length JEEP LIBERTY 2002 KJ / 1.G User Guide
[x] Cancel search | Manufacturer: JEEP, Model Year: 2002, Model line: LIBERTY, Model: JEEP LIBERTY 2002 KJ / 1.GPages: 1803, PDF Size: 62.3 MB
Page 308 of 1803

ison, the prior two-wire Chrysler Collision Detection
(CCD) data bus system is designed to run at 7.8125
Kbps.
The voltage network used to transmit messages
requires biasing and termination. Each module on
the PCI data bus system provides its own biasing
and termination. Each module (also referred to as a
node) terminates the bus through a terminating
resistor and a terminating capacitor. There are two
types of nodes on the bus. The dominant node termi-
nates the bus througha1KWresistor and a 3300 pF
capacitor. The Powertrain Control Module (PCM) is
the only dominant node for the PCI data bus system.
A standard node terminates the bus through an 11
KW resistor and a 330 pF capacitor.
The modules bias the bus when transmitting a
message. The PCI bus uses low and high voltage lev-
els to generate signals. Low voltage is around zero
volts and the high voltage is about seven and one-
half volts. The low and high voltage levels are gener-
ated by means of variable-pulse width modulation to
form signals of varying length. The Variable Pulse
Width Modulation (VPWM) used in PCI bus messag-
ing is a method in which both the state of the bus
and the width of the pulse are used to encode bit
information. A9zero9bit is defined as a short low
pulse or a long high pulse. A9one9bit is defined as a
long low pulse or a short high pulse. A low (passive)
state on the bus does not necessarily mean a zero bit.
It also depends upon pulse width. If the width is
short, it stands for a zero bit. If the width is long, it
stands for a one bit. Similarly, a high (active) state
does not necessarily mean a one bit. This too depends
upon pulse width. If the width is short, it stands for
a one bit. If the width is long, it stands for a zero bit.
In the case where there are successive zero or one
data bits, both the state of the bus and the width of
the pulse are changed alternately. This encoding
scheme is used for two reasons. First, this ensures
that only one symbol per transition and one transi-
tion per symbol exists. On each transition, every
transmitting module must decode the symbol on the
bus and begin timing of the next symbol. Since tim-
ing of the next symbol begins with the last transition
detected on the bus, all of the modules are re-syn-
chronized with each symbol. This ensures that thereare no accumulated timing errors during PCI data
bus communication.
The second reason for this encoding scheme is to
guarantee that the zero bit is the dominant bit on
the bus. When two modules are transmitting simul-
taneously on the bus, there must be some form of
arbitration to determine which module will gain con-
trol. A data collision occurs when two modules are
transmitting different messages at the same time.
When a module is transmitting on the bus, it is read-
ing the bus at the same time to ensure message
integrity. When a collision is detected, the module
that transmitted the one bit stops sending messages
over the bus until the bus becomes idle.
Each module is capable of transmitting and receiv-
ing data simultaneously. The typical PCI bus mes-
sage has the following four components:
²Message Header- One to three bytes in length.
The header contains information identifying the mes-
sage type and length, message priority, target mod-
ule(s) and sending module.
²Data Byte(s)- This is the actual message that
is being sent.
²Cyclic Redundancy Check (CRC) Byte- This
byte is used to detect errors during a message trans-
mission.
²In-Frame Response (IFR) byte(s)-Ifa
response is required from the target module(s), it can
be sent during this frame. This function is described
in greater detail in the following paragraph.
The IFR consists of one or more bytes, which are
transmitted during a message. If the sending module
requires information to be received immediately, the
target module(s) can send data over the bus during
the original message. This allows the sending module
to receive time-critical information without having to
wait for the target module to access the bus. After
the IFR is received, the sending module broadcasts
an End of Frame (EOF) message and releases control
of the bus.
The PCI data bus can be monitored using the
DRBIIItscan tool. It is possible, however, for the bus
to pass all DRBIIIttests and still be faulty if the
voltage parameters are all within the specified range
and false messages are being sent.
