DODGE RAM 1999 Service Repair Manual
Page 1471 of 1691
signal to the transmission solenoid assembly for transmission
temperature sensor.
Generator Field
Engine Control Module (ECM) provides output signals to
generator field for regulating charging system voltage at 12.9-15.0
volts. ECM contains an internal electronic voltage regulator for
controlling the charging system voltage.
Generator Light
If Engine Control Module (ECM) senses a low charging system
condition, generator light on instrument panel (if equipped) will be
turned on. Generator light may also come on momentarily at low idle
speed when all accessories are on.
Malfunction Indicator Light (MIL)
The MIL is located on the instrument panel, just below
tachometer and may also be referred to as the CHECK ENGINE light. MIL
comes on for a short period and then goes off as a bulb and wiring
circuit test each time ignition switch is turned to the ON position.
If Engine Control Module (ECM) receives an incorrect signal or
receives no signal from certain sensors or components, ECM will turn
on the MIL to warn the driver that a malfunction exists in the
electronic system.
Overdrive Indicator Light (A/T Models)
Engine Control Module (ECM) delivers output signal to operate\
transmission overdrive indicator (O/D OFF) light in accordance with
position of the transmission overdrive switch. If overdrive is turned
off with transmission overdrive switch, transmission overdrive
indicator light will be turned on. Transmission overdrive indicator
light is located on instrument panel, just below the speedometer.
Tachometer
Engine Control Module (ECM) delivers output signal to operate\
tachometer on instrument panel to indicate engine RPM.
Transmission Overdrive Solenoid (A/T Models)
Engine Control Module (ECM) delivers output signal to
transmission overdrive solenoid for controlling transmission overdrive
shifts. Transmission overdrive solenoid is located on transmission
valve body.
Transmission Relay (A/T Models)
Transmission relay may be referred to as transmission control
relay or transmission 12-volt supply relay. Transmission relay ground
circuit is controlled by the Engine Control Module (ECM). When ground
circuit is completed, transmission relay supplies voltage to solenoid
assembly on the transmission. Transmission relay is located in power
distribution center at driver's side front corner of engine
compartment, near the battery.
Transmission Temperature Warning Light (A/T Models With
Heavy-Duty Transmission)
Engine Control Module (ECM) delivers output signal to turn on\
transmission temperature warning light if transmission fluid
temperature is determined to be greater than 280
F (138 C) by the
transmission temperature sensor. Transmission temperature warning
light is located on instrument panel, just below the tachometer.
Transmission Torque Converter Clutch Solenoid (A/T Models)
Engine Control Module (ECM) delivers an output signal to
operate transmission torque converter clutch solenoid for torque
Page 1472 of 1691
converter lock-up. ECM uses various input signals such as transmission
temperature, output shaft speed, central module timer, engine speed,
APPS and brake switch position to determine operation of transmission
torque converter clutch solenoid. Transmission torque converter clutch
solenoid is located on transmission valve body.
FUEL SYSTEM
FUEL DELIVERY
Fuel Injection Pump
A camshaft-driven Bosch VP44 in-line fuel injection pump is
used to supply high pressure fuel to each fuel injector in precise
metered amounts at the correct time. See Fig. 2. The pump is timed to
camshaft gear. Pump output is controlled by integral Fuel Pump Control
Module (FPCM). Because of electronic control, idle speeds and pump
timing are not adjustable. See ON-VEHICLE ADJUSTMENTS - TRUCKS -
DIESEL article. FPCM can operate engine if crankshaft position sensor
signal does not exist. Fuel injection occurs near completion of
compression stroke for each cylinder.
Fuel injection pump contains an overflow valve which allows
excess fuel to return to the fuel tank. Overflow valve is located on
side of fuel injection pump and is used to attach the fuel return line
to the fuel injection pump.
Fuel Transfer Pump
Fuel transfer pump is located on driver's side of cylinder
block, above starter. See Fig. 2. A 12 volt, 12-amp electric vane-type
pump supplies low fuel pressure from fuel tank, through fuel
heater/fuel filter/water separator to fuel injection pump. Fuel
transfer pump contains internal check valves to prevent fuel from
bleeding back into fuel tank during engine shutdown. Pump will self
prime with ignition on for 2 seconds. Pump has 2 modes, 100 percent
duty cycle (10 psi) when engine is running and 25 percent duty cycle
(7 psi) when engine is cranking.
Fuel Filter/Water Separator
Fuel filter/water separator, located on left side of engine,
protects injection pump by removing water and contaminants from fuel.
See Fig. 2 . Assembly also includes fuel heater and Water-In-Fuel (WIF)
sensor.
In-Tank Fuel Filter
A separate in-tank fuel filter is attached to bottom of fuel
tank module. In-tank fuel filter does not require service under normal
conditions.
FUEL CONTROL
Fuel Injector
Fuel injector delivers atomized fuel into the cylinder.
