cooling LAND ROVER DISCOVERY 1995 Manual PDF
[x] Cancel search | Manufacturer: LAND ROVER, Model Year: 1995, Model line: DISCOVERY, Model: LAND ROVER DISCOVERY 1995Pages: 873, PDF Size: 12.89 MB
Page 753 of 873

AIR CONDITIONING
3
DESCRIPTION AND OPERATION AIR CONDITIONING SYSTEM OPERATION
The air conditioning system provides the means of
supplying cooled and dehumidified, fresh or
recirculated air to the interior of the vehicle. The
cooling effect is obtained by blowing air through the
matrix of an evaporator unit and when required,
mixing that air with heated air by means of the heater
distribution and blend unit, to provide the conditions
required inside the vehicle. The volume of conditioned
air being supplied is controlled by a variable speed
blower.
A sealed system, charged with Refrigerant R134a,
together with a blower unit, blend unit and control
system combine to achieve the cooled air condition.
For air conditioning air distribution system.
See
HEATING AND VENTILATION, Description and
operation, Heating and ventilation unit
The air conditioning system comprises five major
units:
1.An engine-mounted compressor.
2.A condenser mounted in front of the radiator.
3.A receiver/drier unit located in front of the
condenser.
4.Thermostatic expansion valve mounted above
the evaporator.
5.An evaporator unit mounted in front of the heater
matrix.
NOTE: Vehicles fitted with rear air
conditioning have an additional
evaporator/blower motor assembly located
behind the LH rear compartment lower trim panel.
These units are interconnected by hoses and pipes
carrying Refrigerant R134a, the evaporator is linked
into the vehicle ventilation system.
Refrigeration cycle
1. Compressor
The compressor (1), belt driven from the crankshaft
pulley, pressurises and circulates the refrigerant
through the system. Mounted on the compressor, an
electro-mechanical clutch maintains the correct
temperature and pressure by engaging or disengaging
to support the system's requirements. The clutch
action is normally controlled by a thermostat located
at the evaporator (5). The compressor is of the
swashplate type having fixed displacement.Should the temperature at the evaporator (5) fall low
enough for ice to begin to form on the fins, the
thermostat disengages the clutch and also isolates the
cooling fans relays. When the temperature at the
evaporator (5) rises to the control temperature, the
clutch is re-engaged.
Should the system pressure become excessive or
drop sufficiently to cause damage to the compressor
(1) a dual pressure switch (7), located in the high
pressure line, signals the relay unit to disengage the
clutch. The compressor also has an emergency high
pressure relief valve (9) fitted.
The cooling fans are controlled by engine temperature
when the air conditioning is not switched on.
2. Condenser
From the compressor, hot high pressure vaporised
refrigerant (F1) passes to the condenser (2), which is
mounted in front of the engine coolant radiator. Ram
air(A1) passing through the condenser (2),
supplemented by 2 cooling fans (8) mounted in front
of the condenser, cools the refrigerant vapour
sufficiently to form a high pressure slightly subcooled
liquid (F2).
3. Receiver/drier
This liquid then passes to a receiver/drier (3) which
fulfils two functions. It acts as a reservoir and moisture
extractor (11).
A sight glass (10), in the high pressure line, provides a
method of determining the state of the refrigerant
without breaking into the system.
4. Expansion valve
From the receiver/drier (3) the moisture free high
pressure liquid refrigerant (F3) passes through a
thermostatic expansion valve (4). A severe pressure
drop occurs across the valve and as the refrigerant
enters the evaporator space at a temperature of
approximately -5°C it boils and vaporises.
Page 754 of 873

