steering wheel DATSUN 610 1969 Workshop Manual

Page 52 of 171


Gearbox

GEARBOX
Removal

GEARBOX

Dismantling

GEARBOX
Inspection
and
Overhaul

GEARBOX

Assembling

THREE
SPEED
GEARBOX
GEARCHANGE
CONTROL
Removal
and

Adjusting

AUTOMATIC
TRANSMISSION

Gearchange
control

linkage

DESCRIPTION

Three

types
of
transmission
are
available
for
the
Datsun

models
covered

by
this
manual
Either
a
three

speed
gearbox

a
four

speed
gearbox
or
three

speed
automatic
transmission

can
be
fitted

The

three
and
four

speed
gearboxes
are

equipped
with

nchromesh
on
all
forward

gears
with
the
three

speed
gearbox

operated
by
a

steering
column

gearchange
system
and
the
four

speed
gearbox
by
a
floor
mounted

gear
lever

Two

types
of

synchromesh
are
used
in
the
four

speed

gearboxes
Either

Borg
Warner
or
Servo

types
may
be
fitted

The

gearboxes
differ

only
in
the

synchromesh
devices

whereby

the
baulk

rings
synchronize
the

coupling
sleeve
with
the
main

shaft

gear
on

the
Warner

gearbox
This
action
is

accomplished

by
a

synchrcrring
on
the
servo

gearbox

THREE
SPEED
GEARBOX
Removal

I
Jack

up
the
vehicle
and

support
it
on
stands

2
Disconnect
the
hand
brake
cable
at
the

equalizer
bracket

Slacken
the
two
exhaust

pipe
centre

clamps
and
turn
the

centre
section
of
the
exhaust
assembly
to
the
left
as
shown

in

Fig
F
2

3
Disconnect
the

propeller
shaft
from
the
rear
axle
drive

flange
by
removing
the
four

securing
bolts
Seal
off

the

gearbox
extension

housing
to

prevent
the
loss
of
oil
and

withdraw
the
shaft
to
the
rear

4
Disconnect
the

speedometer
drive
cable
from

the
adaptor

in
the

gearbox
extension

housing
Fig
F3

S
Disconnect
the
lower
shift
rods
from
the
shift
levers

Fig
F
4
and
remove
the
cross
shaft

assembly
from
the

gearbox
casing
Remove
the
clutch
slave

cylinder
from
the

clutch

housing
Fig
F
5

6

Support
the

engine
with

ajack
positioned
underneath
the

oil

sump
making
sure

that
the

jack
does
not
foul
the
drain

plug
A
block
of
wood
should
be

placed
between
the

sump

and

jack
to

avoid

damaging
the

sump

7
Remove
the
bolts

securing
the
rear

engine
mounting
to

the
crossmember
Position

ajack
under
the

gearbox
and

remove
the
bolts

attaching
the
crossmember
to
the

body

Lower
the

jack
under
the

engine
so
that
the

engine
is

tilted
to
the
rear
Remove
the
starter

motor
and
the
bolts

securing
the

clutch

housing
to
the

engine
Lower
the

jack

slowly
and
withdraw
the

gearbox
towards
the
rear
of
the

vehicle
THREE
SPEED
GEARBOX

Dismantling

Drain
the

gearbox
oil
Remove
the
dust
cover
release

the
retainer

spring
and
remove

the
withdrawal
lever

complete

with
release

bearing
from
the
clutch

housing
See
section

CLUTCH

Remove
the

gearbox
bottom
cover
the

speedometer
drive

pinion
assembly
and
the
rear
extension

housing
Take
out

the

cross
shaft

retaining
rings
and
unscrew
the
nuts

securing
the

operating
lever
lock

pins
Use
a
hammer
and

punch
to
drive

out
the

pins
and
withdraw
both
cross
shafts

Fig
F
6

Remove
the
fr
mt
cover

and
withdraw
the
counter
shaft

Lift
out

the
countersbaft

gear
cluster

together
with
the
needle

roller

bearings
and

spacers
Fig
F
7
Remove
the
reverse
idler

gear
shaft
lock
bolt
and
remove
the
shaft
and
the
idler

gear

Fig
F
B
Drive
out
the

pins
securing
the
selector
forks
to
the

selector
rods

Unscrew
the
interlock

plug
and
remove
the
detent
ball

and

spring
Fig
F
9
Remove
the
first
reverse

speed
and
second

third

speed
selector
rods
and
lift
out

the
selector
forks

Withdraw
the
main
shaft
assembly
and
the
drive
shaft

assembly
from
the

gearbox
See

Fig
F
1O
and
F
11

To
dismantle
the
mainshaft
release
the

circlip
from
the

front
of
the
mainshaft
as
shown
in

Fig
F
12
and
remove
the

second
and
third

speed
synchronizer
hub
and
second

speed

gearwheel
Fig
F
13
Remove
the

circlip
securing
the
speedo

meter
drive

gear
and
withdraw
the

gear
together
with
the
ball

and

spacer
Fig
F
14
Remove
the
mainshaft

bearing
using
a

press
Hold
the
rnainshaft
reverse

gear
and

tap
the
shaft
on
a

piece
of
wood
to
release
the
reverse

gear
assembly
together

with
the
first

speed
gearwheel

GEARBOX

Inspection
and
Overhaul

Oean
all

parts
thoroughly
and
examine
the

gearbox
case

and
extension
housing
for
cracks

If
the

joint
faces
are
burred
or

pitted
it

may
be

necessary

to

replace
the
units
if

repair
cannot
be
carried
out
satisfactorily

Remove
any
adhesive
which
remains
on

the
faces

The
rear
extension

housing
bush
should
be
renewed
if

worn

unevenly
Clean
the

bearings
