ECO mode MITSUBISHI MONTERO 1998 User Guide
[x] Cancel search | Manufacturer: MITSUBISHI, Model Year: 1998, Model line: MONTERO, Model: MITSUBISHI MONTERO 1998Pages: 1501, PDF Size: 25.81 MB
Page 398 of 1501

TRANSMITTER PROGRAMMING
NOTE: Transmitter programming should be performed only after
verifying that door lock operates normally using key.
NOTE: Ensure ignition is off when connecting or disconnecting scan
tool.
Using Scan Tool (Montero & 3000GT)
1) Connect scan tool to DLC. Close all doors. Turn ignition
switch to ACC position, then to OFF position. Press desired
transmitter switches (secret code), then press twice within 10 seconds\
to register code.
2) Lock and unlock door once. If there are 2 transmitters,
program the first, then the second transmitter using the same
procedure within one minute. After completing the second programming,
lock and unlock door once.
3) Programming mode is finalized when programming of second
transmitter secret code is complete, one minute after setting secret
code, when scan tool is disconnected, when ignition is turned on or
when any door is opened.
Without Scan Tool (Montero)
1) Move code registration switch on RKE control unit to SET I
position. Press the LOCK or UNLOCK button on transmitter. Move code
registration switch on control unit to FIX position.
2) Confirm that keyless entry system operates normally. If
system does not operate normally, repeat step 1). If 2 transmitters
are used, register code on SET II position on RKE control unit and set
in same manner as the first transmitter.
TROUBLE SHOOTING
POWER DOOR LOCK INOPERATIVE
Operate door lock(s) with ignition switch in OFF position. If\
door lock(s) do not operate, check for following possible causes:
* Burned fuse, circuit breaker or fusible link caused by short
to body ground.
* Wire connector, or pin inside connector, disengaged at any
connector or component in system.
* Defective ETACS-ECU (if equipped).
* Defective door lock switch, relay or actuator.
* Subfreezing weather conditions, mechanical failure, or
corroded or misaligned assemblies.
KEY REMINDER SYSTEM INOPERATIVE (ETACS-ECU CONTROLLED SYSTEM)
With key inserted in ignition switch, lock driver's or
passenger's door and close door. If door locks do not unlock, check
for following possible causes:
* Defective key reminder switch or no input signal to
ETACS-ECU.
* Defective front door switch or no input signal to ETACS-ECU.
* Defective vehicle speed sensor or no input signal to
ETACS-ECU.
INPUT SIGNAL
Page 456 of 1501

Mirage &
Montero Sport ... Behind Right Side Of Instrument Panel (Glove Box)\
Montero ..................................... Right Front Kick Panel
All Others ................................... Behind Center Console
\
\
\
\
\
\
\
NOTE: Components are grouped into 2 categories. The first category
covers INPUT DEVICES, which control or produce voltage
signals monitored by Powertrain Control Module (PCM). The
second category covers OUTPUT SIGNALS, which are components
controlled by PCM.
INPUT DEVICES
Vehicles are equipped with different combinations of input
devices. Not all input devices are used on all models. To determine
input device usage on specific models, see appropriate wiring diagram
in L - WIRING DIAGRAMS article. The following are available input
devices.
Air Conditioning Switch
When A/C is turned on, signal is sent to PCM. With engine at
idle, PCM increases idle speed through Idle Air Control (IAC) motor.
Airflow Sensor Assembly
Assembly is mounted inside air cleaner, and incorporates
barometric pressure sensor, intake air temperature sensor and volume
airflow sensor.
Barometric (BARO) Pressure Sensor
Sensor is incorporated into airflow sensor assembly. Sensor
converts barometric pressure to electrical signal, which is sent to
PCM. PCM adjusts air/fuel ratio and ignition timing according to
altitude.
Camshaft Position (CMP) Sensor
On SOHC engines equipped with a distributor, CMP sensor is
located in distributor. On Eclipse (Turbo) and DOHC V6 engines, sensor\
is located beside camshaft, in front of engine. On all other engines,
CMP sensor is a separate unit mounted in place of distributor. PCM
determines TDC based on pulse signals received from sensor, and then
controls MFI timing.
Closed Throttle Position (CTP) Switch
CTP switch is located in the Throttle Position (TP) sensor.
PCM senses whether accelerator pedal is depressed or not. High voltage
(open) or low voltage (closed) signal is input to PCM, which then
controls Idle Air Control (IAC) motor based on input signal.
Crankshaft Position (CKP) Sensor
CKP sensor is located in distributor on SOHC engines, except
1.5L 4-cylinder with California emissions. On DOHC 4-cylinder, DOHC V6
and 1.5L 4-cylinder engines with California emissions, CKP sensor is
located beside crankshaft, in front of engine. PCM determines
crankshaft position on pulse signals received from sensor, and then
controls MFI timing and ignition timing.
Engine Coolant Temperature (ECT) Sensor
ECT sensor converts coolant temperature to electrical signal
for use by PCM. PCM uses coolant temperature information to control
fuel enrichment when engine is cold.
Heated Oxygen Sensor (HO2S)
Page 531 of 1501

