engine DATSUN 610 1969 User Guide

Page 18 of 171


h
W

and

connecting
rod
assemblies
Use
a

piston
ring

compressor
to

install
the

pistons
through
the

top
of
the

cylbder
bore
Make

sure
that
the

pistons
and

rings
and
the
cylinder
bores
are

lubricated
with
clean

engine
oil
The

pistons
should
be

arranged

so
that
the
F

mark
faces
to

the
front
and
with
the

piston

ring

gaps
positioned
at
1800
to
each
other
Each
piston
must

be
refitted

into
its

original
bore

NOTE

Single
inlet
valve

springs
are
used
on

the
1400
cc

engine
double

valve
springs
are
used
on
the
1600cc

and
1800
cc

engines

Screw
the
valve
rocker

pivots
with
the
locknuts
into
the

pivot
bushing
Set
the
camshaft

locating
plate
and
install
the

camshaft
in
the
cylinder
head
with
the

groove
in
the

locating

plate
directed
to

the
front
of
the

engine
Install
the
camshaft

sprocket
and
tighten
it

together
with
the
fuel

pump
earn
to
a

torque
reading
of
12
16

kgm
86
116
IbJt
a
eck
that
the

camshaft
end
play
is
within

the
specified
limits
Install
the

rocker
arms

using
a
screwdriver
to

press
down
the
valve

springs

and
fit
the
valve
rocker

springs

Gean
the

joint
faces
of
the

cylinder
block
and
head

thoroughly
before

installing
the
cylinder
head
Turn
the
crank

shaft
until
the
No
1

piston
is

at
T
D
C
on
its

compression
stroke

and
make
sure
that
the
camshaft

sprocket
notch
and
the

oblong

groove
in
the
locating
plate
are

correctly
positioned
Care

should
be
taken
to
ensure
that
the
valves
are

clear
from
the

heads
of
the

pistons
The
crankshaft
and
camshaft
must
not
be

rotated

separately
or
the
valves
will
strike
the
heads
of
the

pistons
Temporarily
tighten
the
two

cylinder
head
bolts
1
and

2
in

Fig
A
37
to
a

torque
reading
of
2

kgm
14
5
lb
ft

Fit
the
crankshaft

sprocket
and
distributor
drive

gear
and

install
the
oil
thrower
Ensure
that
the

mating
marks
on
the

crankshaft

sprocket
face
towards
the
front
Install
the

timing

chain

making
sure
that
the
crankshaft
and
camshaft

keys
are

XJinting
upwards
The
marks
on
the

timing
chain
must
be

aligned
with
the
marks
on
the

right
hand
side
of
the
crankshaft

and
camshaft

sprockets
It
should
be
noted
that
three
location

holes
are

provided
in
the
camshaft

sprocket
See

Fig
A
38
The

camshaft

sprocket
being
set
to
the
No
2
location
hole

by
the

manufacturers
A
stretched
chain
will
however
affect
the

valve

timing
and
if
this
occurs
it
will
be

necessary
to
set
the
camshaft

to
the
No
3
location
hole
in
the
camshaft

sprocket
The
chain

can

be
checked

by
turning
the

engine
until
the

No
1
piston
is

at
T
D
C
on
its

compression
stroke
In
this

position
adjustment

will
be

required
if
the
location
notch
on

the
camshaft

sprocket

is
to
the
left
of
the

groove
on
the
camshaft

locating
plate
as

shown
in
the
illustration
The
correction
is
made

by
setting
the

camshaft
on

the
No
3
location
hole
in
the
camshaft

sprocket

the
No
3
notch
should
then
be
to
the

right
of
the

groove
and

the
valve

timing
will
have
to

be
set

using
the
No
3

timing
mark

Install
the
chain

guide
and
chain
tensioner
when
the
chain

is
located

correctly
There
should
be
no

protrusion
of
the
chain

tensioner

spindle
See

Fig
A
39
A
new
tensioner
must
be

fitted
if
the

spindle

protrudes

Press
a
new
oil
seal
into
the

timing
cover
and
fit
the
cover

into

position
using
a
new

gasket
Apply
sealing
compound
to

the
front
of
the

cylinder
block
and
to
the

gasket
and
to
the

top

of

the

timing
cover

Ensure
that
the
difference
in

height
between

the

top
of
the

timing
cover
and
the

upper
face
of
the

cylinder

block
does
not

exceed
0
15
mm
0
006
in
Two
sizes
of

timing

cover
bolts
are

used
the
size
M8
0
315
in
must

be
tightened

to

a

torque
reading
of
1
0
1
6

kgm
7
2
17
Ib
ft
and
the
size
M6
0
236
in
to
a

torque
reading
of
0
4
0
8

kgm

2
9
81b
ft

Install
the
crankshaft

pulley
and
water

pump
tighten
the

pulley
nut
to
a

torque
reading
of

12
16

kgm
86
8
115
7Ib
ft

then
set

the
No
1

piston
at
T
D
C
on
its

compression
stroke

Finally
tighten
the

cylinder
head
bolts
to
the

specified

torque
reading
in
accordance
with
the

tightening
sequence
shown

in

Fig
A
3
The
bolts
should
be

tightened
in
three

stages
as

follows

First

stage

Second
stage

Third

stage
4

kgm
28
9
lbJt

6

kgm
43
4
IbJ
t

6
5
85

kgm
47
0
61
5lb
ft

The

cylinder
head
bolts
should
be

retightened
if

necessary

after
the

engine
has
been
run
for
several
minutes

Install