and

dry
with
compressed
air

taking
care
that
the
bearings
do
not

spin
Turn
the
ball

bearings

to
make
sure

that
they
run

smoothly
and
without
play
Replace

the
needle

bearings
if
worn
or

damaged
in
any

way

It
is
advisable
to
renew

the
needle
roller

bearings
after

they

have
been
installed
for
a
considerable

period
as
it
is
difficult

51

Page 59 of 171


inter
lli

r@

ig
F
28
Re

oving
the
reverse
idler

gear
q

F
8
F
27
View
of

the
four

speed
gearbox
with

front
cover

removed

F
8
F
29

Removing
the
mainshaft

bearing

retainer
Fig
F
30

Withdrawing
the
mainshaft

assembly

CD

1ib
1

@
II

c

I

@
d
I

Q

n
j2

JJ

I
0

6

r

7

1

L
l
Hv

9

1l

ij07
u

1

1

v

1
ISland
2nd
selector

fork
5
Fork
rod

2
3rd
and
4th
selector

fork
6
Inter
ock

phmgtr

3
Fork
rod
7
Intulock

pin

4

Interlock

plunger
8
Revene
selLetor

fork

9
Fori
rod

10
Retaining
pin

Fig
F
33

Assembly
of
the
selector
forks
1
17uu

t
block

2

md
bruke

3

Synchro
rint
4
Anchor
block

5

Circlip

6
Band

b
ke
r

1
R
nt

shaft

SntJpring

3

R
idler

driving
geor
UT

4
Thrust
washer

5
1
hnat
washer

6

Idlergeor
18T

Fig
F
32

Reverse
idler

gear
F
8
F
31

Syncbromesh
assembly

3rd
4th

Rod

Fig
F
36

Removing
the

steering
wheel
Fig
F
34
Section

tIuough
the

gearbox
showing
the

inlerlock
mechanism

58

Page 60 of 171


THREE
SPEED
GEARBOX

GEARCHANGE
CONTROL
LINKAGE

Fig
F
35

As

previously
described
the
three

speed
gearbox
is

equipped
with
a

steering
column

gearchange
linkage
system

which

incorporates
a

collapsible
control
rod
when
combined

with
the

collapsible
type
of

steering
column

assembly

The
gearchange
linkage
can
be
removed
and

inspected
in

the

following
manner

Remove
the

steering
wheel

Fig
F
36
and
take
off
the

steering
column
shell
cover
Remove
the
turn

signal
and
lighting

switch

Fig
F
37
These
removal
details

can
also
be
found
in

the
section
STEERING
Remove
the
C
washer

I
in

Fig
F
38

and
the
washer
then
remove
the

upper

support
bracket

by

releasing
the

locating
bolt
and
screw
The
control
rod
insert
with

bush
and
return

spring
can
now
be
removed
Remove
the
snap

and

gear
lever

pivot
pin
and
withdraw
the

gearlever

Remove
the
cotter

pin
plain
washer

and

spring
washer
and

disconnect
the
shift
rods
from
the

gear
selector
levers

Fig
F
39

Unscrew
the
bolts
securing
the
lower

support
bracket
and
the

clamp
Remove
the

clamp
and

gear
change
lever
retainer

Remove
the
second
third

speed
selector
lever
the
lower

support
bracket
and
the
first
reverse
selector
lever
from
the

control
rod
Withdraw
the
control
rod
Disconnect
the

gear

change
rods

by
removing
the
cotter

pins
and
remove
the
cross

shaft
bracket
from
the
side
member
Withdraw
the
cross
shaft

assembly
Fig
F
40

Examine
the

components
for

signs
of
wear
and

damage

and
replace
if

necessary

Installation
is
a
reversal
of
the
removal

procedure
noting

the

following
points

Take
care
not
to
strike
or

apply
a
load
to

the
collapsible

type
of
control
rod
or

the
rod
may
be
damaged

The
rod
should
not

be
slack
in

the
axial
direction
when

installed
and
must
be
removed
if
slackness
is
detected
Coat

the

sliding
surfaces
with

grease
before

assembling
them
Acijusting

Set
the
gear
lever
to

the
neutral

position
and

temporarily

connect
the
trunnion
on
the
lower

support
bracket
to
each
rod

Fig
F41

Set
the
rod
on
the
lever
so
that
the
neutral

adjustment

grooves
on
the

upper
surface
of
the
lower
support
bracket
are

aligned
with
the

grooves
on
each
lever

When
the

adjustment
is

completed
operate
the

gear
lever

to
select
each
gear
and
make
sure
that
the
lever
can
be
moved

smoothly
and

positively

AUTOMATIC
TRANSMISSION

Gearchange
control
linkage

The
automatic
transmission

gear
change
control

linkage

can
be
removed
in
a

similar
manner
to
the
three

speed
gearbox

linkage
Carry
out
the

operations
previously
described
under

the
relevant

heading
as
far
as
the
removal
of
the
gear
lever
and

proceed
as
follows

Disconnect
the

upper
selector
rod
from
the
selector
lever

by
removing
the
cotter

pin
plain
washer
and
lock
washer
See

Fig
F
42
Remove
the

speed
range
position
plate
the

snap
ring

at
the
lower
end
of
the
control
rod
and
unscrew

and
remove

the
lower

support
bracket
Release
the

locking
screw
and
with

draw
the
selector
lever

assembly
Withdraw
the
control

rod

disconnect
the
selector
rods
and
remove
the
cross
shaft
bracket

and
cross
shaft

assembly
Clean
all

parts
and

repair
or
renew

any
part
which
is
worn
or

damaged
Installation
is
a
reversal
of