ELECTROSTATIC DISCHARGE WARNING - BASIC INFORMATION
1998 Mitsubishi Montero
GENERAL INFORMATION
Electrostatic Discharge (ESD) Warning - Basic Information
All Makes amd Models
* PLEASE READ THIS FIRST *
NOTE: This article is intended for general information purposes
only.
INTRODUCTION
All Electrostatic Discharge (ESD) sensitive components
contain solid state circuits (transistors, diodes, semiconductors)
that may become damaged when contacted with an electrostatic charge.
The following information applies to all ESD sensitive devices. The
ESD symbol shown in Fig. 1 may be used on schematics to indicate which
components are ESD sensitive. See Fig. 1. Although different
manufactures may display different symbols to represent ESD sensitive
devices, the handling and measuring precautions and procedures are the
same.
Fig. 1: Sample ESD Symbol
HANDLING STATIC-SENSITIVE CIRCUITS/DEVICES
Page 533 of 1501

EMISSION CONTROL VISUAL INSPECTION PROCEDURES
1998 Mitsubishi Montero
1983-98 GENERAL INFORMATION
Emission Control Visual Inspection Procedures
All Models
* PLEASE READ THIS FIRST *
This article is provided for general information only. Not
all information applies to all makes and models. For more complete
information, see appropriate article(s) in the ENGINE PERFORMANCE
Section.
EMISSION CONTROL LABELS
The vehicle manufacturer's emission control label, also known
as the underhood tune-up label or Vehicle's Underhood Emission Control
System (VECI) label, is located in the engine compartment. Information\
regarding year model of vehicle, engine size, number of cylinders,
emission equipment or type, engine tune-up specifications, whether
vehicle was manufactured for sale in California or is a Federal
vehicle, vacuum hose routing schematic, etc., can be found on this
label. See Fig. 1.
In addition to the VECI label, some emission control
inspection and maintenance programs may require an additional label to
be affixed to the vehicle in special circumstances. For example, in
California, a Bureau Of Automotive Repair (BAR) engine label may be
affixed to the left door post. A BAR engine label is only used when
the vehicle has an engine change, approved modification or is a
Specially Constructed (SPCN) or an acceptable Gray market vehicle.
Check your state's emission control inspection and maintenance laws to
determine if a similar label is used.
Fig. 1: Typical Emission Control Label
Courtesy of General Motors Corp.
EMISSION CONTROL VISUAL INSPECTION
* PLEASE READ THIS FIRST *
NOTE: The following emission control visual inspection procedures
should be used as a guide only. When performing a visual
inspection, always follow your state's recommended
Page 693 of 1501

* EXHAUST SYSTEM UNIFORM INSPECTION GUIDELINES *
1998 Mitsubishi Montero
GENERAL INFORMATION
Exhaust Systems Motorist Assurance Program
Standards For Automotive Repair
All Makes and Models
INTRODUCTION TO MOTORIST ASSURANCE PROGRAM (MAP)
CONTENTS
Motorist Assurance Program (MAP)
OVERVIEW OF MOTORIST ASSURANCE PROGRAM
OVERVIEW OF SERVICE REQUIREMENTS AND SUGGESTIONS
Exhaust
CATALYTIC CONVERTERS
EXHAUST AND TAIL PIPES
EXHAUST CONNECTIONS
HANGERS
HEAT RISERS (MECHANICAL EFE DEVICES)
HEAT SHIELDS
MANIFOLDS (CAST AND TUBE TYPE)
MECHANICAL EFE DEVICES
MUFFLERS AND RESONATORS
INTRODUCTION TO MOTORIST ASSURANCE PROGRAM (MAP)
OVERVIEW OF MOTORIST ASSURANCE PROGRAM
The Motorist Assurance Program is the consumer outreach
effort of the Automotive Maintenance and Repair Association, Inc.
(AMRA). Participation in the Motorist Assurance Program is drawn from
retailers, suppliers, independent repair facilities, vehicle
manufacturers and industry associations.
Our organization's mission is to strengthen the relationship
between the consumer and the auto repair industry. We produce
materials that give motorists the information and encouragement to
take greater responsibility for their vehicles-through proper,
manufacturer-recommended, maintenance. We encourage participating
service and repair shops (including franchisees and dealers) to adopt
(1) a Pledge of Assurance to their Customers and (2) the Motorist
Assurance Program Standards of Service. All participating service
providers have agreed to subscribe to this Pledge and to adhere to the
promulgated Standards of Service demonstrating to their customers that
they are serious about customer satisfaction.
These Standards of Service require that an inspection of the
vehicle's (problem) system be made and the results communicated to the\
customer according to industry standards. Given that the industry did
not have such standards, the Motorist Assurance Program successfully
promulgated industry inspection communication standards in 1994-95 for
the following systems: Exhaust, Brakes, ABS, Steering and Suspension,
Engine Maintenance and Performance, HVAC, and Electrical Systems.
Further, revisions to all of these inspection communication standards
are continually re-published. In addition to these, standards for
Drive Train and Transmissions have recently been promulgated.
Participating shops utilize these Uniform Inspection & Communication
Page 705 of 1501