the
oil

pump
and
distributor
drive

spindle
into
the

front
cover
as
described
under

Engine
Lubrication

System

r
rf

i

Install
the
fuel

pump
water
inlet
elbow
and
front

engine

slinger
Fit
the
oil
strainer
into
position
coat
the
oil

sump

gasket
with
sealing
compound
and
fit
the

gasket
and
oil
sump

to
the

cylinder
block

Tighten
the
oil

sump
bolts
in
a

diagonal

pattern
to

a

torque
reading
of
0
6
0
9

kgm
4
3
6
5
IbJt

Adjust
the
valve
clearances
to
the

specified
cold

engine

ftgures
following
the

procedures
described
under
the

appropriate

heading
Final

adjustments
will

be
carried
out
after
the

engine

has
been
assembled

completely
and
warmed

up
to

its
nonnal

temperature

Install
the
rear

engine
slinger
exhaust
manifold
and
inlet

manifold
Refit

the
distributor
and
carburettor
assemblies
as

described
in
their
relevant
sections

Install
the
fuel

pipes
and

vacuum
hose

making
sure
that

they
are

securely
cl

ped
Refit

the
thermostat

housing
thermostat
and
water
outlet

together

with
the

gasket
Bond
the
rocker
cover

gasket
to
the
rocker

cover

using
sealant
and
fit
the
rocker
cover
to
the

cylinder

head

Install
the
spark
plugs
and
connect
the

high
tension
leads

Fit
the
left
hand

engine
mounting
bracket
and
install
the
clutch

assembly
using
the

alignment
tool
ST20600000
to
fit
the
clutch

to
the

flywheel
as
described
in
the
section
ClUfCR

Lift

the
engine
away
from
the

mounting
stand
and
into

the

engine

compartment
Install
the
alternator
bracket
adjusting

bar
alternator
fan

pulley
fan
and
fan
belt
in
the
order

given

Check
the
tension
of
the
fan
belt

by
depressing
the
belt
at
a

point
midw

y
between
the

pulleys
The

tension
is
correct
if

the
belt
is
deflected

by
8
12
mm
0
3
0
4
in
under
thumb

pressure

Fit
the

right
hand
engine
mounting
bracket
the
oil
filter

oil

pressure
switch
oil
level

gauge
and
water

drain
plug
Take

care
not
to

overtighten
the
oil
nIter
or

leakage
will
occur

Fill
the

engine
and

gearbox
to
the
correct
levels
with

recommended
lubricant

and
refill
the

cooling
system
Adjust

the

ignition
timing
and
carburettor
as
described
in
the

appro

priate
sections

17

Page 19 of 171


inter
lmi

@
jl

Fig
A
41

Engine
lubrication
circuit

i
Punch
rmrk

Oil
hole

L

Fig
A
44

Aligning
the
oil

pump
spindle

18
II

l

o
CD

I

Fig
A
42

Component
parts
of
the
oil

pump

L

Pump

body

2
Inner
rotor
and

wft

3
OutO
rotor

4

Pump
coper

5

Reliefvalve
6

Relief
valve

Jpring

7
Washer

8

S

alp

9
ConT

613ut

I
Sideclruance

2

TIp
clearance

3

Guier
10

00
body
clearance

t
4
Rotor
to
bottom

cover
cleatance

Fig
A
43

Checking
the
rotor

clearance

Page 20 of 171


VALVE
CLEARANCES

Adjusting

Incorrect
valve
clearance
will
affect
the

performance
of

the

engine
and

may
damage
the
valves
and
valve
seats
Insuf

ficient
valve
clearance
will
result
in
loss
of

power
and

may

prevent
the
valve
from

seating
properly
Excessive
clearance

causes
the
valve
to
seat
and
reduces
the
amount
of

valve
lift

This
will
result
in

noisy
operation
with

damage
to
the
valves

and
seats

Adjustment
is
made
with
the

engine
switched
off

and
should
be
carried
out

initially
with
the

engine
cold
to

allow
the

engine
to
run
Final

adjustments
are
made
after

wanning

up
the

engine
to

its
Donnal

operating
temperature
The

engine
can
be
rotated

by
removing
the

sparking
plugs
to
release

the

cylinder
compressions
then

selecting

top
gear
and

pushing

the
vehicle
backwards
and
forwards

The
cold
valve
clearances
should
be
set
to
0
20
mm

0
0079
in
for
the
inlet
valves
and
0
25
mm
0
0098
in
for

the
exhaust
valves
Check
the
clearance
between
the
valve
and

rocker

using
a
feeler

gauge
as
shown
in

Fig
A
40
Slacken
the

locknut
and
turn
the
adjusting
screw
until
the

specified
clearance

is
obtained
then

tighten
the
locknut
and
recheck
the
clearance

The
feeler

gauge
should

just
be
free
to
move
between
the
rocker

and
valve
When
the
cold
valve
clearances
have
been
set
run
the

engine
until
it
reaches
its
normal

operating
temperature
then

switch
off
and

adjust
the
valve
clearances
with
the

engine
warm

to

0
25
mm
0
0098
in
for
the
inlet
valves
and
0
30
mm

0
0118
in
for
the
exhaust
valves

ENGINE
LUBRICATION
SYSTEM
Fig
A
41

OIL
PUMP
Removal
and

Dismantling

The
rotor

type
oil

pump
is
mounted
at
the
bottom
of
the

front

timing
cover
and
driven

by
the
distributor
drive
shaft

assembly

Overhaul
of
the

pump
will

require
careful
measurement