KJELECTRONIC CONTROL MODULES 8E - 9
COMMUNICATION (Continued)
Page 318 of 1803

²Output Shaft Speed Sensor
²Line Pressure Sensor
Some examples ofindirect inputsto the TCM are:
²Engine/Body Identification
²Manifold Pressure
²Target Idle
²Torque Reduction Confirmation
²Engine Coolant Temperature
²Ambient/Battery Temperature
²DRBtScan Tool Communication
Based on the information received from these var-
ious inputs, the TCM determines the appropriate
shift schedule and shift points, depending on the
present operating conditions and driver demand.
This is possible through the control of various direct
and indirect outputs.
Some examples of TCMdirect outputsare:
²Transmission Control Relay
²Solenoids
²Torque Reduction Request
Some examples of TCMindirect outputsare:
²Transmission Temperature (to PCM)
²PRNDL Position (to BCM)
In addition to monitoring inputs and controlling
outputs, the TCM has other important responsibili-
ties and functions:
²Storing and maintaining Clutch Volume Indexes
(CVI)
²Storing and selecting appropriate Shift Sched-
ules
²System self-diagnostics
²Diagnostic capabilities (with DRBtscan tool)
NOTE: If the TCM has been replaced, the ªQuick
Learn Procedureº must be performed. (Refer to 8 -
ELECTRICAL/ELECTRONIC CONTROL MODULES/
TRANSMISSION CONTROL MODULE - STANDARD
PROCEDURE)
BATTERY FEED
A fused, direct battery feed to the TCM is used for
continuous power. This battery voltage is necessary
to retain adaptive learn values in the TCM's RAM
(Random Access Memory). When the battery (B+) is
disconnected, this memory is lost. When the battery
(B+) is restored, this memory loss is detected by the
TCM and a Diagnostic Trouble Code (DTC) is set.
CLUTCH VOLUME INDEXES (CVI)
An important function of the TCM is to monitor
Clutch Volume Indexes (CVI). CVIs represent the vol-
ume of fluid needed to compress a clutch pack.
The TCM monitors gear ratio changes by monitor-
ing the Input and Output Speed Sensors. The Input,
or Turbine Speed Sensor sends an electrical signal to
the TCM that represents input shaft rpm. The Out-put Speed Sensor provides the TCM with output
shaft speed information.
By comparing the two inputs, the TCM can deter-
mine transmission gear position. This is important to
the CVI calculation because the TCM determines
CVIs by monitoring how long it takes for a gear
change to occur (Fig. 13).
Gear ratios can be determined by using the DRBt
Scan Tool and reading the Input/Output Speed Sen-
sor values in the ªMonitorsº display. Gear ratio can
be obtained by dividing the Input Speed Sensor value
by the Output Speed Sensor value.
For example, if the input shaft is rotating at 1000
rpm and the output shaft is rotating at 500 rpm,
then the TCM can determine that the gear ratio is
2:1. In direct drive (3rd gear), the gear ratio changes
to 1:1. The gear ratio changes as clutches are applied
and released. By monitoring the length of time it
takes for the gear ratio to change following a shift
request, the TCM can determine the volume of fluid
used to apply or release a friction element.
The volume of transmission fluid needed to apply
the friction elements are continuously updated for
adaptive controls. As friction material wears, the vol-
ume of fluid need to apply the element increases.
Fig. 13 Example of CVI Calculation
1 - OUTPUT SPEED SENSOR
2 - OUTPUT SHAFT
3 - CLUTCH PACK
4 - SEPARATOR PLATE
5 - FRICTION DISCS
6 - INPUT SHAFT
7 - INPUT SPEED SENSOR
8 - PISTON AND SEAL
KJELECTRONIC CONTROL MODULES 8E - 19
TRANSMISSION CONTROL MODULE (Continued)
Page 401 of 1803

subjected to a high torque load, deposits partially liq-
uefy and bridge the gap between electrodes (Fig. 23).
This short circuits the electrodes. Spark plugs with
electrode gap bridging can be cleaned using standard
procedures.