Application Wire Color Location
Diamante .................. Black/Blue ............ (1)
Eclipse (Turbo & 2.4L) .... Black/Blue ............. ( 2)
Galant .................... Black/Blue ............ ( 3)
Mirage .................... Black/Blue ............ ( 1)
Montero ...................... White .............. ( 4)
3000GT .................... Black/Blue ............ ( 6)
( 1) - On firewall, above brake master cylinder.
( 2) - On firewall behind battery.
( 3) - On main wiring harness, near center of firewall.
( 4) - On main wiring harness, near right center of firewall.
( 5) - Near left rear corner of engine compartment, below
cruise control actuator (if equipped).
( 6) - On main wiring harness, near wiper motor on firewall,
behind battery.
\
\
\
\
\
\
3) Start engine and allow it to idle. Measure fuel pressure
with vacuum hose connected to fuel pressure regulator. Record fuel
pressure reading. See FUEL PUMP PERFORMANCE table. Disconnect and plug
vacuum hose from fuel pressure regulator. Record fuel pressure
reading.
4) Check for fuel pressure in fuel return hose by gently
pinching hose while increasing engine speed. If fuel volume is low,
fuel pressure in return hose will not be felt. Increase engine speed
to 2500-3000 RPM, 2-3 times. Return engine to idle. Fuel pressure
should not drop when engine is returned to idle.
5) Turn ignition off. Ensure fuel pressure reading does not
decrease within 2 minutes. If a decrease is noted, monitor speed of
decrease.
6) If fuel pressure is lower than specification, fuel
pressure drops at idle after increasing engine speed to 2500-3000 RPM,
or no fuel pressure in fuel return hose can be felt, check for clogged
fuel filter, or faulty fuel pressure regulator or fuel pump.
7) If fuel pressure is greater than specification, check for
a faulty fuel pressure regulator or plugged fuel return line. If fuel
pressure does not change when vacuum hose to regulator is connected or
disconnected, check for a leaking or clogged vacuum hose to fuel
pressure regulator or faulty fuel pressure regulator.
8) If fuel pressure decreases suddenly after engine is
stopped, check valve in fuel pump is not seated. Replace fuel pump. If
fuel pressure drops slowly, fuel injector is leaking or fuel pressure
regulator valve seat is leaking. Check for faulty fuel injector or
fuel pressure regulator. Repair as necessary.
9) When fuel pressure test is complete, repeat fuel pressure
release procedure before disconnecting fuel pressure gauge. Install
NEW "O" ring at end of high pressure fuel inlet line. Check for fuel
leaks.
FUEL PUMP PERFORMANCE TABLE
\
\
\
\
\
\
At Idle w/Vacuum At Idle w/o Vacuum
Application psi (kg/cm) psi (kg/cm)
Eclipse 2.0L
Non-Turbo ........... ( 1) ............ 47-50 (3.3-3.5)
Turbo ............. 33 (2.3) ......... 42-45 (3.0-3.5)
3000GT Turbo ........ 34 (2.4) ......... 43-45 (3.0-3.1)
All Other Models .... 38 (2.7) ......... 47-50 (3.3-3.5)
( 1) - Information is not available from manufacturer at time
Page 708 of 1501