the
removal

procedure
noting
the

following
points

Coat
all

the
sliding
surfaces
with
chassis

grease
prior
to

assembling

Set
the
converter
side
lever
and
the

gear
lever
in
the
neutral

position
Install
the

upper
selector
rod
to

the
selector
lever
and

adjust
the

gear
position
plate
to

give
a
clearance
of
0
5
I
Omm

0
02
0
04
in
between
the
selector
lever

stop
pin
and
the

position
plate
The

adjustment
can

be
obtained

by
turning
the

selector
rod

adjusting
nuts

Finally
tighten
the
nuts
on

each

side
of

the
trunnion

S9

Page 84 of 171


Front

SuspensIon

DESCRIPTION

WHEEL
HUBS

WHEEL
BEARINGS

Adjusting

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY

DESCRIPTION

The
front

suspension
is
of
the
strut

type
with
the
coil

spring
and

hydraulic
damper
units
mounted
on
the

suspension

member
and
transverse
link

assembly
See

FigJ
1

Vertical
movement
of
the

suspension
is
controlled

by

the
strut

assembly
the
tension
rod
absorbs
the
forward
and

backward
movement
of
the
transverse
links
whilst
side
move

ment
of

the

body
is
controlled

by
the
stabilizer
rod
which
is

attached
to
the

body
and
transverse
links

WHEEL
HUBS
Removal

1
Jack

up
the
vehicle
remove
the
road
wheel
and
disconnect

the
brake
hose
at
the
strut
outer

casing
bracket
as

described
under
the

previous
heading
Plug
the

opened
end

of

the
hose
to

prevent
loss
of
fluid

2
Remove

the
brake

calliper
assembly
or
the
brake
drum

as
described
in

the
section
BRAKES

3
Remove
the

grease

cap
from
the
hub

by
tapping
lightly
at

the

joint
using
a
screwdriver
and
hammer

4
Withdraw
the
cotter

pin
from
the
wheel

bearing
locknut

and
remove
the
nut
Remove
the
wheel
hub

together
with

the
wheel

bearing
and
washer

Fig
J
2

On
cars
fitted
with
disc
brakes
the
hub
is
removed

complete

with
brake
disc

5
The
wheel

bearing
outer
race
can

be
removed
from

the
hub

using
a
drift
as
shown
in

Fig
I
3

WHEEL
HUBS

Inspection
and
Overhaul

Gean
the
hub

and

bearings
by
washing
in

petrol
Examine

the

grease
seal
and
make
sure
that
it
is
not
worn
or
cracked

renew
the

seal
if

necessary
Ensure
that
the
races
are
not

pitted

or
scored
rotate
them
and
check
for

signs
of
wear
and

play

A
sectional
view
of

the
wheel

bearing
assembly
is

given
in

Fig

14
to

provide
an
indication
of
the

points
to
be
checked

WHEEL
HUB
AND
BEARING
Installation

The
wheel

bearing
outer
race
can
be
refitted
with
a
suitable

drift
or

special
tool

ST
35310000

Fill
the
wheel
hub
and
the
hub

cap
to
the

positions
shown

in

Fig
J
5
with
multi

purpose
grease

Fill
the

spaces
between
the

bearing
rollers
and
the

lip
of

the

grease
seal
with
the
same

type
of

grease
Lightly
smear

the

spindle
shaft
and
threads
the

bearing
washer
and

bearing
lock
SPRING
AND
STRUT
ASSEMBLY

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT

FRONT
WHEEL
ALIGNMENT

ADJUSTING
THE
STEERING
ANGLE

nut

with

grease
and
assemble
the

parts
onto
the
wheel

spindle

Make
sure
that
dirt
and

foreign
matter
does
not
adhere
to

the

greased
surfaces

Adjust
the
wheel

bearings
as
described
under
the

following

heading

WHEEL
BEARINGS

Adjusting

The
wheel

bearings
can
be

adjusted
with
the
road
wheel

the
hub

cap
and
the

bearing
locknut
cotterpin
removed
as

previously
described

Tighten
the
wheel

bearing
locknut
to
a

torque
reading
of

3
0
3
5

kgm
21
7

25
3lb
ft
Turn
the
hub
several
times
in

each
direction
to

settle
the

bearing
and
then
retighten
the

bearing
locknut
to
the

specified

torque
reading

Slacken
the

bearing
locknut
to

an

angle
between
40
to
700

a

ay
from
the

previously
tightened
position
and

align
the
cotter

pin
hole
with

the
hole
in
the
spindle
Turn
the
wheel
hub
a
few

times
in
each
direction
and
then
measure
the

torque
required

to
cause

the
hub
to

turlI
A

spring
balance
should
be
used
as

shown
m

Rig
J

p
make
sure
that
the
brake

pads
are
not

binding

on
the
disc

type
of
brake
unit
and
check
that
the
force

required

to
turn

the
hub
is
within
the
following
fIgures

Wheel

bearing
rotation

starting
torque

1800ce
With
new

bearing
7

0

kg
cm
97
in
oz

1400
1600cc
With
new

bearing
8
0

kg
cm
111
2

in
oz

With
used

bearing
4
0

kg
cm

56
0
in
oz

Starting
torque
at

the
hub
bolt

lWth
new

bearing

ith
used

bearings
1
57

kg
3
46
lb

0
7

kg
1
541b

Adjust
the
locknut

slightly
if
the

fIgures
do
not
conform
and

replace
the

cotterpin

Refit
the
hub
cap
and
the
road
wheel

FRONT
AXLE
AND
SUSPENSION
ASSEMBLY
Removal

Jack

up
the
front
of
the
vehicle
and

place
stands
under