SCAVENGER DEPOSITS
Fuel scavenger deposits may be either white or yel-
low (Fig. 24). They may appear to be harmful, but
this is a normal condition caused by chemical addi-
tives in certain fuels. These additives are designed to
change the chemical nature of deposits and decrease
spark plug misfire tendencies. Notice that accumula-
tion on the ground electrode and shell area may be
heavy, but the deposits are easily removed. Spark
plugs with scavenger deposits can be considered nor-
mal in condition and can be cleaned using standard
procedures.
CHIPPED ELECTRODE INSULATOR
A chipped electrode insulator usually results from
bending the center electrode while adjusting the
spark plug electrode gap. Under certain conditions,
severe detonation can also separate the insulator
from the center electrode (Fig. 25). Spark plugs with
this condition must be replaced.
PREIGNITION DAMAGE
Preignition damage is usually caused by excessive
combustion chamber temperature. The center elec-
trode dissolves first and the ground electrode dis-
solves somewhat latter (Fig. 26). Insulators appear
relatively deposit free. Determine if the spark plug
has the correct heat range rating for the engine.
Determine if ignition timing is over advanced or if
other operating conditions are causing engine over-heating. (The heat range rating refers to the operat-
ing temperature of a particular type spark plug.
Spark plugs are designed to operate within specific
temperature ranges. This depends upon the thick-
ness and length of the center electrodes porcelain
insulator.)
SPARK PLUG OVERHEATING
Overheating is indicated by a white or gray center
electrode insulator that also appears blistered (Fig.
27). The increase in electrode gap will be consider-
ably in excess of 0.001 inch per 2000 miles of opera-
tion. This suggests that a plug with a cooler heat
range rating should be used. Over advanced ignition
timing, detonation and cooling system malfunctions
can also cause spark plug overheating.
Fig. 23 Electrode Gap Bridging
1 - GROUND ELECTRODE
2 - DEPOSITS
3 - CENTER ELECTRODE
Fig. 24 Scavenger Deposits
1 - GROUND ELECTRODE COVERED WITH WHITE OR
YELLOW DEPOSITS
2 - CENTER ELECTRODE
Fig. 25 Chipped Electrode Insulator
1 - GROUND ELECTRODE
2 - CENTER ELECTRODE
3 - CHIPPED INSULATOR
8I - 14 IGNITION CONTROLKJ
SPARK PLUG (Continued)
Page 457 of 1803

BRAKE LAMP SWITCH
DESCRIPTION
The brake lamp switch is a three circuit, spring-
loaded plunger actuated switch that is secured to the
steering column support bracket under the driver
side of the instrument panel (Fig. 3). The brake lamp
switch is contained within a rectangular molded plas-
tic housing with an integral connector receptacle fea-
turing six terminal pins and a red plastic Connector
Position Assurance (CPA) lock. The switch is con-
nected to the vehicle electrical system through a ded-
icated take out and connector of the instrument
panel wire harness. The switch plunger extends
through a mounting collar on one end of the switch
housing. The plunger has a one time telescoping self-
adjustment feature that is achieved after the switch
is installed by moving an adjustment release lever on
the opposite end of the switch housing clockwise,
until it locks in a position that is parallel to the con-
nector receptacle. The brake lamp switch self-adjust-
ment is a one time feature. Once the feature has
been used, the switch cannot be readjusted. A ªDO
NOT RE-INSTALLº warning is molded into the
switch housing below the connector receptacle.
An installed brake lamp switch cannot be read-
justed or repaired. If the switch is damaged, faulty,
or removed from its mounting position for any rea-
son, it must be replaced with a new unit.
OPERATION
The brake lamp switch controls three different cir-
cuits, one normally open and two normally closed.
These circuits are described as follows:
²Brake Lamp Switch Circuit- A normally
open brake lamp switch circuit receives battery cur-
rent on a fused B(+) circuit from a fuse in the Junc-
tion Block (JB), and supplies battery current to the
brake lamps and the Controller Antilock Brake
(CAB) on a brake lamp switch output circuit when
the brake pedal is depressed (brake lamp switch
plunger released).