of

the
various
clearances
to
determine
the
amount

of
wear

which

has
taken

place
If

any
part
is
found
to
be
worn
it

may
be
neces

sary
to

replace
the
entire
oil

pump
assembly
To
remove
the
oil

pump
from
the

engine
proceed
as
follows

1
Remove
the
distributor

assembly
as
described
in
the

section
IGNITION
SYSTEM
Remove
the
oil

sump
drain

plug
and
drain
off
the

engine
oil
See
under
the
heading

CHANGING
THE
ENGINE
OIL

2
Remove
the
front
stabiliser
and
the
splash
shield
board

3
Withdraw
the

securing
bolts
and
detach
the
oil

pump

body
together
with
the
drive

gear
spindle

Take
out
the
bolts
securing
the

pump
cover
to
the

pump
body

and
withdraw
the
rotors
and
drive
shaft
See
Fig
A
42

The
pin
securing
the
driven
shaft
and
inner
rotor
must
not

00
taken
out
as
the
shaft
is

press
fitted
to
the
rotor
and
the

pin

is
caulked

Unscrew
the
threaded

plug
and
withdraw
the
regulator

valve
and

spring
Oean
each

part
thoroughly
and
examine
for

signs
of

damage
or
wear
Use
a
feeler

gauge
to
check

the
side

clearances
between
the
outer

and
inner
rotors
the
clearances

at
the

tips
of
the
rotors
and
the
clearance
between
the
outer

rotor
and
the

pump
body
See
Technical
Data
for
the
relevant

clearances
The
clearances
can

be
checked

using
a

straight
edge

as

shown
in

Fig
A
43

OIL
PUMP

Assembly
and
Installation

Assembly
is
a
reversal
of
the

dismantling
procedure
Before

installing
the
oil

pump
in
the

engine
it
will
be

necessary
to

rotate

the

engine
until
the
No
1

piston
is
at

T
D
C
on

its

compression
stroke

Fill
the

pump
housing
with

engine
oil
and

align
the

punch

mark
on
the

spindle
with
the
hole
in
the
oil

pump
as
shown

in

Fig
A
44

Install
the

pump
with
a
new

gasket
and

tighten
the

securing
bolts
to
a

torque
reading
of
1
1
1
5
kgm
8
1
Ilb
ft

Replace
the

splash
shield
board
and
the
front
stabiliser
refill

the

engine
with
the

specified
amount
of

engine
oil

OIL
FILTER

The

cartridge
type
oil
filter
can
be
removed
with
the

special
tool
ST
19320000
or
a
suitable
filter
remover
Interior

cleaning
is
not

necessary
but
the
ftIter

body
and
element
must

be

repiaced
every
10
000
km
6000
miles
Be
care
ul
not
to

overtighten
the
filter
when

replacing
or

oil
leakage

may
occur

CHANGING
THE
ENGINE
OIL

After
the
fIrst
oil

change
which
should
take

place
at
1000

km
600
miles
the
oil
should
be

changed
regularly
at
5000
km

3000
miles
intervals

Draining
is
more

easily
accomplished
after
a

lengthy
run

when
the
oil

being
thoroughly
warm
will
flow

quite
freely

Stand
the
vehicle
on
level

ground
and

place
a
suitable

container
under
the
drain

plug
Remove
the
drain

plug
carefully

as
the
hot
oil

may
spurt
out
with
considerable
force
When

refIlling
the

engine
make
sure

that
the
oil
is
to
the
H
mark
on

the

dipstick

19

Page 21 of 171


Engine
model

Number
of

cylinders

Arrangement
of

cylinders

Cubic

capaci
ty

Bore
x
stroke

Arrangemen
t
of

valves

Max
B
H
P

Max

torque

Firing
order

eidlingspeed

Compression
ratio

Oil

pressure

Valve
clearance

hot

Inlet

Exhaust

Valve
clearance
cold

Inlet

Exhaust

Valve
head

diameter

Inlet

Exhaust

Valve
stem

diameter

Inlet

Exhaust

Valve
lift

Valve

spring
free

length

Valve

spring
fitted

length

Valve

spring
coil
diameter

Valve

guide
length

Inlet

Exhaust

Valve

guide
protrusion
rreclll11cal
ata
L

lJEngine

LI3

4

In
line

1296

83
0
x
59
9

3
2677
x
3583
in

Overhead
camshaft

77
at
6000

rpm

II
1

kgm
at
3600

rpm

I
342

600

rpm

8
5
1

3
8
4
2

kg
sq
em

54
60Ib

sq
in

VALVES

0
25
mm
0
010
in

0
30
mm
0
01
in

0

20
mm
0
008

in

0
25
mm
O
OIJ
in

38
mm
1
50
in

33
mm

1
30
in

8
0
mm
0
31
in

8
0
mm
0
31
in

10
0

mm
0
40
in

48
12
mm

1
89
in

40
0
mm
30
7

kg

1
57
in
67

7
lb

34
9
mm
1
37
in

59
0
mm
2
32

in

59
0
mm
2
32
in

10
4
10
6
mm
0
41
0
42
in

Valve

guide
inner
diameter

Inlet

8
00
8

l
8
mm
0
315
0
3154

in

Exhaust
8
00
8
018
mm
0
315

0
3154

in

Valve

guide
outer
diameter

Inlet

Exhaust

Valve

guide
to
stem
clearance

Inlet

Exhaust

20
11
985
11
996
mm
0
472
0
4723

in

11
985
11
996
mm
0
4172
0
4723

in

0
015
0
045
mm
0
0006
0
0018

in

0
040
0
070
mm
0
0016
0
0028

in
Valve
seat
width

Inlet

Exhaust

V
lve
seat

angle

Valve
seat

insert
interference

fit

Inlet

Exhaust

Valve

guide
interference
fit

Inlet
1
4
1
8
mm
0
055
0
071
in

1
6
2
0
mm
0
063
0
079
in

450

0
08
0
11
mm
0
0031
0
0043

in

0
06
0
10

mm
0
0024
0
0039

in

0
027
0
049
mm
0