During fuel injection, fuel pressure from fuel injection pump
increases to fuel injector opening pressure or pop pressure of 4500
psi (316 kg/cm
). This is the pressure required to lift fuel injector
needle valve from its seat, allowing fuel to be injected into the
cylinder. Once fuel pressure decreases to less then the opening
pressure, a spring forces needle valve closed and stops fuel injection
into the cylinders. Each fuel injector is connected to injection pump
by a high pressure (as much as 17,405 psi) line.
Fuel Injection Timing
Pump output is controlled by integral Fuel Pump Control
Page 1473 of 1691
Module (FPCM). Because of electronic control, pump timing is not
adjustable. See ON-VEHICLE ADJUSTMENTS - TRUCKS - DIESEL article.
FUEL FILTER/WATER SEPARATOR
Fuel filter/water separator is located on left side of engine
and contains fuel heater, Water-In-Fuel (WIF) sensor and drain valve.
See Fig. 2 . The WIF sensor delivers an input signal to Engine Control
Module (ECM) when water exists in fuel filter/water separator. ECM
will then turn on WATER-IN-FUEL warning light. WATER-IN-FUEL warning
light is located on instrument panel, just below tachometer. The
WATER-IN-FUEL warning light informs the operator to drain water from
fuel filter/water separator to prevent damage to fuel system
components. Water may be drained from fuel filter/water separator by
using drain valve on fuel filter/water separator.
FUEL HEATER
Fuel heater is used to prevent diesel fuel from waxing during
cold temperatures. Fuel heater is located in fuel filter/water
separator. See Fig. 2. Fuel flows from fuel tank to fuel transfer pump
and then to fuel filter/water separator. Fuel heater contains a fuel
heater temperature sensor that senses the fuel temperature. When
temperature is less than 37-53
F (3-12 C), fuel heater temperature
sensor allows current to flow to the fuel heater to warm the fuel.
When temperature is more than 67-83
F (19-28 C), fuel heater
temperature sensor turns off the current flow to the fuel heater.
Voltage to operate fuel heater is provided from ignition switch,
through fuel heater relay and to fuel heater. Fuel heater and fuel
heater relay are not controlled by Engine Control Module (ECM).
EMISSION SYSTEMS
INTAKE MANIFOLD AIR HEATER SYSTEM
Intake manifold air heater is used to warm intake air during
cold starting conditions. Heater system consists of 2 relays and 2
grid heaters installed on top of intake manifold. See Fig. 5.
Engine Control Module (ECM) energizes intake manifold air
heater relays to provide voltage to intake manifold air heater before
and after starting depending on input signals from intake manifold air
temperature sensor, engine speed sensor and vehicle speed. Intake
manifold air heater relays are not energized when intake manifold air
temperature is greater than 59
F (15 C) or during engine cranking.
Intake manifold air heater relays are mounted on left inner wheelwell,
below left side battery. See Fig. 6.
Intake manifold air temperature sensor monitors intake
manifold air temperature and delivers an input signal to ECM for
controlling intake manifold air heater. Intake manifold air
temperature sensor is located in intake manifold. See Figs. 2 and 4.
SELF-DIAGNOSTIC SYSTEM
DATA LINK CONNECTOR
The Data Link Connector (DLC) is a 16-pin connector located
at lower edge of driver's side of instrument panel, just above the
accelerator pedal. The Engine Control Module (ECM) contains a self-
diagnostic system which stores a Diagnostic Trouble Code (FTC) if an
incorrect signal or no signal is received from certain sensors or
components. FTC may be retrieved from ECM for system diagnosis by
Page 1474 of 1691
using DLC and a scan tool. The DLC also provides a means to
communicate with various vehicle control modules, check system
operating conditions and to operate various system components.
MALFUNCTION INDICATOR LIGHT (MIL)
The MIL is located on the instrument panel, just below
tachometer and may also be referred to as the CHECK ENGINE light. MIL
comes on for a short period and then goes off as a bulb and wiring
circuit test each time ignition switch is turned to the ON position.
If Engine Control Module (ECM) receives an incorrect signal or
receives no signal from certain sensors or components, ECM will turn
on the MIL to warn the driver that a malfunction exists in the
electronic system.
MISCELLANEOUS CONTROLS
TRANSMISSION
Transmission Overdrive Solenoid (A/T Models)
Engine Control Module (ECM) operates transmission overdrive
solenoid for controlling transmission overdrive shifts. Transmission
overdrive solenoid is located on transmission valve body.
Transmission Torque Converter Clutch Solenoid (A/T Models)
Engine Control Module (ECM) operates transmission torque
converter clutch solenoid for torque converter lock-up. ECM uses
various input signals such as transmission temperature, output shaft
speed, central module timer, engine speed, APPS and brake switch
position to determine operation of transmission torque converter
clutch solenoid. Torque converter clutch solenoid is located on
transmission valve body.
