wheel SSANGYONG NEW ACTYON SPORTS 2012 User Guide
[x] Cancel search | Manufacturer: SSANGYONG, Model Year: 2012, Model line: NEW ACTYON SPORTS, Model: SSANGYONG NEW ACTYON SPORTS 2012Pages: 828, PDF Size: 91.28 MB
Page 241 of 828

06-211914-01
Control
rangeTurbocharger driving
mechanismControl method
EffectImproved
performance
At low
speedNarrows the flow
passage for the
exhaust gas by
folding the
vanesThe flow rate is
increased as the
exhaust gas
passes the narrow
passage
→ Increased
turbine & impeller
speed, Increased
compressive forceImproved
low speed
torque
4. OPERATING PRINCIPLES
The E-VGT is designed to get more improved engine power in all ranges by controlling the
turbine as follows:
1) How it Works at Low Speed
Normal turbocharger cannot get the turbo effect because the amount of exhaust gas is not
enough and the flow speed is slow in a low speed zone, but VGT allows the flow passage of
exhaust to narrow, resulting in increasing the flow speed of exhaust gas and running the turbine
quickly and powerfully. Therefore, as VGT can intake more air than normal turbocharger, it can
give the benefit of the increased output even in a low speed zone.
Turbocharger lag
The turbocharger is at idle speed when there is no load or it is in the normal driving condition.
During this period, the amount of exhaust gas passing through the turbine is not enough to
turn the compressor wheel (impeller) fast. Therefore, the intake air is not compressed as
needed.
Because of this, it takes time for turbocharger to supply the additional power after the
accelerator pedal is depressed. This is called "turbocharger lag". Basic principle at low speed
At low speed, it utilizes the principle of
venturi. For example, when air flows through
the venturi tube, the flow speed is faster and
the pressure is lower at the point "A". In this
case, if the inner diameter of venturi is more
narrowed, the flow speed is so much faster
(refer to the equation). ※
Page 271 of 828

11-4
2. TROUBLESHOOTING
ProblemPossible Cause Action
Engine will not
crankLow battery voltage Charge or replace
Loose, corroded or damaged battery cable
Repair or replace
Faulty starter or open circuit
Faulty ignition switch or blown fuse Repair or replace
Poor engine ground Repair
Engine cranks too
slowLow battery voltage Charge or replace
Loose, corroded or damaged battery cable
Repair or replace
Faulty starter
Starter does not
stopFaulty starter
Faulty ignition switch Replace
Engine cranks
normally, but does
not startBroken pinion gear or faulty starter
Replace the starter
Broken flywheel ring gear Replace
Open circuit Repair
Page 310 of 828

15-70000-00
Fuel rail pressure
sensor
(2) Components for ECU Input
CAN
- ABS & ESP
- GCU
- Instrument
cluster
- TCUSwirl valve position
sensor
Differential
pressure sensorE-EGR valve
position sensorCamshaft position
sensorCoolant
temperature senso
r
Exhaust gas
temperature senso
r
HFM sensorOxygen sensorT-MAP sensor
Crankshaft position
sensor
Accelerator pedal
sensorThrottle position
sensorKnock sensor
-Auto cruise switch
- Rear right wheel
speed (without ABS)
- Refrigerant pressure
sensor
- Clutch pedal signal
- Blower switch signal
- Brake pedal signal
Water sensor
Page 318 of 828