0011
0
0019

in

CAMSHAFT
AND
TIMING
GEAR

Camshaft
end

play

Camshaft
lobe
lift

Camshaft

journal
diameter

Max
camshaft
run
out

Camshaft

bearing
to

journal

clearance

Camshaft

bearing
inner

diameter
0
08
0
38
mm

0
0011
0
0019
in

6
65
mm
0
261
in

47
949
47
962
mm
fI
8877

1
8883
in

0
05
mm

0
002
in

0
038
0
076
mm
0
0015
0
0026

in

48
000
48
016
mm

1
8898

1
8904
in

CONNECTING
RODS

Distance
from
centre
to
centre
132
97

133
03
mm
5
235

5
237
in

Bearing
shell
thickness

Standard

Big
end
side

play

Connecting
rod

bearing

running
clearance

Connecting
rod

rend
or

twist
1
498
1
506
mm
0
059
0
593

in

0
20
0
30

mm
0
008
0
012
in

0
014
0
056
mm
0
0006
0
0022

in

0
03
mm

per
100
mm
0
0012

in

per
3
937

in

CRANKSHAFT
AND
MAIN

BEARINGS

Crankshaft
material

Number

of

bearings

Main

journal
diameter

Max

journal

taper

Max

journal
out
of
round

Crankshaft
end

play
Special

forged
steel

5

54
942
54
955
mm
2
1631

2
1636

in

0
03
mm
0
0012
in

0
03
mm
0
0012
in

0
05
0
015
mm
0
002
0
0059

in

Page 22 of 171


Wear
limit

Crank

pin
journal
diameter

Max
crankpin
taper

Max

crankpin
out
of
round

Thickness
of
main

bearing

shells
0
3
mm
0
012

in

49
961
49
975
mm

1
967
1
9675

in

0
03
mm
0
012
in

0
03
mm
0
012
in

1
827
1
835
mm
0
072
0
0722

in

Main

bearing
running
clearance

0
020
0
062
mm
0
0008
0
0024

in

Max
main

bearing
running

clearance

Crankshaft
bend
limit

Material

Type

Piston
diameters

Standard

I
st
oversize

2nd
oversize

3rd
oversize

4th
oversize

5th
oversize

Width
of

ring
grooves

Top
and
second

Oil
control

Piston

running
clearance
0
12
mm

0
0047
in

0
05
mm
0
002
in

PISTONS

Cast
aluminium

Slipper
skirt

82
99
83
04
mm
3
267
3
269

in

83
22
83
27
mm
3
276
3
278

in

83
47
83
52
mm
3
286
3
288

in

83
72
83
77
mm
3
296
3
298

in

83
97
84
02
mm
3
305
3
308

in

84
47
84
52
mm
3
326
3
328

in

2
0
mm
0
08
in

4
0
mm

0
16
in

0
025
0
045
mm
0
001
0
002

in

PISTON
PIN

Pin
diameter
20
995
21
000
mm
0
8266

0
8268

in

Pin

length
72
00
72
25
mm
2
8346
2
8445

in

Pin

running
clearance
in

piston
0
008
0
010
mm
0
0003
0
0004

in

Pin
interference
fit
in
small
end
bush

0
015
0
033
mm
0
0006
0
0013

in

Piston

ring
height

Top
and
second

Oil
control

Side
clearance
in

grooves

Top
PISTON
RINGS

2
0
mm
0
08
in

4
0
mm
0
16
in

0
040
0
073
mm
0
0016
0
0029

in
Second

Oil
control

Piston

ring
gaps

Top

Second

Oil
control

Material

Distortion
of

sealing
face

Max
distortion

Valve
seat
insert
material

Inlet

Exhaust

Fit

Drive

Chain

Chain
tensioner
0
030
0
063
mm
0
0012
0
0025

in

0
025
0
063
mm
0
001
0
0025

in

0
23
0
38
mm
0
0091
0
0150

in

0
15
0
30
mm

0
006
0
012

in

0
15
0
30
mm
0
006
0
012
in

CYLINDER
HEAD

Aluminium

alloy

0
03
mm
0
0012
in

0
1
mm
0
004
in

Aluminium
bronze

Special
cast

Hot

pressed

CAMSHAFT
DRIVE

From
crankshaft

double
roller

type

Spring
and
oil

pressure
control

Engine
model
lWIN
CHOKE
CARBURE
ITOR

Outlet
diameter

Venturi
diameter

Main

jet

Main
air
bleed

Slow

running
jet

Power

jet

Float
level

Fuel

pressure

Weight

Altitude

setting
main

jet

1000
m
3300
ft
94

2000
m
6600

ft
92

3000
m

10
000

ft
89

4000
m

13
300
ft
87

5000
m

16
600
ft
85
PRIMARY
L13

SECONDARY

30mm

27x
12mm

150

90

180
26
mm

21
x
8
mm

96

80

43

40

23
I
mm
0
905
0
04

in

0
24

kg
sq
em
3
41b

sq
in

2
55

kg
5
61
lb

1

21

Page 23 of 171


TechnIcal
Data
L
14
16
and
18

Engine

GENERAL
SPECIFICATIONS

Cylinders

Displacement

L14

L16

L18

Bore
and
stroke

L14

L16

Ll8

Compression
ratio

L14

L16

single
carburettor

L16
SU

twin
carburettor

L18

single
carburettor

Ll8

SU
twin
carburettor

Valve

arrangement

Firing
order

e

idling
speed

Engine

idling
speed
with
automatic
transmission

Oil

pressure
Hot
at
2000
r

p
m

Valve

clearance
Hot

Intake

Exhaust
0
25
mm
0
0098

in

0
25
mm
0
0098
in

Valve
clearance

Cold

Intake

Exhaust

Va
head
diameter

L14

Intake

Exhaust

Vahoe
head
diameter
L16

Intake

Exhaust
0
20

mm
0
0079

in

0
20
mm

0
0079

in

38
mm
1
5361
in

33
mm

1
2992

in

42
mm

1
6535

in

33
rom
1
2992
in

Valve
head
diameter

L18

Intake

Exhaust
42
mm

1
6535
in

35
mm
1
3780

in

Valve
stem
diameter

Intake

7
965
7
980
mm
0
3136
0
3142
in

Exhaust

7
945
7
960
mm

0
3128
0
3134
in

Valve

length
L14

Intake

Exhaust
115

6
115
9mm
4
551
4

562in

115
7
116
0
mm

4
555
4
567
in

Valve

length
L16
LIB

Intake

114

9
115
2
mm
4
524
4
535

in

Exhaust

115
7
116
0
mm