the
ront
side
members

Remove
the
road
wheels
and
the

splash
board

3
Disconnect
the
front
brake
hoses
and
remove
the
brake
hose

locking

springs
Withdraw
the

plates
and
remove
the
hoses

from
the
strut

assembly
Plug
the
ends
of

the
hoses
to

prevent
the
ingress
of
dirt
and
loss
of
fluid

4
Remove

the
cotter

pin
from
the
tie
rod
ball

joint
remove

83

Page 89 of 171


Removal
from
the
vehicle
can
be
carried
out
in
the

following

manner

Jack

up
the
front
of
the

vehicle
and
support
it
on
stands

2
Remove
the
stabilizer
bar
and
tension
rod
from

the

transverse
link
as

previously
described
Remove
the
knuckle

arm

fixing
bolts
and

separate
the
ball

joint
from

the
strut

asse
m

bly

3
Remove
the
transverse
link

mounting
bolt

Fig
J
16
and

detach
the
transverse

link
from

the
suspension
member

Remove
the
cotter

pin
from
the
knuckle
arm
castle
nut

and
remove
the
knuckle
arm
from
the
ban

joint
Unfasten
the

ball

joint
securing
nut
and
withdraw
the
ball

joint
from
the

transverse
link

r
The

bushing
can

be
withdrawn
from
the
transverse
link

using
a

press
and
the

special
tools
shown
in

Fig
J
17

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT

Inspection

The
transverse
link

bushing
is
shown
in
Fig
J
18
If
the

rubber
and
inner
tube

joints
are
melted
or
cracked
the

complete

transverse
link

assembly
must
be

replaced

The
ban

joint
cannot
be
dismantled
and
should
be

replaced

if
the
dust
cover

is

split
or
if
the
axial

play
of
the

joint
exceeds

1
0
mm
0
039
in
Oleck
the
axial

play
with
a

spring
balance

The
force

required
at

the

cotterpin
hole
pOsition
is
between

6
6
1
I
3

kg
15
25
lb

Lubricate
the
ball

joint
with
multi

purpose
grease
every

50
000
km
30
000
miles
or
two

year
whichever
comes
first

A
grease

nipple
must

be
installed
in

place
of
the

plug
See

Fig
J
19
and
the
old

grease
completely
replaced
If
a

high

pressure
grease
gun
j
used
make
sure
that
the

grease
is

injected

slowly
and
is
not
forced
out

through
the

joint
clamp

Remove
the
grease

nipple
and

replace
the

plug

TRANSVERSE
LINK
AND
BALL
JOINT
Installation

Installation
is
a
reversal
of

the
removal

procedure
noting

the
following
points

Remove
all
rust
from
the
transverse
link

bushing
interior

with
a

piece
of

emery
cloth
The

bushing
and
transverse
link

bore
should
be
wetted
with

soapy
water
so
that
the

bushing

can
be
more

easily
inserted

Fit
the

bushing
into
the
transverse

link

using
the

special

tool
ST
36700000

Adjust
the

bushing
inner
tubes
so
that
the

distances
from
the
transverse
link
collar
ends
are

equal
at
both

sides

88
Install
the
lower

ball

joint
on
the
transverse
link
and

tighten
the
installation
bolt
to
a

torque
reading
of
1
9

5kgm

14
18Ib
ft

Oean
the
knuckle
arm
and
the
ball

joint
stud
install
the

knuckle
arm
on
the
ball

joint
and

tighten
the
castle
nut
to
a

torque
reading
of
5
5
74

kgm
4o
53Ib
ft
fit
the

cotterpin

and
bend
it
over

Apply
sealing
agent
over
the
ball

joint
castle

nut
to

prevent
the
formation
of
rust

Locate
the
knuckle
arm
beneath
the
strut

assembly
and

tighten
the

mounting
bolts
to
a

torque
reading
of
4
9

63kgm

35
46Ib
ft
Make
sure
that
the
shorter
of
the
bolts
is
fitted

at
the
front

Install
the
transverse
link
on
the

suspension
crossrnember

and

temporarily
tighten
the
mounting
bolts
Make
sure
that
the

nut

faces
the
front
of

the
car
and
not

the
bolt
head
Fit
the

tension
rod
and
stabilizer
bar

Lower
the
vehicle
and
remove
the

jack
Tighten
the
trans

verse

link

mounting
bolts
to
a

torque
reading
of
9
0
10
0

kgm

65
72
Ib
ft
with
the
vehicle
unladen

FRONT
WHEEL
ALIGNMENT

The
castor

and
camber

angles
are

preset
and
cannot

be

adjusted
If
the

angles
do
not

conform
with
the

fIgures
in

Techni
al
Data
then
a
check
must
be
made
for

damage
to
the

uspenSlon
system
Wheel

alignment
is
carried
out
with
the

tyres

mflated
to
the
correct

pressures
and
with
the
vehicle
on
a
level

surface
The
toe

in
should
be
checked
and

adjusted
if

necessary

by
slackening
the
locknuts

FigJ
20

and

turning
the

track
rods

by
an

equal
amount

until
the
correct
toe
in
is
achieved
The

standard

length
between
the
ball

joints
is
309
5
mm

12
19
in

for
the
1400
and
1600
cc
models
and
105
5
mm
4
14
in
for

the
1800
cc

models

ADJ
USTING
THE
STEERING
ANGLE

The

steering
angle
at
the
full
lock

positions
must
be

checked
with
the
front
wheels

placed
on
a
turntable

Adjust

ment
can
be
made

changing
the

length
of

the
stopper
bolt

shown
arrowed
in

FigJ
21
The
clearance
between
