor circuit no
activity (bank 1 & 2).
2. Engine speed is more than 600rpm.
3. Intake air temperature is more than 50C.
4. Engine coolant temperature is between 35C and 120C.
5. Engine load is more than 20%.
6. EVAP purge solenoid valve on-duty is below 100%.
7. Air-fuel ratio correction volume is more than 150%
for 20 seconds. No fail-safe function.
CIRCUIT DESCRIPTION
To provide the best possible combination of driveability,
fuel economy, and emission control, a “closed loop"
air/fuel metering system is used. While in “closed loop,"
the Engine Control Module (ECM) monitors the HO2S
signals and adjusts fuel delivery based upon the HO2S
signal voltages. A change made to fuel delivery will be
indicated by the long and short term fuel trim values
which can be monitored with a Tech 2. Ideal fuel trim
values are around 0%; if the HO2S signals are
indicating a lean condition the ECM will add fuel,
resulting in fuel trim values above 0%. If a rich condition
is detected, the fuel trim values will be below 0%,
indicating that the ECM is reducing the amount of fuel
delivered. If an excessively lean condition is detected,
the ECM will set DTC P0171 or P0174.
The ECM's maximum authority to control long term fuel
trim allows a range between –15% (automatic
transmission) or –12% (manual transmission) and
+20%. The ECM monitors fuel trim under various
engine speed/load fuel trim cells before determining the
status the fuel trim diagnostic.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness – Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the HO2S display on the Tech 2 while moving
connectors and wiring harnesses related to the
engine harness. A change in the display will indicate
the location of the fault.