4
555
4
567
in

22
4
in
line

1428

cc
87
1
cu
in

1595
cc
97
3
cu
in

1770

cc

108
0
cu
in

83
x
66
mm

3
27
x
2
60
in

83

x
73
7
mm
3
27
x
2
90
in

85
x
7B
mm
3
35
x
3
07
in

9
0

8
5

9
5

8
5

9
5

Overhead
valve

I
3
4

600
r

p
m

single
carburettor
650
r

p
m
twin
carburettor

650

r

p
m

single
carburettor

700
r

p
m
twin

carburettor

3
5
4
0

kg
sq
cm

50
57Ib

sq
in

VALVES

Valve
lift

Single
carburettor

Valve
lift

Twin
carburettor
10
0
mm
0
3946

in

10
5
mm

0
413
in

Valve

spring
free

length
LI4

Ll4
Intake

Ll4

Exhaust
outer

L14
Exhaust
inner

Valve

sprin8
free

length
L16
LIB

Outer

Inner
49
0
mm

1
929
in

49
98
mm
1
968

in

44
85

mm

1
766
in

49
98
mm

1
968

in

44
85
mm
1
766
in

59
0
mm

2
393
in

10
6
mm

0
417
in
Valve

guide
length

Valve

guide
height
from
head
surface

Valve
guide
diameter
inner

Intake
8
018

Exhaust
8
018

Valve

guide
diameter
outer

Intake

12

034

Exhaust

12
034

Valve

guide
to
stem
clearance

Intake

Exhaust

Valve
seat
width
L14

Intake

Exhaust

Valve
seat

width
L16
LIB

Intake

Exhaust
8
000

mm
0
3154

0
3150
in
clia

8
000
mm

0
3154

0
3150
in
clia

12
023
mm
0
4738
0
4733

in
clia

12
023

mm
0
4738
0
4733

in
clia

1
8
mm

1
1024
in

I
7
mm
1
0630
in

I

4
mm

0
0551
in

1
3
mm
0
0512

in

0
020
0
053
mm
0
0008
0
0021
in

0
040
0
073

mm
0
0016
0
0029
in

Page 26 of 171


CoolIng
System

GENERAL

FAN
BELT
TENSION

FLUSHING
AND
DRAINING
THE
SYSTEM

THERMOSTAT

Testing

RADlA
TOR
Removal

GENERAL

The

cooling
system
is

pressurised
and

incorporates
a

water

pump
corrugated
fin

type
radiator
fan
and
a

pellet
type

thermostat

The
water

pump
is
of
the
centrifugal
type
and
has
an

aluminium
die
cast

body
The
volute
chamber
is
built
into

the

front
cover

assembly
and
a

high
pressure
sealing
mechanism

prevents
water

leakage
and
noise

The
fan

pulley
is
driven

by
the
V
belt
from
a

pulley
on

the
crankshaft

he

pellct
type
thermostat
enables
the

engine
to
warm

up

rapidlY
and
also

regulates
the

temperature
of
the
coolant
When

the
wax

pellet
in
the
thermostat
is
heated
it

expands
and
exerts

pressure
against
a
rubber

diaphragm
causing
the
valve
to

open

and
allow
the
coolant
to
flow
from
the

cylinder
head
back
to

the
radiator

As
the

pellet
is

cooled
itcontractsand
allows
the

spring
to

close
the
valve

thereby
preventing
coolant
from

leaving
the

cylinder
head

The
rad
ator
is
of
the
down

flow
type
with
an

expansion

tank
The
relIef
valve
in
the
radiator
filler

cap
controls
the

pressure
at

approximately
0
9

kg
sq
cm

l3Ib
sq
in
Always

try
to
avoid

removing
the
filler

cap
when
the

engine
is
hot
as

coolant

may
spray
out
and
cause

scalding

If
the

cap
must
be
removed
in
these
circumstances
use
a

lar
e

pic
c
of
cloth
to
hold
the

cap
and
turn

the
cap
sli

htlY

Walt
until
all

pressure
has

been
released
before

lifting
off
the

cap

F
AN
BELT
TENSION

The
fan
belt
drives
the
water

pump
and
alternator
as

well

as

the
fan
and
its
correct

adjustment
is
most

essential
A
loose

fan

belt
will

sl
ip
and

Y
e
r

and
most

probably
cause

overheating

alternatively
If
the
belt
IS
too

tight
the
pump
and
alternator

bearings
will
be
overloaded

The
belt
is

correctly
tensioned
if
it
can
be
depressed

by

approximately
10
mm

1
2
in
at
a

point
midway
between
the

fan
and
alternator
pulleys
See

Fig
R2

If

adjustment
is
neces

ary
slacken
the
alternator

mounting

and

adjustment
bolts
and

pivot
the
alternator

away
from
the

engine
to

tighten
the
belt
to

towards
the

engine
if

the
belt

is

to
be
slackened

NOTE

Always
apply
leverage
to
the
drive
end

housing
when

pivoting
the
alternator
and
never
to
the
diode
end

housing
or
the
alternator
will
be

damaged
Retighten
the
alternator
bolts
and
make
SUfe

that
the
belt

is

correctly
tensioned

FLUSHING
AND
DRAINING
THE
SYSTEM

The
radiator
and
water

passages
should
be
flushed
out

periodically
to
remove
the
accumulated
scale
or
sediment

Reverse

flushing
equipment
should
be
used
to

carry
out
a

completely
thorough
flushing
operation
but
the
owner
drivef

not

possessing
this

type
of

equipment
can
flush
out
the

system

in

the
following
manner

Drain
the
system
by
removing
the
radiator
filler

cap
and

opening
the
radiator
and

cylinder
block
drain

taps
Close
the

taps
again
and
refill
the
radiator
Run

the
engine
for
a
ShOft

period
and
then
rc
open

the
drain
taps
Continue
this

sequence

until
the
water

flowing
from
the

taps
is
clean
then