Measure between center and right terminals of connector for cylinders
No. 1 and 4, and between center and left terminals of connector for
cylinders No. 2 and 3.
4) On all models, remove ignition wires from coil. Measure
secondary coil resistance between coil towers for cylinders No. 1 and
4 and between coil towers for cylinders No. 2 and 3. Primary and
secondary coil resistance should be within specification. See
IGNITION COIL RESISTANCE (ECLIPSE) table. Connect coil harness
connector. Connect ignition wires to coil.
IGNITION COIL RESISTANCE (ECLIPSE) - Ohms @ 68
F (20C) TABLE \
\
\
\
\
\
Application Primary Secondary
2.0L
Non-Turbo ............ .51-.61 ......... 11,500-13,500
Turbo ................ .70-.86 ......... 11,300-15,300
2.4L ................... .74-.90 ......... 20,100-27,300
\
\
\
\
\
\
Power Transistor (Eclipse 2.0L Turbo & 2.4L)
1) To test the section of the power transistor that controls
cylinders No. 1 and 4, disconnect power transistor connector. Using a
1.5-volt dry cell battery, connect negative end of battery to terminal
No. 3 of power transistor and positive end to terminal No. 7. See
Fig. 4 .
Fig. 4: Identifying Power Transistor Connector Terminals (Eclipse
2.0L Turbo & 2.4L)
Courtesy of Mitsubishi Motor Sales of America
2) Using an analog ohmmeter, check for continuity between
terminals No. 3 and 8 of power transistor. Continuity should exist.
With positive end of 1.5-volt battery disconnected, there should be no
continuity. Replace power transistor if it fails test.
3) To test the section of the power transistor that controls
cylinders No. 2 and 3, connect negative end of 1.5-volt dry cell
battery to terminal No. 3 of power transistor and positive end to
terminal No. 2.
4) Using an analog ohmmeter, check for continuity between
terminals No. 1 and 3 of power transistor. Continuity should exist.
With positive end of 1.5-volt battery disconnected, there should be no
continuity. Replace power transistor if it fails test.
Power Transistor (Mirage)
1) Disconnect power transistor (distributor) connector. Usin\
g
a 1.5-volt dry cell battery, connect negative end of battery to
terminal No. 4 of power transistor and positive end to terminal No. 3.
See Fig. 5 .
Page 718 of 1501

G - TESTS W/CODES
1998 Mitsubishi Montero
1998 ENGINE PERFORMANCE
Mitsubishi - Self-Diagnostics
Montero & 3000GT
INTRODUCTION
* PLEASE READ THIS FIRST *
NOTE: If no faults were found while performing basic diagnostic
procedures in F - BASIC TESTING article, proceed with
self-diagnostics in this article. If no Diagnostic Trouble
Codes (DTCs) or only pass codes are present after entering
self-diagnostics, proceed to H - TESTS W/O CODES article for
diagnosis by symptom (i.e., ROUGH IDLE, NO START, etc.).
SYSTEM DIAGNOSIS
NOTE: PCM diagnostic memory is retained by direct power supply
from battery. Memory is not erased by turning off ignition,
but it will be erased if battery or PCM is disconnected.
System diagnosis can be accomplished using a scan tool. See
ENTERING ON-BOARD DIAGNOSTICS . Powertrain Control Module (PCM)
monitors several different engine control system circuits. If an
abnormal input signal occurs, a Diagnostic Trouble Code (DTC) is
stored in PCM memory and assigned a DTC number. Each circuit has its
own DTC number and message. A specific DTC indicates a particular
system failure, but does not indicate that cause of failure is
necessarily within system.
A DTC does not condemn any specific component; it simply
points out a probable malfunctioning area. If a DTC is set, PCM will
turn on MIL. System failures encountered are identified as either hard
failures or intermittent failures as determined by PCM.
Hard Failures
Hard failures cause MIL to come on and remain on until
failure is repaired. If MIL comes on and remains on (MIL may flash)
during vehicle operation, cause of failure may be determined by using
appropriate DTC diagnostic procedure. See TROUBLE CODE DEFINITION. If
a sensor fails, PCM will use a substitute value in its calculations to
continue engine operation. In this condition (limp-in mode), vehicle
is functional, but loss of good driveability may result.
Intermittent Failures
Intermittent failures may cause MIL to flicker, or come on
and go out after intermittent DTC goes away. However, corresponding
DTC will be retained in PCM memory. If related DTC does not reoccur
within a certain time frame, related DTC will be erased from PCM
memory. Intermittent failures may be caused by a sensor, connector or
wiring problems. See INTERMITTENTS in H - TESTS W/O CODES article.
The PCM also records and stores engine operating conditions
when malfunction occurred. This information is referred to as freeze
frame data. If malfunction is an engine misfire, or fuel system rich
or fuel system lean condition, freeze frame data will be updated with
the most current information regarding these failures. Freeze frame
data recorded is:
* Fuel System Status
Page 725 of 1501