the

tyre

and
tension
rod
should
be
30
mm

1
181
in
or
more
and
can

be
increased
if

necessary
by
extending
the
length
of
the

stopper

bolt
The
bolt

length
should
not
exceed
27
5
mm
1
083
in

when
the
adjustment
is

completed

Steering
angle
figures
are

given
in
Technical
Data

at
the

end
of
this
section

Page 90 of 171


TechnICal
Data

FRONT
WHEEL
ALIGNMENT

1400
and
1600
cc
models

Sedan
Toe
in
mm
in
Camber
Castor

R
H
Drive
3
to
6
0
118
to
0
236
35
1035

LH
Drive
3
to
6
0
118
to
0
236
25
1035

Hard

suspension
3
to
6
0
118
to
0
236
25
1025

R
H
Drive
3
to

6
0
118
to

0
236
30
1020

L
R
Drive
exc

4
to

7
0
158
to

0
276
35
1040

U
S
A
and

Canada

U
S
A
and
Canada
2
to

5
0
079
to

0
197
10
1005

Hard

suspension
3
to
6
0
118
to
0
236
20
1005
Steering
angle

In
Out

380
31040

Wagon

1800cc
Models
610

Body

Wheel

alignment
Vehicle

unladen

Applied
model
Camber
Castor

Kingpin
inclination
Toe
in
Side

slip

Standard
1005
to
2035
50
to
2020
6015
to

7045
7
to
10
o
to

3

R
H
drive

Suspension
0
276
to

0
394
0
to

0
118

Sedan

Hard
2
1000
to
2030
55
to
2025
6020
to
7050
6
to
9
o
to
3

Hardtop

0
236
to
0
354
0
to
0
118

Standard
1005
to
2035
40
to
2010
6015
to
7045
7
to

10
o
to
3

L
H
Drive

Suspension
0
276
to
0
394
0
to
0
118

Sedan

Hardtop

Hard
2
1000
to
2030
45
to
2015
6020
to
7050
6
to
9
o
to
3

Suspension
0
236
to

0
354
0
to
0
118

Standard
1000
to
2030
40
to
2010
6020
to
7050
6
to
9
o
to
3

Suspension
0
236
to

0
354
0
to
0
118

LH
Drive

Sedan

Hardtop

Hard
2
55
to
1025
45
to
2015
6025
to

7055
5
to
8
I
to
2

Suspension
0
197
to

0
315
0
004
to
0
079

Standard
1000
to

2030
45
to
2015
6020
to
7050
6
to

9
o
to
3

R
H
Drive

Suspension
0
236
to
0
354
0
to

0
118

R
H
Drive

Station

Wagon

Hard
2
1005
to

2035
45
to
2015
6015
to
7045
7
to
10
o
to
3

Suspension
0
276
to
0
394
0
to

0
118

Standard
1010
to
2040
55
to
2025
6010
to
7040
8
to

11
I
t04

L
H
Drive
Suspension
0
315
to
0
433
0
004
to
0
158

Station
Wagon

Hard
2
1005
to
2035
45
to

2015
6015
to
7045
7
to
10
o
t04

Suspension
0
276
to
0
394
0
to
0
158

Standard
1005
to
2035
50
to
2020
6015
to
7045
8
to
11
I
t04

R
H
drive

Suspension
0
315
to
0
433
0
004
to
0
158

Van

Standard
1015
to
2045
100
to
2015
6005
to
7035
10
to
I3
2
to
5

L
H
drive

Suspension
0
394
to
0

512XO
079
to
0
197

Van

I
for

U
S
A
Canada

2
Optional

parts

89

Page 92 of 171


SteerIng

DEsn
IPTION

S
i
EERlNG
MaintenaDce

STEERING
WHEEL
AND
STEERING
GEAR

Removal
and
Installation

STEERING
GEAR

Dismantling

STEERING
GEAR

Inspection
and
Adjustment

DESCRIPTION

A
worm
and

recirculating
ball

type
steering
system
is

fitted
to

the
vehicle
the

component
parts
of
the

steering
gear

are
shown
in

Fig
K
I

The

steering
linkage
consists
of
the
centre
tie
rod

pitman

ann
idler
arm
outer
tie
rods
and
the
knuckle
arms
as
shown

in

Fig
K
2

A

collapsible
steering
column
assembly
can
be
fitted
to
the

vehicle
to

protect
the
driver
from

injury
in
a
head
on

collision

Details
of
this

type
of

assembly
are

given
under
the

appropriate

heading

STEERING
Maintenance

O1eck
the
oil

level
in
the

steering
box
every
10
000
km

6
000
miles
and

top
up
with
recommended
lubricant
if

necessary

Grease
the

steering
linkage
every
50
000
km
30
OOO

miles
It
will
be

necessary
to

replace
the

plug
in
the
tie
rod
ball

joints
with
a

grease
nipple
for
this

operation
as

previously

described
in
the
section
FRONT
SUSPENSION

Use
a

grease
gun
to

completely
replace
the
old

grease
with

new

grease
making
SUfe
that
the

grease
is
not
forced
from
under

the
cover

clamp
if
a

high

pressure
gun
is
used

STEERING
WHEEL
AND
STEERING
GEAR
Removal

1
Take
out
the

retaining
bolts
and
remove
the
horn
ring

remove
the

steering
wheel
nut

Fig
K
3
and

pull
off

the

steering
wheel
The
special
tool
ST
27180000
should
be

used
if
available

2
Disconnect
the

battery
leads
remove

the
steering
column

shell
covers

and
the
turn

signal
and

lighting
switch
assembly

3
On
vehicles
fitted
with

steering
column

gear
change

assemblies
the

gear
lever
must
be
removed
from
the

control
rod

assembly
Unscrew
the
retaining
boltg
and

disconnect
the

gear
lever

4
Remove
the
bolts
from
the

steering
column

upper
clamp

Fig
K
4
and
the
bolts

holding
the
lower

plate
Fig
K
5

5
If
the
vehicle
is
fitted
with

steering
column
gear
change

remove
the

cotterpin
from
the
trunnion
and
detach
the

gearchange
rod
and
selector
rod
from
the

change
lever
and

selector
lever
STEERING
GEAR

Assembly
and

Adjustment

COLLAPSIBLE
STEERING

COLLAPSIBLE
STEERING
Removal