close
the

taps

and
refill
the
radiator

An
anti
freeze
mixture
should

always
be
used
in
Winter

time
The
Niss3n

long
life
coolant
L
L
c
is
an

ethylene
glycol

solution

containing
a
corrosion

preventative
which
can
remain

in
the
vehicle

throughout
the
year
but
must
not

be
mixed
with

other

products

It
is
advisable
to
check
the
radiator
and
heater
hoses
when

filling
with
anti
freeze
and
renew

them
if

signs
of
deterioration

are

apparent

WATER
PUMP

Replacement

The
water
pump
must
not
be
dismantled
and
should
be

renewed
if
it
becomes

faulty
The

pump
can
be
removed
in
the

following
manner

Drain
the

cooling
system

2
Take
the
fan
belt
off

the
pulley

3
Remove
the
fan
and

pulley

4
Remove

the
retaining
nuts
and
withdraw
the
water

pump

See

Fig
B
3

lnstallation
of

the

pump
is
a

reversal
of
the
removal

procedures

rERMOST
ATTesting

The
thermostat
is
located
in
the
water
outlet

passage

See

Fig
B
4
To
remove
the
unit
drain
the
cooling

system

remove
the
radiator
hose
and
the
water
outlet
elbow
Take
out

the
thermostat

25

Page 28 of 171


The
thermostat
can
be

tested

by
suspending
it
with
a

thermometer
in
a

container
ftlled
with
water

Heat
the
water

gradually
and
stir
it
to

obtain
a
uniform

temperature
Maintain

a
constant

check
of
the

temperature
and

make
sure

that
neither
the
thermostat

or
thermometer

touch

the
sides
of
the
container
or
false

readings
will
be
obtained

The
thermostat
should

begin
to

open
at
a

temperature
of

820C

1
50C

179
60F
2

70Fj
and
should
be

fully

open

with
a
maximum
valve
lift
of
8
mm

0
315
in
at
a

temperature

of

950C
2030F

When

installing
the
thermostat

apply
adhesive
to

both
sides

of
the

gasket
before

refitting
the
water
outlet
elbow

RADIATOR
Removal

Drain

the

cooling

system
as

previously
described
and
remove

the
front

grille

2
Disconnect

the
radiator

upper
hose
lower

hose
and
hose
to

the
reservoir
tank

3
Remove
the

radiator

securing
bolts

and
lift
out
the

radiator

Fig
B
4
It
should
be
noted
that
cars
fitted

with
automatic
transmission

incorporate
a
transmission
oil
cooler

which
must

be
disconnected

Installation

is
a

reversal
of
the
removal

procedure
refill

the

system
as

previously
described

FLUID
COUPLING

The
water

pump
is

equipped
with

a
fluid

coupling
on

vehicles
fitted
with
an

air
conditioner

The
fluid

coupling

Limits

the
maximum
fan

speed
to

approximately
3000

r

p
ro

and
eliminates
noise

and
loss
of

power
at

high
engine

speeds

A
fault
in
the

coupling
may
be
caused

by
the

entry
of

foreign
matter

If
a
fault

developes
the

oupling
must
be

removed
and
dismantled

and
the
interior
cleaned

by

washing

in
solvent
The
condition
of
the
seal

and

bearing
must
be
care

fully
checked

and
the

coupling
replaced
if
the
latter

items
have

become
blackened
If
oil
leaks
occur

it
will
be

necessary
to

replace
the

water

pump
assembly
with
the

coupling
After

cleaning
the
unit
refill

with
11
5
cc
silicon
oil

using
a

suitable

syringe

TechnIcal

Data

Radiator

Radiator

cap
working
pressure

Radiator
core

heightxwidth

x

thickness

1400

and
1600
cc

engines
510

body

1600
and
1800
cc

engines
610

body
Corrugated
fin

type

0
9

kg

sq
cm

13Ib
sq
in

280x488x38mm

I
LOx
19
2x
1
49

in

360x502x32mm

l4
2x19

8x1
26
in

Thermostat

valve

opening

temperature

Standard

B20C
l
BOOF

Cold
climates
880C

1900F

Tropical
climates

76
50C
l700F

Max
valve
lift

Cooling
system

capacity

With

heater

Without
heater

Cooling
system

capacity

With

heater
Above
8
mm
0
31
in

6
8litres

1
75
US

gall

1
5

Imp
gall

6
4litres

1
75
US

gall

1
375

Imp
gall

1600

and
1800
cc

engines
610

body

6
5litres
l
7

US

gall

1
375

Imp
gall

6
0

Iitres
1
625
US

gall

1
375

Imp

gall
Without
heater

27

Page 30 of 171


IgnItIon
System

DESCRII
TION

IGNITION
TIMING

IGNITION
DISTRIBUTOR
Maintenance

ADJUSTING
THE
CONTACT
BREAKER
GAP

CENTRIFUGAL
ADVANCE
MECHANISM

VACUUM
ADVANCE
MECHANISM

IGNITION
DISTRIBUTOR
Removal
and

Dismantling

IGNITION
DISTRIBUTOR

Assembling
and
Installation

SPARKING

PLUGS

DESCRII
TION

The

ignition
circuit

comprises
the
distributor

ignition
coil

ignition
switch

spark
plugs
high
tension
lead
and
the

battery

See
Fig
C
1

The
Hitachi
distributor
is
shown
in

exploded
form
in

Fig

C
2

19niton

timing
is

automatically
regulated
by
the
distributor

centrifugal
advance
mechanism
or
vacuum
advance
mechanism

depending
upon
the

demand