²Brake Lamp Switch Signal Circuit- A nor-
mally closed brake lamp switch signal circuit receives
a path to ground through a splice block located in the
instrument panel wire harness with an eyelet termi-
nal connector that is secured by a nut to a ground
stud on the driver side instrument panel end bracket
near the Junction Block (JB). This circuit supplies a
ground input to the Powertrain Control Module
(PCM) on a brake lamp switch sense circuit when the
brake pedal is released (brake lamp switch plunger is
depressed).
²Speed Control Circuit- A normally closed
speed control circuit receives battery current from
the Powertrain Control Module on a speed control
supply circuit, and supplies battery current to the
speed control servo solenoids (dump, vacuum, and
vent) on a speed control brake switch output circuit
when the speed control system is turned on and the
brake pedal is released (brake lamp switch plunger is
depressed).
Concealed within the brake lamp switch housing
the components of the self-adjusting brake switch
plunger consist of a two-piece telescoping plunger, a
split plunger locking collar, and a release wedge. The
release lever has an integral shaft with a wedge that
spreads the plunger locking collar to an open or
released position. After the switch is installed and
the brake pedal is released, the plunger telescopes to
the correct adjustment position. When the release
lever is moved to the release position, the wedge is
disengaged from the locking collar causing the collar
to apply a clamping pressure to the two plunger
halves fixing the plunger length.
The brake lamp switch can be diagnosed using con-
ventional diagnostic tools and methods.
Fig. 3 Brake Lamp Switch
1 - CONNECTOR RECEPTACLE
2 - BRAKE LAMP SWITCH
3 - PLUNGER
4 - COLLAR
5 - LEVER
8L - 16 LAMPS/LIGHTING - EXTERIORKJ
Page 459 of 1803

(5) Discard the removed brake lamp switch.
CAUTION: Always replace a removed brake lamp
switch with a new unit. This is a one time compo-
nent and is not intended for reinstallation.
INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
CAUTION: Always replace a removed brake lamp
switch with a new unit. This is a one time compo-
nent and is not intended for reinstallation.
(1) While holding the brake pedal depressed, align
the tabs on the brake lamp switch locking collar with
the keyed mounting hole in the steering column sup-
port bracket (Fig. 5).
(2) Still holding the brake pedal depressed, insert
the tabs on the brake lamp switch housing through
the keyed mounting hole in the steering column sup-
port bracket until the switch is firmly seated against
the bracket.
(3) Still holding the brake pedal depressed, rotate
the switch clockwise about 30 degrees to lock the
tabs on the brake lamp switch locking collar to the
keyed mounting hole in the steering column support
bracket.
(4) Release the brake pedal.
CAUTION: Do not pull up on the brake pedal before
the switch plunger adjustment has been completed.
(5) Rotate the plunger adjustment release lever
clockwise until it locks into place parallel to the
brake lamp switch connector receptacle. This action
will set the switch plunger length to a final adjust-
ment position and cannot be undone. If not per-
formed properly the first time, a new brake lamp
switchmustbe installed.(6) Reconnect the instrument panel wire harness
connector for the brake lamp switch to the switch
connector receptacle.
(7) Reconnect the battery negative cable.
CENTER HIGH MOUNTED
STOP LAMP BULB
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Remove the Center High Mounted Stop Lamp
(CHMSL) unit from the roof panel. (Refer to 8 -
ELECTRICAL/LAMPS/LIGHTING - EXTERIOR/
CENTER HIGH MOUNTED STOP LAMP UNIT -
REMOVAL).
(3) Firmly grasp the socket on the back of the
CHMSL unit housing.
(4) Rotate the socket on the back of the CHMSL
unit housing counterclockwise about 30 degrees (Fig.
6).
(5) Pull the socket and bulb straight out of the
back of CHMSL unit housing.
(6) Pull the bulb straight out of the CHMSL unit
socket.