15-150000-00
A fourth correction is made according to the pressure error.
This correction is used to reduce the injection timing advance when the pressure in the rail is
higher than the pressure demand.
A fifth correction is made according to the rate of EGR.
This correction is used to correct the injection timing advance as a function of the rate of
exhaust gas recirculation. -
-
When the EGR rate increases, the injection timing advance must in fact be increased in order to
compensate for the fall in termperature in the cylinder.
A. Main Flow Control
The main flow represents the amount of fuel injected into the cylinder during the main injection.
The pilot flow represents the amount of fuel injected during the pilot injection.
The total fuel injected during 1 cycle (main flow + pilot flow) is determined in the following manner.
When the driver depress the pedal, it is his demand which is taken into account by the system
in order to determine the fuel injected.
When the driver release the pedal, the idle speed controller takes over to determine the
minimum fuel which must be injected into the cylinder to prevent the enigne from stalling. -
-
It is therefore the greater of these 2 values which is retained by the system. This value is then
compared with the lower flow limit determined by the ESP system.
As soon as the injected fuel becomes lower than the flow limit determined by the ESP system, the
antagonistic torque (engine brake) transmitted to the drive wheels exceeds the adherence
capacity of the vehicle and there is therefore a risk of the drive wheels locking.
The system thus chooses the greater of these 2 values (main flow & pilot flow) in order to prevent
any loss of control of the vehicle during a sharp deceleration.
As soon as the injected fuel becomes higher than the fuel limit determined by the ASR trajectory
control system, the engine torque transmitted to the wheels exceeds the adhesion capacity of the
vehicle and there is a risk of the drive wheels skidding. The system therefore chooses the smaller
of the two values in order to avoid any loss of control of the vehicle during accelerations.
The anti-oscillation strategy makes it possible to compensate for fluctuations in engine speed
during transient conditions. This strategy leads to a fuel correction which is added to the total fuel
of each cylinder.
A switch makes it possible to change over from the supercharge fuel to the total fuel according to
the state of the engine.
Until the stating phase has finished, the system uses the supercharged fuel.
Once the engine changes to normal operation, the system uses the total fuel. -
-
(5) Fuel Control
The main fuel is obtained by subtracting the pilot injection fuel from the total fuel.
A mapping determines the minimum fuel which can control an injector as a function of the rail
pressure. As soon as the main fuel falls below this value, the fuel demand changes to 0 because
in any case the injector is not capable of injecting the quantity demand.
Page 358 of 828

01-8
Front View ▶
NO. FUNCTION NO. FUNCTION
1 HFM Sensor 12 Intake Manifold
2 Intake Air Duct 13 Cylinder Head
3 Cylinder Head Cover 14 Exhaust Manifold
4 Ignition Coi 15 Dipstick Guide Tube and Gauge
5 Spark Plug Connector 16 Connecting Rod
6 Fuel Distributor 17 Crankshaft
7 Injector 18 Engine Mounting Bracket
8 Exhaust Camshaft 19 Starter
9 Intake Camshaft 20 Crankcase
10 Valve Tappet 21 Oil Pump Sprocket
11 Intake Valve 22 Oil Pan
NO. FUNCTION NO. FUNCTION
23 Camshaft Adjuster 29 Oil Pump Drive Chain
24 Oil Filler Cap 30 Oil Strainer
25 Engine Hanger Bracket 31 Oil Pump
26 Cooling Fan and Viscous Clutch 32 Ring Gear and Flywheel of Drive Plate
27 Oil Filter 33 Piston
28 Timing Chain
Side View ▶
Page 396 of 828

05-91452-01
6) Alternator
Alternators are equipped with internal regulators.
Unlike three-wire generators, the alternator may be used with only two connections: battery
positive and an "D+" terminal to the charge indicator lamp.
As with other charging systems, the charge indicator lamp lights when the ignition switch is turned
to RUN, and goes out when the engine is running.
If the charge idicator is on with the engine running, a charging system defect is indicated. This
indicator light will glow at full brilliance for several kinds of defects as well as when the system
voltage is too high or too low.
The regulator voltage setting varies with temperature and limits the system voltage by controlling
rotor field current.
Achieve correct average field current for proper system voltage control by varying the on-off time.
At high speeds, the on-time may be 10 percent and the off-time 90 percent.
At low speeds, with high electrical loads, the on-time may be 90 percent and the off-time 10
percent.
7) Charging System
Generators use a new type of regulator that incorporates a diode trio.
A Delta stator, a rectifier bridge, and a rotor with slip rings and brushes are electrically similar
to earlier generators.
A conventional pulley and fan are used.
There is no test hole.
8) Starter
Wound field starter motors have pole pieces, arranged around the armature, which are energized
by wound field coils.
Enclosed shift lever cranking motors have the shift lever mechanism and the solenoid plunger
enclosed in the drive housing, protecting them from exposure to dirt, icy conditions, and
splashes.
In the basic circuit, solenoid windings are energized when the switch is closed.
The resulting plunger and shift lever movement causes the pinion to engage the engine flywheel
ring gear.
The solenoid main contacts close. Cranking then takes place.
When the engine starts, pinion overrun protects the armature from excessive speed until the
switch is opened, at which time the return spring causes the pinion to disengage.
To prevent excessive overrun, the switch should be released immediately after the engine starts.
Page 502 of 828