made
on

the
engine

The
vacuum
advance
mechanism

operates
under
part

throttle

only
and
uses
intake
manifold

depression
to
advance
the

ignition
timing
When
the

engine
speed
is
increased
the
vacuum

is

inoperative
and
ignition
timing
is

regulated
by
the

centrifugal

advance
mechanism

The

centrifugal
advance
mechanism
uses
a

system
of

governor
weights
and

springs
which
turn
the
carn

assembly
in
on

anti
clockwise
direction
to

advance
the

ignition
timing
As
the

engine
speed
is
decreased
the

weights
move
back
and
allow
the

cam
to
return

thereby
retarding
the

ignition
timing

The

ignition
coil
is
an
oil
filled
unit

comprising
a
coil

around
which
is
wound
the

secondary
and

primary
windings
The

number
of
turns
in
the

primary
winding
provide
a

high
secondary

voltage
throughout
the

speed
range
The
resistor
is
automatically

by
passed
at
the
moment
of

starting
and
allows
the

ignition

coil
to

be

directly
connected
to

the

battery
This
applies
the

full

battery
voltage
to
the

coil
to

give
the

necessary
staTting

boost

When
the
starter
switch
is
released
the
current
flows
through

the
resistor
and
the

voltage
through
the
coil
is

dropped
for

normal

running
purposes

IGNITION
TIMING

The

ignition
timing
can

be

accurately
checked

using
a

stroboscopic
timing
light
which
should
be
connected
in
accor

dance
with
the
manufacturers
instructions

Make
sure
that
the

timing
marks
on
the
crankshaft

pulley

are
visible
if

they
are
not
visible
mark

them
with
chalk

or

white

paint
Each
mark

represents
a
50
division
of
the
crank

angle

Disconnect
the
distributor
vacuum

line
start

the

engine

and
allow
it
to
run
at
normal

idling
speed
or

slightly
below

Point
the

timing
light
at
the

timing
pointer
on
the
front
cover

Fig
C
3
The
crankshaft

pulley
groove
should

appear

to

be

stationery
and

aligned
with
the

pointer
on
the
front
cover

The

top
dead
centre
mark
is
located
at
the
extreme

right
as

shown
in
the
illustration
If
the

setting
requires
adjustment
the

distributor

flange
bolts
must
be
slackened
and
the
distributor

body
turned
clockwise
to
advance
or
anti
clockwise
to
retard

the

timing
See
Technical
Data
for

timing
settings

After

adjusting
the

timing
tighten
the
distributor

flange

bolts
and
recheck
the

timing

IGNITION
DISTRIBUTOR
Maintenance

Remove
the
distributor

cap
by
easing
away
the
two

clamps

and
examine
the

points
for

signs
of

burning
or

pitting
The

points
can
be
cleaned
if

necessary
using
a
fine

grade
of
oilstone

or
file
The
faces
of
the

points
must
be

completely
flat
and

parallel
and
all
abrasive
dust
removed
with

compressed
air
If

the

points
are

excessively
pitted
they
must

be
renewed
and

grease

applied
to
the

moving
contact

pivot
and
the
surface
of

the
cam

Ensure
that
the
distributor

cap
is

thoroughly
clean
both
inside

and
outside
A

contaminated

cap
will

promote
tracking

indicated

by
black
lines
and
caused

by
electrical

leakage
between

the

segments
on
the
inside
of

the

cap
Make
sure
that
the

carbon

button
is
not
worn
Both
the
distributor

cap
and
rotor

must
be
renewed
if

they
are
cracked
or

damaged

IGNITION
DISTRIBUTOR

Adjusting
the
contact

breaker

gap

To

adjust
the
contact
breaker

points
remove
the
distributor

cap
and

pull
the
rotor
off

the
cam

spindle

Turn
the

engine
until

the
heel
of
the
contact
breaker
arm

is

positioned
on
the
cam

lobe
the
contact

breaker

gap
is
set
to

the
maximum
in
this

position

Slacken
the

adjusting
screw

Fig
CA
insert
a
feeler

gauge

between
the

points
and

adjust
the
breaker

plate
until
the
re

quired
gap
of
0
45
0
55
mm
0
0177
0
0217
in

is
obtained

Tighten
the

adjusting
screw
and
recheck
the

setting
After

the
contact
breaker

gap
has
been

adjusted
check
the

ignition

timing
as

previously
described

The
tension
of
the
contact
breaker
should
be
0
5
0
65

kg

I
I
I
4
lb
Measure
the
tension
with
a

gauge
and
at
900
to

the
contact
breaker
arm

29

Page 32 of 171


CENTRIFUGAL
ADVANCE
MECHANISM

Special
equipment
is

required
to
check
the
advance

characteristics
It
is

possible
however
to

carry
out
an
exam

ination
of

the
caffi

assembly
and
the

weights
and

springs
to

ensure
that
the
earn
is
not

seizing

Lift
off
the
distributor

cap
and
turn
the
rotor
anti
clock

wise
When

the
rotor

is
released
is
should
return
to

the
fully

retarded

position
without

sticking
If
it

does
not
return
to
the

fully
retarded

position
it
will
be

necessary