Fig. 6 Center High Mounted Stop Lamp Bulb
Remove/Install
1 - CHMSL UNIT
2 - BULB
3 - SOCKET
4 - BODY WIRE HARNESS CONNECTOR
8L - 18 LAMPS/LIGHTING - EXTERIORKJ
BRAKE LAMP SWITCH (Continued)
Page 541 of 1803

BRAKE LAMP SWITCH
DESCRIPTION
The brake lamp switch is a three circuit, spring-
loaded plunger actuated switch that is secured to the
steering column support bracket under the driver
side of the instrument panel (Fig. 3). The brake lamp
switch is contained within a rectangular molded plas-
tic housing with an integral connector receptacle fea-
turing six terminal pins and a red plastic Connector
Position Assurance (CPA) lock. The switch is con-
nected to the vehicle electrical system through a ded-
icated take out and connector of the instrument
panel wire harness. The switch plunger extends
through a mounting collar on one end of the switch
housing. The plunger has a one time telescoping self-
adjustment feature that is achieved after the switch
is installed by moving an adjustment release lever on
the opposite end of the switch housing clockwise,
until it locks in a position that is parallel to the con-
nector receptacle. The brake lamp switch self-adjust-
ment is a one time feature. Once the feature has
been used, the switch cannot be readjusted. A ªDO
NOT RE-INSTALLº warning is molded into the
switch housing below the connector receptacle.
An installed brake lamp switch cannot be read-
justed or repaired. If the switch is damaged, faulty,
or removed from its mounting position for any rea-
son, it must be replaced with a new unit.
OPERATION
The brake lamp switch controls three different cir-
cuits, one normally open and two normally closed.
These circuits are described as follows:
²Brake Lamp Switch Circuit- A normally
open brake lamp switch circuit receives battery cur-
rent on a fused B(+) circuit from a fuse in the Junc-
tion Block (JB), and supplies battery current to the
brake lamps and the Controller Antilock Brake
(CAB) on a brake lamp switch output circuit when
the brake pedal is depressed (brake lamp switch
plunger released).
²Brake Lamp Switch Signal Circuit- A nor-
mally closed brake lamp switch signal circuit receives
a path to ground through a splice block located in the
instrument panel wire harness with an eyelet termi-
nal connector that is secured by a nut to a ground
stud on the driver side instrument panel end bracket
near the Junction Block (JB). This circuit supplies a
ground input to the Powertrain Control Module
(PCM) on a brake lamp switch sense circuit when the
brake pedal is released (brake lamp switch plunger is
depressed).
²Speed Control Circuit- A normally closed
speed control circuit receives battery current from
the Powertrain Control Module on a speed control
supply circuit, and supplies battery current to the
speed control servo solenoids (dump, vacuum, and
vent) on a speed control brake switch output circuit
when the speed control system is turned on and the
brake pedal is released (brake lamp switch plunger is
depressed).
Concealed within the brake lamp switch housing
the components of the self-adjusting brake switch
plunger consist of a two-piece telescoping plunger, a
split plunger locking collar, and a release wedge. The
release lever has an integral shaft with a wedge that
spreads the plunger locking collar to an open or
released position. After the switch is installed and
the brake pedal is released, the plunger telescopes to
the correct adjustment position. When the release
lever is moved to the release position, the wedge is
disengaged from the locking collar causing the collar
to apply a clamping pressure to the two plunger
halves fixing the plunger length.
The brake lamp switch can be diagnosed using con-
ventional diagnostic tools and methods.
Fig. 3 Brake Lamp Switch
1 - CONNECTOR RECEPTACLE
2 - BRAKE LAMP SWITCH
3 - PLUNGER
4 - COLLAR
5 - LEVER
8Ls - 16 LAMPSKJ
Page 543 of 1803

CAUTION: Always replace a removed brake lamp
switch with a new unit. This is a one time compo-
nent and is not intended for reinstallation.
INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
CAUTION: Always replace a removed brake lamp
switch with a new unit. This is a one time compo-
nent and is not intended for reinstallation.