and

Inspection

COLLAPSIBLE
STEERING
Installation

STEERING
LINKAGE

6
Remove
the
bolts

securing
the

steering
gear
housing
to

the
car

body
Fig
K
6
and

pull
the
steering

gear
towards

the

engine
compartment

Remove
the
gearchange
control
from
the

steering
gear

assembly
as
described
in
the
section
GEARBOX

STEERING
WHEEL
AND
STEERING
GEAR
Installation

Installation
is
a
reversal
of
the
removal

procedure
When

the
installation
has
been
completed
make
sure
that
the

steering

wheel
can

be
turned

smoothly
and
is
correctly
aligned
The

free
travel
of
the

steering
wheel
should
be
between
2S
30mm

0
9B
1
18
in
Tighten
the

steering
wheel
locknut
to
a

torque

reading
of
4
0
5
0

kgm
29
36Ib
ft
and
the

steering
column

upper
clamp
and
plate
bolts
to
a

torque
reading
of
1
3
1
8

kgm

94
1
3
Ib
ft

Ensure
that
the

steering
box
is
topped
up
to
the
correct

level
with
recommended
lubricant

STEERING
GEAR

Dismantling

Remove
the

pitman
arm

retaining
nut

and
pull
out
the
arm

The

special
puller
ST
27140000
should
be

used
if
available

Remove
the
drain

plug
from
the

steering
gear
housing
and

drain
the
oil

Slacken
the

adjusting
screw
nut
and
turn
the
sector
shaft

adjusting
screw
a
few
turns
in
the
anti
clockwise
direction

Remove
the
sector

shaft
cover

retaining
bolts
and

pull
the

sector
shaft
cover
and
sector
shaft
from
the
gear
housing
Fig

K
7

Remove
the
bolts

securing
the
column

jacket
to
the

gear

housing
and

carefully
withdraw
the
main
column
jacket
assembly

from
the
gear
housing
Fig
K
B

NOTE
The
ball
must
not
be
allowed
to
run
to
either
end
of

the
worm
or
the
ends
of
the
ball

guides
will
be

damaged

Pull
the
column
assembly
from
the
column
jacket
Remove

the
sector
shaft
oil
seal
and
take
out
the
rear

bearing
outer

race

from
the
column

jacket
with
a
suitable

puller

Withdraw
the

bearing
inner
races
from

the
front
and
fear

worm

bearings

Remove
the
column
shaft

bearing

91

Page 93 of 171


inte
r
E
lliIl

@
Pl

r

I

I

ill

i
1

Steeri
K
wh
l

2
Column

clamp

3

Steerinx
column

4

LoWf
T
moun

ins
f
Jurge

5
Rubber

coupling

6
St

ring
galf

7

Drop
arm

8
Centre
tie
rod

9
Outer
tie
rod

10
Idler

ann
fit

@

@

Fig
K
l
The

steering
system

components

Fig
K
3

Removing
the

steering
wheel
nut

FIg
K
S

Steering
column
cover

plate

92
y
AA

11

N
E
l
@

@
@I

@

@
J

Drop
Urn

2
Centre
tie
rod

J
Outer
tie
rod

4
Tie

rod
outer
ocket

5
Ti
rod
inner

rocket

6
ldkr

arm

auembly

Fig
K

2
The

steering

linkage
component

Fig
KA

Steering
column

upper
attachment

bolts

Fig
K
6

Removing
the

steering
gear

mounting

bolts

Page 94 of 171


STEERING
GEAR

Inspection
and

Adjustment

Thoroughly
clean
all

parts
and
examine
them
for

signs

of
wear
or

damage
Replace
any
comIK
nent
found
to
be
un

satisfactory

It
is
advisable
to
renew
the
assemblies
if
the

steering
column

or
ball
nut

assembly
is
defective
as

the

adjustment
procedures

required
to
overhaul
the
units
are
rather
involved

The

dismantling
and

adjustment
procedures
for
the
ball

nut

assembly
can
be
carried
out
in

the
following
manner
if
it

is

decided
that
overhaul
procedures
are
to

be
carried
out

Ball
nut

Remove
the
ball

guide
tube

clamp
withdraw
the

guide

tubes
from
the
ball
nut
and
collect
the
steel
balls

Turn
the
nut

upside
down
and
rotate

the
steering
column

backwards
and
forwards
until
all

36
steel
balls
have

dropped

out
of
the
ball
nut
Pull
the
ball

nut
from
the
column

Inspect
the
ball

guide
tubes

and
make
sure

that

they
are

not

damaged
Pay
particular
attention

to
the
ends
of
the
tubes

that

pick
up
the

balls
from
the
helical

path
Renew
the
tubes
if

they
are

unsatisfactory
Check
the
steel
balls
and

the
ball
nut

for
wear
and

replace
the

complete
unit
if

necessary

Assemble
the
ball
nut
on

the
worm
with
the
ball

guide

holes

upwards
Drop
18
balls
into
each
of

the
two
holes
on
the

same
side
of
the
ball
nut

until
all
36
balls
are
installed
The

column
should
be

gradually
turned

away
from
the
hole

being

filled
and
if
the
balls
are

stopped
by
the
end
of
the
column
hold

down
those

already
installed
with
a

clean
rod
or

punch
while

turning
the
column
several
times
in
the
reverse
direction
The

filling
of
the
circuit
can
then
be
continued
but
it

may
be

necessary
to
turn
the
column
backwards
and
forwards

holding

the
balls
down
first
in
one

hole
and
then
the
other
to
close
the

spaces
and

completely
fill
the
circuit

Place
the

remaining
22
balls
in
the
ball

guide
halves
11

balls
for
each
half
Fit
the
other
half