CLEARING DTCS
CAUTION: When battery is disconnected, vehicle computer and memory
systems may lose memory data. Driveability problems may
exist until computer systems have completed a relearn cycle.
To clear DTCs using a scan tool, refer to owners manual
supplied with scan tool. If scan tool is not available, DTCs may also
be cleared by disconnecting negative battery cable or PCM for at least
15 seconds, allowing PCM to clear DTCs. Reconnect negative battery
cable and check for DTCs to confirm repair.
PCM LOCATION
PCM LOCATION TABLE \
\
\
\
\
\
Application Location
Montero ........................... Right Front Kick Panel
3000GT ............................. Behind Center Console
\
\
\
\
\
\
SUMMARY
If no hard DTCs (or only pass DTCs) are present, driveability\
symptoms exist, or intermittent DTCs exist, proceed to H - TESTS W/O
CODES article for diagnosis by symptom (i.e., ROUGH IDLE, NO START,
etc.) or intermittent diagnostic procedures.
TERMINAL IDENTIFICATION
NOTE: The following terminals are shown as viewed from component
side of connector. Vehicles are equipped with different
combinations of components. Not all components are used on
all models. To determine component usage, see appropriate
wiring diagram in L - WIRING DIAGRAMS article.
TERMINAL IDENTIFICATION DIRECTORY TABLE
\
\
\
\
\
\
Connector See
ASD/Fuel Pump/MFI Relay ...................... Fig. 1 or 2
CKP/CMP Sensor ............................ Fig. 3, 4 or 5
DLC ............................................... Fig. 6
ECT Sensor ........................................ Fig. 7
EVAP Purge Solenoid ............................... Fig. 8
EVAP Vent Solenoid ................................ Fig. 9
Fuel Injector ....................... Fig. 10, 11, 12 or 13
Fuel Pump ................................... Fig. 14 or 15
Fuel Pump Control/Relay Module .................... Fig. 16
FTDP Sensor ...................................... Fig. 17
Generator Field .................................. Fig. 18
HO2S ............................................. Fig. 19
IAC Motor ........................................ Fig. 20
Ignition Coil .......................... Fig. 21, 22 or 23
Ignition Failure Sensor .......................... Fig. 24
Ignition Power Transistor .................. Fig. 25 or 26
KS ............................................... Fig. 27
MDP Sensor ....................................... Fig. 28
PCM .............................................. Fig. 29
Page 783 of 1501

See Fig. 1 . Connect negative voltmeter lead to ground.
2) Disconnect generator output wire from terminal "B".
Install a 100-amp ammeter in series with terminal "B" and disconnected
output lead. Connect positive lead of ammeter to terminal "B" and
negative lead to disconnected output wire. Install a tachometer, and
reconnect negative battery cable.
3) Turn ignition switch on and ensure voltmeter indicates
battery voltage. If voltage is not present, check for open in wire
between generator terminal "S" and positive battery terminal. Check
for blown fusible link.
4) Start engine. Ensure all lights and accessories are off.
Operate engine at 2500 RPM and read voltmeter when generator output
current drops to 10 amps or less. Voltage regulator is okay if voltage
output is within specification. See REGULATOR VOLTAGE SPECIFICATIONS
table.
REGULATOR VOLTAGE SPECIFICATIONS TABLE
\
\
\
\
\
\
Ambient Temperature Voltage
-4
F (-20C) ................................... 14.2-15.4
68F (20C) .................................... 13.9-14.9
140F (60C) ................................... 13.4-14.6
176F (80C) ................................... 13.1-14.5 \
\
\
\
\
\
GENERATOR RELAY TEST
NOTE: Information for all other models is not available from
manufacturer at time of publication.
Diamante & Mirage
Remove generator relay. On Diamante, relay is located in
relay box in engine compartment near battery. On Mirage, relay is
located in relay box in engine compartment between battery and strut
tower. On both models, connect positive lead of ohmmeter to relay
terminal No. 4. See WIRING DIAGRAMS. Connect negative lead of ohmmeter
to relay terminal No. 2. Continuity should be present. Switch ohmmeter
lead locations. Continuity should not be present. Replace generator
relay if continuity is not as specified.
BENCH TESTING
RECTIFIER ASSEMBLY
1) Using ohmmeter, check for continuity between diodes and
stator coil lead connection. See Fig. 2. Reverse leads. If continuity
is present in both directions, diode is shorted. Replace rectifier
assembly.
2) To check entire diode assembly, use an ohmmeter to check
for continuity between both ends of each diode. See Fig. 2. Switch
ohmmeter leads. Continuity should be present in one direction only. If
continuity is not as specified, diode is defective. Replace rectifier
assembly.