(1) While holding the brake pedal depressed, align
the tabs on the brake lamp switch locking collar with
the keyed mounting hole in the steering column sup-
port bracket (Fig. 5).
(2) Still holding the brake pedal depressed, insert
the tabs on the brake lamp switch housing through
the keyed mounting hole in the steering column sup-
port bracket until the switch is firmly seated against
the bracket.
(3) Still holding the brake pedal depressed, rotate
the switch clockwise about 30 degrees to lock the
tabs on the brake lamp switch locking collar to the
keyed mounting hole in the steering column support
bracket.
(4) Release the brake pedal.
CAUTION: Do not pull up on the brake pedal before
the switch plunger adjustment has been completed.
(5) Rotate the plunger adjustment release lever
clockwise until it locks into place parallel to the
brake lamp switch connector receptacle. This action
will set the switch plunger length to a final adjust-
ment position and cannot be undone. If not per-
formed properly the first time, a new brake lamp
switchmustbe installed.(6) Reconnect the instrument panel wire harness
connector for the brake lamp switch to the switch
connector receptacle.
(7) Reconnect the battery negative cable.
CENTER HIGH MOUNTED
STOP LAMP BULB
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Remove the Center High Mounted Stop Lamp
(CHMSL) unit from the roof panel. (Refer to 8 -
ELECTRICAL/LAMPS/LIGHTING - EXTERIOR/
CENTER HIGH MOUNTED STOP LAMP UNIT -
REMOVAL).
(3) Firmly grasp the socket on the back of the
CHMSL unit housing.
(4) Rotate the socket on the back of the CHMSL
unit housing counterclockwise about 30 degrees (Fig.
6).
(5) Pull the socket and bulb straight out of the
back of CHMSL unit housing.
(6) Pull the bulb straight out of the CHMSL unit
socket.
Fig. 6 Center High Mounted Stop Lamp Bulb
Remove/Install
1 - CHMSL UNIT
2 - BULB
3 - SOCKET
4 - BODY WIRE HARNESS CONNECTOR
8Ls - 18 LAMPSKJ
BRAKE LAMP SWITCH (Continued)
Page 596 of 1803

continuous duty for 110/115 volts and 60 Hz. They
must also have a field strength of over 350 gauss at 7
millimeters (0.25 inch) beyond the tip of the probe.
To demagnetize the roof panel and the overhead
console forward mounting screw, proceed as follows:
(1) Be certain that the ignition switch is in the Off
position, before you begin the demagnetizing proce-
dure.
(2) Connect the degaussing tool to an electrical
outlet, while keeping the tool at least 61 centimeters
(2 feet) away from the compass unit.
(3) Slowly approach the head of the overhead con-
sole forward mounting screw with the degaussing
tool connected.
(4) Contact the head of the screw with the plastic
coated tip of the degaussing tool for about two sec-
onds.
(5) With the degaussing tool still energized, slowly
back it away from the screw. When the tip of the tool
is at least 61 centimeters (2 feet) from the screw
head, disconnect the tool.
(6) Place a piece of paper approximately 22 by 28
centimeters (8.5 by 11 inches), oriented on the vehicle
lengthwise from front to rear, on the center line of
the roof at the windshield header (Fig. 4). The pur-
pose of the paper is to protect the roof panel from
scratches, and to define the area to be demagnetized.
(7) Connect the degaussing tool to an electrical
outlet, while keeping the tool at least 61 centimeters
(2 feet) away from the compass unit.
(8) Slowly approach the center line of the roof
panel at the windshield header, with the degaussing
tool connected.
(9) Contact the roof panel with the plastic coated
tip of the degaussing tool. Be sure that the template
is in place to avoid scratching the roof panel. Using a
slow, back-and-forth sweeping motion, and allowing
13 millimeters (0.50 inch) between passes, move the
tool at least 11 centimeters (4 inches) to each side of
the roof center line, and 28 centimeters (11 inches)
back from the windshield header.
(10) With the degaussing tool still energized,
slowly back it away from the roof panel. When the
tip of the tool is at least 61 centimeters (2 feet) from
the roof panel, disconnect the tool.