to
check
for

dirt

and
weak

springs

It
should
be
noted
that

any
wear
in
the

mechanism
or

lose
of

spring
tension
will

upset
the
advance
characteristics
and

cause

unsatisfactory
engine
running
performance
over
the

speed

range

VACUUM
ADVANCE
MECHANISM

The

diaphragm
of
the
vacuum
advance

mechanism
is

mechanically
connected
to
the
contact
breaker

plate
The
rise

and
fall
of
inlet
manifold

depression
causes

the

diaphragm
to

move

the
contact
breaker

plate
to

advance
or

retard
the

ignition

If
the
vacuum

control
unit
fails
to

function

correctly
a

check
can
be
carried
out
to
ensure
that
the
contact
breaker

plate

is

moving
freely
and
that
the

three
steel

balls
at

the

top
and

oottom
of
the

plate
are

adequately
lubricated

Also
make
sure
that
the
vacuum
inlet

pipe
is
not
blocked

or

leaking
and
is

securely
tightened

Leakage
may
be
due
to
a

defective

diaphragm
which

should

be
renewed

along
with

any
other

faulty
part
of
the
mechanism

IGNITION
DlSTRffiUTOR
Removal

and

Dismantling

Disconnect
the

battery
leads

2
Disconnect
the

high
tension
lead
at

the
coil

3
Withdraw

the
high
tension
leads
from
the
distributor

cap

4
Detach
the
suction

pipe
from
the
vacuum
control
unit

5
Mark
the

position
of
the
distributor
and
rotor
remove
the

flange
mounting
bolts

and
withdraw
the
distributor

To
dismantle
the
distributor

proceed
as

follows

Take
off
the
distributor

cap
and
remove

the
rotor

Slacken

the
two
set
screws

holding
the
contact
breaker

upper
plate

Remove
the

primary
cable
terminals
and
withdraw
the
contact

set
from

the
distributor
Fig
C
S
Remove
the
vacuum
control

unit

c
Remove
the
two
screws
and
lift
out
the
contact

breaker

plate
detach
the

clamp
the
terminal
and
the
lead

To
remove
the
cam
take
out
the
centre
screw
as

shown
in

Fig
e
6
Drive
out

the
drive

pinion
retaining
pin
with
a
drift

and
hammer
Fig
e
and
remove
the

pinion
and
washer
Take

care
not
to
stretch
or
deform
the

governor
springs
when

detaching

them
from
the

weights

IGNITION
DISTRIBUTOR

Assembling
and

Installing

Assembly
is
a
reversal
of
the

dismantling
procedure

Lubricate
the

moving
contact

pivot
and
smear
the
lobes
of
the

cam
with
multi

purpose
grease

If

the
centrifugal
advance
mechanism
has
been
dismantled

the

governor
springs
and
cams
must
be
refitted
as

shown
in

Fig
e
8
The

governor
weight

pin
6
should
be
fitted
into

the

longer
of
the
two
slots

leaving
a
certain
amount
of

clearance

for
the
start

and
end
of
the

centrifugal
advance
movement

When

installing
the
distributor
take
care
to

align
the

body

and
rotor

with
the
marks
made
during
removal
The
rotor
must

be

positioned
in
its

original
location
it
will
turn

slightly
when

the
distributor
is
inserted
and
the

gear
teeth
mesh
Remove
and

replace
the
distributor
if

the
rotor
does
not

point
to
the

align

ment

mark
until
both
distributor

body
and
rotor
are
correctly

aligned

SPARKING
PLUGS

The

sparking
plugs
should
be

inspected
and
cleaned
at

regular
intervals
not

exceeding

every
10
000
km
6000
miles

New

sparking
plugs
should
be
fitted
at

approximately
20
000

km
12
000
miles

Remove
the

plugs
and
check
the
amount
of
electrode

wear
and

type
of

deposits
Brown
to

greyish
tan

deposits
with

slight
electrode
wear

indicate
that
the

plugs
are

satisfactory
and

working
in

the
correct
heat

range

Dry
fluffy
carbon

deposits
are
caused

by
too

rich
a
mixture

dirty
air
cleaner
excessive
idling
or

faulty
ignition
In
this

case

it
is
advisable
to

replace
the

plugs
with

plugs
having
a

higher
heat

range
Oily
wet
black

deposits
are
an

indication

of

oil
in

the
combustion
chambers

through
worn

pistons
and

rings
or
excessive
clearance
between
valve

guides
and
stems

The

engine
should
be
overhauled
and
hotter

plugs
installed
A

white
or

light
grey
centre

electrode
and
bluish
burned
side

electrode
indicates

engine
overheating
incorrect

ignition
timing

loose

plugs
low
fuel

pump
pressure
or
incorrect

grade
of
fuel

Colder

sparking
plugs
should
be
fitted

The

plugs
should
be
cleaned
on
a

blasting
machine
and

tested
Dress
the
electrodes
with
a
small
file
so
that
the
surfaces

of
both
electrodes
are
flat
and

parallel
Adjust
the
spark
plug

gap
to
0
8
0
9
mm
0
031
0
035
in

by
bending
the
earth

electrode
Refit
the

plugs
and

tighten
them
to
a

torque
reading

of
1
5
2
5

kgm
II
15Ib
ft

31

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 ... 60 next >