82AIR CONDITIONING
4
DESCRIPTION AND OPERATION 5. Evaporator
As this change of state occurs, a large amount of
latent heat is absorbed. The evaporator is therefore
cooled and as a result heat is extracted from the air
flowing across the evaporator. The air flow is
controlled by the ventilation fan which can be
operated at anyone of four speeds.
To prevent liquid passing through to the compressor,
a capillary tube (6), attached to the outlet pipe of the
evaporator (5) and connected to the thermostatic
expansion valve (4), controls the amount that the
valve opens and closes in relation to the temperature
of the low pressure high temperature refrigerant
vapour (F4) at the outlet. The atomised refrigerant
then passes through the evaporator (5). Fan blown air
(A2) passes through the matrix (A3) of the evaporator
and is cooled by absorption due to the low
temperature refrigerant passing through the
evaporator.
A thermostat is fitted in the airflow out of the
evaporator to sense the temperature of the exterior
fins. Should ice begin to form, due to a too cold
condition, it will signal to disengage the
electro-mechanical clutch on the compressor (1).
From the evaporator, low pressure slightly
superheated refrigerant (F5) passes to the
compressor to complete the cycle.AIR CONDITIONING CONTROL SYSTEM
The air conditioning control system comprises relays,
thermostat, pressure switches, and a control panel.
Inputs from outside the air conditioning system
comprise temperature information from the engine
cooling system. Together these controls, in
conjunction with the cooling fans, compressor clutch,
blower and heater distribution and blend unit enable
minimal input to maintain the required environment
inside the vehicle.
When air conditioning is not selected, air is supplied
by ram effect or blower to the areas selected by the
controls. The air mix flap on the blend unit controls the
temperature of the air being supplied. No cooled air is
available.
Selecting air conditioning provides the added facility of
cooled air available to be mixed as before. When
required a fully cold condition can be selected by
turning the temperature controls to cold, which
automatically closes the heated coolant access to the
heater matrix. Mixtures of cooled, fresh, and hot air
can be selected to give required interior environmental
conditions by selection at the control panel.
Dual pressure switch
This switch, located in the high pressure line between
the receiver drier and the expansion valve, monitors
refrigerant pressure and by means of the relay module
controls the following system functions:
1.Refrigerant pressure drops below 2.0 bar, 29
lbf/in
2(due to possible leakage), the
compressor's electro-mechanical clutch is
dis-engaged.
When pressure rises above 2.0 bar, 29 lbf/in
2the
compressor's clutch is re-engaged.
2.Refrigerant pressure rises above 32 bar, 455
lbf/in
2(due to possible blockage), even with
cooling fan operation, the compressor's
electro-mechanical clutch is dis-engaged.
When the pressure drops below 26 bar, 375
lbf/in
2the compressor clutch is re-engaged.
Page 755 of 873

AIR CONDITIONING
5
DESCRIPTION AND OPERATION Condenser cooling fans
The condenser cooling fans operate automatically
whenever the air conditioning system is switched on.
Fan timer unit
The thermostatically controlled timer will continue to
operate the cooling fans after the air conditioning or
ignition is switched off. When the system temperature
is excessive, the fans will operate for 10 minutes to
reduce condenser and underbonnet temperature.
Blower control
The blower can be operated at any one of four speeds
by sliding the blower switch to the required position.
When the blower is switched off the air conditioning
system will not operate.
The fresh air/recirculation flaps can move between
two positions. One position covers the outside air
inlet, leaving open an inlet from the inside of the
vehicle clear, when recirculated air is required. In the
other position they will cover the inlet from the inside
of the vehicle leaving open the outside air inlet when
fresh air is required.Heater distribution and blend unit control
Blower unit air flow, having passed through the
evaporator passes into the heater blend unit to be
heated, if required. It is then directed into the vehicle
interior in accordance with the flap positions
designated by the air distribution control. Heater flaps
control the amount of air flowing through the heater
matrix. These flaps are controlled individually by the
driver's and passenger's temperature controls.
When the temperature control is in the cold position, a
micro switch actuates a vacuum control to close the
coolant valve on the engine. As the temperature
control is moved away from cold, the coolant valve is
opened allowing heated engine coolant to flow
throught the heater matrix. The temperature of the
heated air flow into the vehicle interior is controlled by
the blend flaps.
The distribution control moves the flaps which control
the direction of the air flow into the interior of the
vehicle.
Page 757 of 873

82AIR CONDITIONING
2
FAULT DIAGNOSIS REFRIGERATION SYSTEM FAULTS
For any refrigeration system to function properly all
components must be in good working order. The unit
cooling cycle and the relationship between air
discharge temperature and ambient temperature and
the pressures at the compressor can help to
determine proper operation of the system.
The length of any cooling cycle is determined by such
factors as ambient temperature and humidity,
thermostat setting, compressor speed and air leakage
into the cooled area, etc. With these factors constant,
any sudden increase in the length of the cooling cycle
would be indicative of abnormal operation of the air
conditioner.
The low and high side pressures at the compressor
will vary with changing ambient temperature, humidity,
in-car temperature and altitude.
The following items should be checked before
operating the system:
1.Compressor drive belt tension.
2.Compressor magnetic clutch operation.
3.Condenser fan operation.
4.Condenser fins, dirt will cause poor cooling and
higher operating temperatures.The following conditions should be checked after
operating the system for several minutes:
1.All high pressure lines and components should
be hot to the touch.
2.All low pressure lines should be cool to the
touch.
3.Inlet and outlet temperatures at the receiver/drier
should be at the same temperature (warm). Any
very noticeable temperature difference indicates
a blocked receiver/drier.
4.Heavy frost on the inlet to the expansion valve
may indicate a defective valve or moisture in the
system.
5.Evaporation air temperature will vary with
ambient temperature and humidity. As humidity
increases the outlet temperature will be higher.
Page 759 of 873