of

the

guide
tube
to
each

f11led
half

hold
the
two
halves

together
a
ld

plug
each

open
end

with
vaseline
to

prevent
the
balls

falling
out

Push
the

guide
tubes
into
the

ball
nut

guide
holes
and

assemble
the

guide
tube

clamp

Inspection

Oteck
the
axial

clearance
between
the
ball
nut
and
the

balls
If
the
clearance
exceeds
0
08
mrn
0
003
in
the

complete

unit
must
be
replaced
Inspect
the

gear
teeth
of
the

sector

shaft
for
wear
or

damage
Replace
any
worn
or

imperfect

bearings
Examine
the

steering
column
shaft
for

straightness

and
check
that
the
maximum
deflection
does
not
exceed
0
2mm

0
008
in
at

point
C
in

Fig
K
9
when
the
shaft

is

supported

at

points
A
and
B
Check
the
sector
shaft
and

steering

column
shaft
serrations
for
wear
Renew
the

parts
as

necessary
STEERING
GEAR

Assembly
and

Adjustment

Grease
the

lip
of
the
oil
seal
and

press
it
into
the

housing

Insert
the
column

assembly
into

the
column

jacket
and
fit

the
worm

bearing
shims
to
the

gear
housing
Install
the

flange

securing
bolts
and

tighten
them
to
a

torque
reading
of

1
8

2
5

kgm
13
18lb
ft
If
a

new
column

bearing
assembly
is

fitted
it
must
be
filled
with

bearing
grease
and
cemented
to
the

column

The

preload
of
the
worm

bearing
can
be

adjusted
by

altering
the
thickness
of
the
worm
bearing
shim
Four
shim

thicknesses
are
available
in
sizes
of
0
76
0
254
0
127
0
050mm

0
0300
0
100
0
005
in
0
002
in

This

adjustment
check
is
carried
out
without

the
sector

shaft
fitted
and
with
the
worm

bearings
oiled

Install
the

steering
wheel
as
shown
in

Fig
K
9
use
a

spring

balance
as
indicated
to
check
that
the
force
required
to
turn

the
wheel
is
between
4
0
8
0

kg
cm
56
l120z

inch

Select
a
suitable
shim
from
the
sizes

given

Assemble
the
selector
shaft

adjuster
with
a
shim
into
the

sector
shaft
Measure
the
end
clearance
of
the

adjuster
with
a

feeler

gauge
as

shown
in
Fig
K
1
O

The
correct
clearance
is
0
01
0
03mm
0
0004
O
0012in

and
can
be

adjusted
by
varying
the
thickness
of
shim
Four

thicknesses
of
shim
are
available
as

follows

1
57
mm
0
0618
in

1
55
mm
0
0610
in

1
52
mm
0
0598

in

1
50
mm
0
0591
in

To
assemble
the
sector
shaft
into
the
gear
housing
rotate

the
column

by
hand
until
the
ball
nut
is
at
the
central

position

of
its
travel
so
that
the
centre
tooth
of
the
sector
shaft
enters

the
centre
tooth

space
of

the
ball
nut
Fit
a
new

gasket
and

push

the

sector
shaft
cover

and
sector
shaft
into

place

Ensure
that
a
certain
amount
of

play
is

present
between

the
rack
and
sector
teeth
before

tightening
the
cover

bolts
to

a

torque
reading
of
1
5
2
5

kgm
10
9
18
llb
ft

Temporarily
lock
the

adjusting
screw
with

the
locknut

Move
the
sector
shaft
several
times
from

the

pitman
arm
side

to
make
sure
that
it
turns

smoothly

Connect
the

pitman
arm
to
the
sector
shaft

taking
care

that
the

alignment
marks
on

the
arm
and
shaft
coincide

Adjust
the
backlash
with

the
steering
in

the
central

position
using
a
dial

gauge
as
shown
in

Fig
K
II
Turn
the

adjusting
screw
with
a
screwdriver
until
the
amount
of
free

movement
at
the

top
of
the

pitman
arm
is

within
O
lmm

0
0039
in
at
a

radius
of

127
mm
5
0
in
Lock
the

adjusting

screw
with
the
locknut
Fig
K
12
and
recheck
the
free
move

ment

Fill
the

steering
gear
housing
with
the
correct
amount
of

recommended
lubricant

Refit

the

steering
gear
to
the
vehicle
as

previously
described

Make
sure

that
the
steering
wheel
is

correctly
aligned
and
that

93

Page 96 of 171


the

system

operates
smoothly

COLLAPSIBLE
STEERING

The

collapsible
steering
column
is

designed
so
that

compression
occurs
when
the
vehicle
is
involved
in
a

head
on

collision
See

Fig
K
13

Two
forces
can
be
considered
when
a
collision
of
this

type
takes

place
These

being
the

primary
force
in
which
the

forward
motion
of
the
car
is

suddenly
halted
and
the

secondary

force

as
the
driver
continues
in

a
forward
direction
onto
the

steering
wheel

and
column
The

collapsible
column
is

designed

so
that
it
does
not
move
to
the
rear
i
e
into
the

driving
com

partment
when

the

primary
force
or
forward

motion
of
the
car

is

suddenly
halted
When
the

secondary
force
takes

place
as

the
driver
is
thrown
forward

the
column

jacket
gradually

collapses
and

partially
absorbs
the
amount
of

impact

The

collapsible

type
of
column
is
no
more

susceptible
to

damage
than
an

ordinary
column
when
it

is
installed
in
the

vehicle
however
when
a

collapsible
column

is
removed
it
must

be

carefully
handled