(11) Calibrate the compass and adjust the compass
variance (Refer to 8 - ELECTRICAL/OVERHEAD
CONSOLE - STANDARD PROCEDURE).
STANDARD PROCEDURE - COMPASS
VARIATION ADJUSTMENT
Compass variance, also known as magnetic decli-
nation, is the difference in angle between magnetic
north and true geographic north. In some geographic
locations, the difference between magnetic and geo-
graphic north is great enough to cause the compassto give false readings. If this problem occurs, the
compass variance setting may need to be changed.
To set the compass variance:
(1) Using the Variance Settings map, find your
geographic location and note the zone number (Fig.
5).
(2) Turn the ignition switch to the On position. If
the compass/thermometer data is not currently being
displayed, momentarily depress and release the C/T
push button to reach the compass/thermometer dis-
play.
(3) Depress the Reset push button and hold the
button down until ªVARIANCE = XXº appears in the
display. This takes about five seconds.
(4) Release the Reset push button. ªVARIANCE
=XX º will remain in the display. ªXXº equals the cur-
rent variance zone setting.
(5) Momentarily depress and release the Step push
button to step through the zone numbers, until the
zone number for your geographic location appears in
the display.
(6) Momentarily depress and release the Reset
push button to enter the displayed zone number into
the CMTC module memory.
(7) Confirm that the correct directions are now
indicated by the compass.
Fig. 4 Roof Demagnetizing Pattern
KJMESSAGE SYSTEMS 8M - 3
OVERHEAD CONSOLE (Continued)
Page 675 of 1803

A ªtap downº feature is used to decelerate without
disengaging the speed control system. To decelerate
from an existing recorded target speed, momentarily
depress the COAST switch. For each switch activa-
tion, speed will be lowered approximately 1 mph.
OVERSHOOT/UNDERSHOOT
If the vehicle operator repeatedly presses and
releases the SET button with their foot off of the
accelerator (referred to as a ªlift foot setº), the vehicle
may accelerate and exceed the desired set speed by
up to 5 mph (8 km/h). It may also decelerate to less
than the desired set speed, before finally achieving
the desired set speed.
The Speed Control System has an adaptive strat-
egy that compensates for vehicle-to-vehicle variations
in speed control cable lengths. When the speed con-
trol is set with the vehicle operators foot off of the
accelerator pedal, the speed control thinks there is
excessive speed control cable slack and adapts
accordingly. If the ªlift foot setsº are continually used,
a speed control overshoot/undershoot condition will
develop.
To ªunlearnº the overshoot/undershoot condition,
the vehicle operator has to press and release the set
button while maintaining the desired set speed using
the accelerator pedal (not decelerating or accelerat-
ing), and then turning the cruise control switch to
the OFF position (or press the CANCEL button if
equipped) after waiting 10 seconds. This procedure
must be performed approximately 10±15 times to
completely unlearn the overshoot/undershoot condi-
tion.
DIAGNOSIS AND TESTING - ROAD TEST
Perform a vehicle road test to verify reports of
speed control system malfunction. The road testshould include attention to the speedometer. Speed-
ometer operation should be smooth and without flut-
ter at all speeds.
Flutter in the speedometer indicates a problem
which might cause surging in the speed control sys-
tem. The cause of any speedometer problems should
be corrected before proceeding. Refer to Group 8J,
Instrument Cluster for speedometer diagnosis.
If a road test verifies a system problem and the
speedometer operates properly, check for:
²A Diagnostic Trouble Code (DTC). If a DTC
exists, conduct tests per the Powertrain Diagnostic
Procedures service manual.
²A misadjusted brake (stop) lamp switch. This
could also cause an intermittent problem.
²Loose, damaged or corroded electrical connec-
tions at the servo. Corrosion should be removed from
electrical terminals and a light coating of Mopar
MultiPurpose Grease, or equivalent, applied.
²Leaking vacuum reservoir.
²Loose or leaking vacuum hoses or connections.