82AIR CONDITIONING
4
FAULT DIAGNOSISFAULT CAUSE REMEDY
E.
NOISY
EXPANSION
VALVE
(steady hissing)1. Low refrigerant charge; evident by
bubbles in sight glass.1. Leak test. Repair or replace
components as required.
F.1. Expansion valve not operating 1. Refer to C-2, C-3, D-1
INSUFFICIENTproperly. and E.
COOLING2. Low refrigerant charge-evident 2. Refer to B-1 and E.
by bubbles in sight glass.
3. Compressor not pumping. 3. Refer to B-2 and B-3
G.1. Belt tension. 1. Adjust belt tension.
COMPRESSOR2. Excessive head pressure. 2. Refer to A-1 through
BELTA-4 and C-6.
SLIPPING3. Incorrect alignment of pulleys 3. Repair as needed.
or worn belt not riding properly.
4. Nicked or broken pulley. 4. Replace as needed.
5. Seized compressor. 5. Replace compressor.
1. Loose or missing mounting bolts. 1. Repair as necessary.
2. Broken mounting bracket. 2. Replace bracket.
3. Loose flywheel or clutch 3. Repair as necessary.
retaining bolt.
H.4. Rough idler pulley bearing. 4. Replace bearing.
ENGINE5. Bent, loose, or improperly 5. Repair as necessary.
NOISEmounted engine drive pulley.
AND/OR6. Defective compressor bearing. 6. Replace bearing.
VIBRATION7. Insecure mountings of 7. Repair as necessary.
accessories; generator, power
steering, air filter, etc.
8. Excessive head pressure. 8. Refer to A-1, A-2, A-3
A-4 and C-6.
9. Incorrect compressor oil level. 9. Refer to compressor Oil
Level Check.
HEATER AND AIR CONDITIONING - CIRCUIT
DIAGRAMS
1.For details of heating and air conditioning
electrics
See Electrical Trouble Shooting
Manual.
Page 765 of 873

82AIR CONDITIONING
6
ADJUSTMENT SYSTEM TEST
1.Place the vehicle in a ventilated, shaded area
free from excessive draught, with the doors and
windows open.
2.Check that the surface of the condenser is not
restricted with dirt, leaves, flies, etc. Do not
neglect to check the surface between the
condenser and the radiator. Clean as necessary.
3.Switch on the ignition and the air conditioner air
flow control. Check that the blower is operating
efficiently at low, medium and high speeds.
Switch off the blower and the ignition.
4.Check that the evaporator condensate drain
tubes are open and clear.
5.Check the tension of the compressor driving belt,
and adjust if necessary.
6.Inspect all connections for the presence of
refrigerant oil. If oil is evident, check for leaks,
and repair as necessary.
NOTE: The compressor oil is soluble in
Refrigerant R134a and is deposited when
the refrigerant evaporates from a leak.
7.Start the engine.
8.Set the temperature controls to cold and switch
the air conditioner blower control on and off
several times, checking that the magnetic clutch
on the compressor engages and releases each
time.9.With the temperature control at maximum
cooling and the blower control at high speed,
warm up the engine and fast idle at 1000
rev/min. Check the sight glass for bubbles or
foam. The sight glass should be generally clear
after five minutes running, occasional bubbles
being acceptable. Continuous bubbles may
appear in a serviceable system on a cool day, or
if there is insufficient air flow over the condenser
at a high ambient temperature.
10.Repeat at 1800 rev/min.
11.Gradually increase the engine speed to the high
range, and check the sight glass at intervals.
12.Check for frosting on the service valves.
13.Check the high pressure hoses and connections
by hand for varying temperature. Low
temperature indicates a restriction or blockage at
that point.
14.Switch off the air conditioning blower and stop
the engine.
15.If the air conditioning equipment is still not
satisfactory, carry out a pressure test as
previously described in this section.
COMPRESSOR DRIVE BELT
Service repair no - 82.10.01.
Tdi -
See ENGINE, Repair, Compressor drive belt
V8i and MpiSee ENGINE, Repair, Drive belt
Page 771 of 873