A

sharp
blow
on
the
end
of
the
shaft
or

gear
change
levers

dropping
or

leaning
on

the

assembly
can

cause

the
column

jacket
to
bend

particularly
at
the
bellows

part
which
absorbs
the
shock

The

steering
movement
is
transmitted

by
the

lower
shaft

and

upper
tube
The
lower
shaft
exterior
and

upper
tube

interior
are

tightly
fitted

together
with
four

plastic

pins
com

pletely

eliminating

any
gap

When
a
collision
occurs
the

plastic
pins
shear

and
the
lower

shaft
enters

the

upper
tube
this
action
will
cause
the
shaft
end

to

spread
and
the
lower
shaft
cannot

then
be
withdrawn
unless

an

extremely
high
load
is

applied

The
shaft
is

prevented
from

moving
towards
the
drivers

compartment
when
the

primary
force

takes

place
i

e
when

the
forward
motion
of
the
vehicle
is

suddenly
halted

by
the

three

stoppers
on

the

jacket
tube
The

steering
lock
collar

mounted
to
the
shaft
contacts

the
stoppers
and

prevents
a
rear

ward
movement

A
part
of

the

jacket
tube
is

specially
formed
to
act
as
an

energy
absorbing

part
of
the

collapsible

steering
The

upper

and
lower

guide
tubes

joined
with

polyacetal
resin
are

inserted

into
the
mesh
tube
so
that

energy
generated
by
a

collision
can

be
absorbed
as

smoothly
as

possible
with
a

low
load

The

steering
column

clamp
shown
in

Fig
K
14
is
secured

to

the

jacket
tube
and

body
by
bolts
with
two
aluminium

slidings
blocks
set
to
the

body
by
plastic
pins
An

impact
from

the
drivers
side
causes

the

plastic
pins
to
shear

and
leave
the

sliding
block
in
the
column

clamp
side

allowing
the

clamp
to

move
with
the

jacket
as
it

collapses

COLLAPSffiLE
STEERING
Removal

and

Inspection

Steering
Wheel

I
Disconnect
the

battery
earth
cable

2
Disconnect
the
horn

wiring
and

remove
the
horn

pad
3
Remove
the

steering
wheel
nut

using
the

special
puller

ST

27180000

Eig
K
15
Remove
the
column
shell
covers

Fig
K
16
and
the
turn

signal
switch

assembly

Column
shaft

4
Remove
the
cotter

pin
and
detach
the
shift

rod
Automatic

Transmission
Remove
the
bolt

securing
the
worm
shaft

and

coupling
Fig
K
17

5
Take
out

the
bolts

securing
the
column
tube

flange
to
the

dash

panel
and
the
bolts

securing
the
column

clamp
With

draw
the

steering
column
shaft
towards
the
car
interior

A
careful
check
should

be
made
to
ensure

that
the

assembly

is
not

damaged
in

any
way

Pull
out
the
lower
shaft

tap
the
column

clamp
towards

the

steering
wheel
end
and
remove

the
screws

securing
the

upper
and
lower
tubes

Separate
the

upper
and
lower

tubes

Remove
the

snap
ring
from

the

upper
end
of
the
column

pull

the

upper
jacket
down
and

separate
it
from
the

upper
jacket

tube

Take
care
not
to

damage
the

bearing
Remove
the

plain

washer

and

spring
from
the

upper
shaft

Check
the

column

bearings
for

damage
and
lack
of
smooth

ness

Apply
multi

purpose
grease
to
the

bearing
if

necessary

Inspect
the

jacket
tubes
for

signs
of
deformation
renew
the

tubes
if

necessary
Check
the
dimension

A
in

Fig
K
1B
to

make
SUfe
that

the

jacket
has
not
been
crushed

Check
the

dimension
B

Fig
K
14

COLLAPSffiLE
STEERING

Assembly
and
Installation

Assembly
is
a
reversal
of

the

dismantling
procedure
noting

the

following

points

Lubricate
the
column

bearing
the

spring
and
dust
seal

sliding

parts
Ensure
that
the

upper
shaft

steering
lock
hole
and

the

steering
lock
are

correctly
positioned
Fig
K
19
When

assembling
the
lower
shaft
take
care
to

coincide
the
notch
on

the
universal

joint
with

the

punched
mark
on
the
shaft

Coat
the

upper
and
lower
shaft

serrations
with
multi

purpose

grease
Set
the

steering
in
the

straight
ahead

position
and
fit

the

column
shaft
to

the

steering
gear
See

Fig
K
20
Insert
the

column

through
the
dash
board

and
install
it
to
the

gear
so
that

the

punch
mark
at
the

top
of

the
shaft
is
forced

upwards
Slide

the

universal

joint
to

the

steering
gear
and

temporarily
install

the
column

clamp
6
Fit

the
lower
cover

flange
7
and

tighten

the
column

clamp
bolts

Check
the

steering
wheel

alignment
with
the
wheels
in
the

straight
ahead

position
If
the

steering
wheel

and

steering
lock

are

misaligned
by
more
than
35
mm

I
4
in
from
the
vertical

position
femove

the

steering
wheel
and
re
centre

it

STEERING

LINKAGE
Removal

Jack

up
the
front
of
the

vehicle
and

support
it
on

stands

2
Remove
the

cotterpins
and
castle
nuts

fastening
the
tie
rod

ball

joints
to
the
knuckle
arms

95

Page:   1-10 11-20 21-30 next >