²Defective one-way vacuum check valve.
²Secure attachment of both ends of the speed con-
trol servo cable.
²Smooth operation of throttle linkage and throttle
body air valve.
²Failed speed control servo. Do the servo vacuum
test.
CAUTION: When test probing for voltage or conti-
nuity at electrical connectors, care must be taken
not to damage connector, terminals or seals. If
these components are damaged, intermittent or
complete system failure may occur.
SPECIFICATIONS
TORQUE - SPEED CONTROL
DESCRIPTION N-m Ft. Lbs. In. Lbs.
Servo Mounting Bracket-to-Servo Nuts 9 - 75
Servo Mounting Bracket-to-Body Bolts 12 - 105
Speed Control Switch Mounting Screws 1.5 - 14
Vacuum Reservoir Mounting Screws 3 - 20
8P - 2 SPEED CONTROLKJ
SPEED CONTROL (Continued)
Page 695 of 1803

INSTALLATION
The hood ajar switch striker is not intended for
reuse. If the striker is removed from the hood inner
reinforcement for any reason, it must be replaced
with a new unit.
(1) Position the new hood ajar switch striker to the
inner hood panel reinforcement (Fig. 8).
(2) Insert the integral mounting tab on the front of
the hood ajar switch striker into the forward mount-
ing hole in the inner hood panel reinforcement.
(3) Align the integral retainer on the rear of the
hood ajar switch striker with the rearward mounting
hole in the inner hood panel reinforcement.
(4) Using hand pressure, firmly press the hood
ajar switch striker rearward and upward against the
inner hood panel reinforcement until the hood ajar
switch striker retainer is fully engaged in the rear-
ward mounting hole in the inner hood panel rein-
forcement.
(5) Close and latch the hood.
INTRUSION TRANSCEIVER
MODULE
DESCRIPTION
An Intrusion Transceiver Module (ITM) is part of
the Rest-Of-World (ROW) premium version of the
Vehicle Theft Alarm (VTA) in the Vehicle Theft Secu-
rity System (VTSS) (Fig. 9). The ROW premium ver-
sion of the VTA is only available in vehicles built for
certain markets, where the additional features
offered by this system are required. The ITM is
located in the passenger compartment, on the lower
surface of the headliner near the center of the vehi-cle. This unit is designed to provide interior motion
detection, and serve as an interface between the
Body Control Module (BCM) and the alarm siren
module.
The ITM is concealed beneath a dedicated molded
plastic trim cover that approximates the size and
shape of a typical dome lamp housing. However,
rather than a lens, the ITM features three sets of
louvered openings in a molded lateral center rib for-
mation. One set of louvered openings is located at
each outboard end of the center rib, while the third
set is centered. Each of the louvered openings is cov-
ered on the inside by a single molded black plastic
sight shield that extends the length of the center rib
for appearance. The module is secured to a molded
plastic mounting bracket above the headliner by four
latch features that are integral to the underside of
the module housing. Besides the ITM, the trim cover
also conceals two plastic pins integral to the mount-
ing bracket that are used to secure the bracket to the
headliner with two stamped nuts that are installed
from below. An adhesive-backed foam pad is installed
above the ITM bracket between the headliner and
the roof panel to provide additional headliner stabili-
zation and support for the ITM mounting. Two small
notch-like service holes on the rear edge of the trim
cover afford access to the two integral rear latches of
the ITM for service removal (Fig. 10).
The ITM circuitry is contained within a black
molded plastic housing with four integral mounting
tabs that are secured to the back of the trim cover
with four screws. Concealed within the housing is the
Fig. 9 Intrusion Transceiver Module
1 - ITM
2 - HEADLINERFig. 10 Intrusion Transceiver Module
1 - TRIM COVER
2 - CONNECTOR RECEPTACLE
3 - HOUSING
4 - SCREW (4)
5 - SERVICE HOLE (2)
6 - LATCH FEATURE (4)
8Q - 14 VEHICLE THEFT SECURITYKJ
HOOD AJAR SWITCH STRIKER (Continued)