82AIR CONDITIONING
6
REPAIR CONDENSER
Service repair no - 82.15.07
Remove
1.Disconnect battery negative lead.
WARNING: Wear eye and hand protection
when disconnecting components
containing refrigerant. Plug all exposed
connections immediately.
2.Recover refrigerant from system.
See
Adjustment, Refrigerant Recovery Recycling
Recharging
3.Remove front grille panel.
4.Remove battery.
See ELECTRICAL, Repair,
Battery
5.Remove radiator and oil coolers assembly.See
COOLING SYSTEM, Repair, Radiator
6.Disconnect high and low pressure pipes at
condenser unions.
7.Discard 'O' ring seal from each union.
8.Remove 2 bolts securing condenser to body.
9.Pull condenser into radiator area.
10.Disconnect multiplug from each fan lead.
11.Remove condenser assembly.
Do not carry out
further dismantling if component is removed
for access only.
Blank off inlet and outlet ports.
Page 773 of 873

82AIR CONDITIONING
8
REPAIR HEATER AND COOLER UNIT
Service repair no - 86.25.21
WARNING: All work involving the service
and maintenance of air conditioning
requires special equipment, knowledge,
experience and a full awareness and adherence to
safety precautions.
Remove
1.Disconnect battery negative lead.
2.Drain engine coolant.
See COOLING SYSTEM,
Adjustment, Coolant
3.Recover refrigerant from air conditioning system.
See Adjustment, Refrigerant Recovery
Recycling Recharging
4.Remove fascia panel assembly.See CHASSIS
AND BODY, Repair, Dash Panel Assembly
5.Release clips and disconnect coolant hoses
from heater pipes.
6.Remove securing bolt and disconnect low
pressure pipe from evaporator.
WARNING: Wear eye and hand protection
when disconnecting components
containing refrigerant. Plug all exposed
connections immediately.
7.Release 'P' clip retaining high and low pressure
pipes.
8.Remove securing bolt and disconnect high
pressure pipe from evaporator.
9.Discard 'O' ring seals.
Page 778 of 873

AIR CONDITIONING
13
REPAIR BLOWER MOTOR - REAR
Service repair no - 82.26.02
Remove
1.Remove evaporator/blower motor assembly.
See evaporator/blower motor assembly -
rear
2.Loosen 2 screws securing high pressure control
valve solenoid to blower motor housing.
3.Disconnect multiplug from blower motor.
4.Release blower motor cooling tube from
evaporator/blower motor housing.
5.Remove 3 screws securing blower motor.
6.Remove blower motor .
Refit
7.Position blower motor to housing and secure
with screws.
8.Secure blower motor cooling tube from
evaporator/blower motor housing.
9.Connect multiplug to blower motor.
10.Tighten screws securing control valve solenoid.
11.Fit evaporator/blower motor assembly.
See
evaporator/blower motor assembly - rear;
Refit
ELECTRONIC CONTROL UNIT - REAR AIR
CONDITIONING
Service repair no - 82.26.03
Remove
1.Remove rear compartment lower trim panel.
See CHASSIS AND BODY, Repair, rear
compartment lower trim panel - lh - with rear
air conditioning fitted
2.Disconnect multiplug from ECU.
3.Remove ECU from mounting bracket.
Refit
4.Fit ECU to mounting bracket and connect
multiplug.
5.Fit rear compartment lower trim panel.
See
CHASSIS AND BODY, Repair, rear
compartment lower trim panel - lh - with rear
air conditioning fitted; Refit
Page 861 of 873

ELECTRICAL
41
REPAIR COOLANT TEMPERATURE TRANSMITTER - V8i
Service repair no - 26.10.02
Remove
1.Disconnect battery negative lead.
2.Disconnect lead from transmitter.
3.Remove transmitter, discard sealing washer if
fitted.
Refit
4.Coat threads of replacement transmitter with
Loctite 572.
5.Fit a new sealing washer to transmitter.
6.Fit transmitter, connect lead.
7.Top-up cooling system.HEATED FRONT SCREEN
Heated front screen will operate when switch is
operated, with engine running. Timer unit will provide
a preset time cycle of 7« minutes±20%.
To identify timer unit.
See Electrical Trouble
Shooting Manual.Electrical Troubleshooting
Manual
Switching OFF ignition, or further operation of heated
front screen switch during cycle will switch off screen
and cancel, reset and switch off timer unit.