04-118210-01
2) Speedometer Gauge
The speedometer indicates the vehicle speed by calculating the signals from the rear left and rear
right wheel speed sensors through ABS or ESP unit. (For the vehicle without ABS or ESP, the
signals are received from the EMS)
If the speedometer gauge vibrates, stops at a certain range or makes an abnormal noise, there
could be defectives in speedometer. However, these symptoms also could be occured when th
e
tire has uneven wear, different tire inflation pressures or different tire specifications.
Perform the speedometer test regarding the tolerance as described. However, it is not similar
simple work in field due to lack of measuring conditions such as test equipment and preciseness.
Check the allowable tolerance of the speedometer and operations of the trip odometer by
using a tester.
Check if the speedometer pointer is shaking and the abnormal noise sounds.
Eliminate the hysteresis by tapping the speedometer. 1.
2.
3.
Page 544 of 828

10-4
Remote contro switches
on steering wheel
USB & AUX module
Front door speakerHandsfree microphone
1. LAYOUT
Page 548 of 828

01-4
This indicator shows the current position of
the gear.
In normal mode: P, R, N, D
Gear indication in “M” mode: 1, 2, 3, 4, 5, 6
Driving gear can be adjusted by operating
the tip switch after moving the gear select
lever in “M” position.
Shift down Shift up
Tip switch on steering wheel ▶
Gear position display on instrument cluste▶
Gear select lever ▶
Mode Switch
W :
S :
Selection of Manual/
Automatic Shift Function
D :
M :Shift Lock Release Button Hole
when Locked in the "P" Position
If you cannot move the gear
select lever from the "P" position,
try to move the lever while
pushing down here with a sharp
object such as a ballpoint pen.
For your safety, turn off the
engine and depress the brake
pedal before the attempt. Tip Switch in “M” Position (Manual Gear Shift)
The shiftable gear can be adjusted by moving this switch to forward and rearward when the
gear select lever is in “M” position.
Positions of gear
select lever
P : Parking
R : Reverse
N : Neutral
D : Drive
Winter mode
Standard mode (Use the
standard mode in normal
driving conditions.)
Automatic shift according to
the driving condition
Manual shift
Page 555 of 828

01-113680-01
1. OVERVIEW
The six speed automatic (M78) transmission
is available in two variants: four wheel drive
and two wheel drive.
The transmission has the following features:
Six Forward Speeds
One reverse gear
A torque converter with an integral converter lock-up clutch
Electronic shift and pressure controls
A single planetary gear-set
A double planetary gear-set
Two hydraulically controlled brake bands
Three multi-plate clutches
All hydraulic functions are directed by electronic solenoids to control: -
-
-
-
-
-
-
-
-
Engagement feel
Shift feel
Shift scheduling
Modulated torque converter clutch applications ·
·
·
·
The transmission contains fully synthetic automatic transmission fluid (ATF) and is filled for life;
therefore it does not require periodic servicing.
Engine power reaches the transmission via a torque converter with integral converter lock-up
clutch.
The six forward gears and one reverse gear are obtained from a single planetary set, followed by
a double planetary set. This type of gear-set arrangement is commonly known as Lepelletier type
gear-set.
The automatic transmission is electronically controlled. The control system is comprised of the
following elements:
External transmission control unit (TCU)
Internal embedded memory module (EMM)
Input and output speed sensors
Valve body unit comprised of four on/off solenoid valves and six variable bleed solenoids
Torque converter -
-
-
-
-