Page 1475 of 1691
E - T H EO RY/O PER ATIO N - R W D - G ASO LIN E
1999 D odge P ic ku p R 1500
1999 ENGINE PERFORMANCE
CHRY - Theory & Operation - Trucks & RWD Vans - Gasoline
Dakota, Durango, Ram Pickup, Ram Van, Ram Wagon
INTRODUCTION
This article covers the basic description and operation of
engine performance related systems and components. Read this article
before working on unfamiliar systems.
COMPUTERIZED ENGINE CONTROLS
POWERTRAIN CONTROL MODULE (PCM)
The PCM is a digital computer that controls ignition timing,
air/fuel ratio, fuel injector pulse width, ignition coil(s), spark
advance, emission control devices, cooling fan, charging system, idle
speed, cruise control (if equipped), fuel pump and tachometer. For PCM\
location, see PCM LOCATION. PCM uses data from various input sources
to control output devices in order to achieve optimum engine
performance for all operating conditions.
PCM has voltage converters that convert battery voltage to
regulated 5-volt output. The 5-volt output powers battery temperature
sensor, Camshaft Position (CMP) sensor on models equipped with
Distributorless Ignition System (DIS) or distributor on models without\
DIS, Crankshaft Position (CKP) sensor, Engine Coolant Temperature
(ECT) sensor, Intake Air Temperature (IAT) sensor, logic circuits,
Manifold Absolute Pressure (MAP) sensor, Throttle Position (TP) sens\
or
and Vehicle Speed Sensor (VSS) on some models.
PCM LOCATION
\
\
\
\
\
\
\
Application Location
Dakota & Durango ................. Right Front Fender, Near Firewall
Ram Pickup, Ram Van & Ram Wagon .... On Firewall, Near Wiper Motor
\
\
\
\
\
\
\
NOTE: Components are grouped into 2 categories. The first category,
INPUT DEVICES, includes components that control or produce
voltage signals monitored by the PCM. The second category,
OUTPUT SIGNALS, includes components controlled by the PCM
(this is accomplished by the PCM grounding individual
circuits).
INPUT DEVICES
Vehicles are equipped with different combinations of input
devices. Not all devices are used on all models. To determine
component location and input usage on a specific model, see
appropriate wiring diagram in WIRING DIAGRAMS article. Available input
signals include:
A/C Switch
Switch signals PCM that A/C has been selected. PCM then
activates A/C compressor clutch relay and maintains idle speed at a
preprogrammed RPM. This is done through control of Idle Air Control
Page 1476 of 1691
(IAC) motor.
Battery Temperature Sensor
PCM uses sensor to determine battery temperature and to
control battery charging rate. Temperature data along with battery
voltage data, is used by PCM to vary charging rate. System voltage is
higher at colder temperatures and is gradually reduced at warmer
temperatures.
Battery Voltage
PCM monitors battery voltage to determine fuel injector pulse
width and generator field control. This is done to compensate for
reduced current flow through injector caused by lowered voltage.
Brake Switch
This switch may also be referred to as a brakelight switch.
PCM uses this switch input to maintain idle speed at a preprogrammed
RPM when brakes are applied. If PCM receives an input signal from
brake switch when speed control system is on, PCM will turn speed
control system off.
Camshaft Position (CMP) Sensor
On models equipped with a distributor, CMP sensor is made up
of a Hall Effect switch (sync signal generator) and a rotating pulse
ring (shutter) on distributor shaft. See Fig. 1. On Distributorless
Ignition System (DIS), CMP sensor reads slots in cam timing sprocket.
PCM uses this information along with information from Crankshaft
Position (CKP) sensor to determine if fuel injectors and ignition
coils are properly sequenced for correct cylinders.
Fig. 1: Cut-Away View Of Hall Effect Distributor (Typical)
Courtesy of Chrysler Corp.
Crankshaft Position (CKP) Sensor
CKP sensor detects sets of slots on flywheel/torque converter
Page 1477 of 1691
drive plate. PCM uses this information to determine fuel injection
sequence, ignition signal and spark timing.
Cruise Control Switch
Cruise control switch provides PCM with 3 separate inputs.
ON/OFF switch input informs PCM that cruise control system has been
activated. SET/COAST switch input informs PCM that set vehicle speed
has been selected, or if depressed will decelerate until switch is
released. RESUME/ACCEL switch input informs PCM that a previously set
speed has been selected or, if depressed, will increase speed until
released. PCM uses these inputs to control cruise control servo.
Engine Coolant Temperature (ECT) Sensor
ECT sensor monitors engine coolant temperature. PCM uses ECT
sensor information to adjust air/fuel mixture and idle speed and to
control radiator cooling fans as necessary.
Fuel Level Sensor
PCM supplies a 5-volt reference signal to fuel module in gas
tank. Fuel level sensor sends a signal to PCM indicating fuel level.
PCM monitors this signal to prevent a false misfire signal if fuel
level is less than 15 percent. PCM also sends this signal to fuel
gauge.
Heated Oxygen Sensor (HO2S)
HO2S produces a small electrical voltage (0-1 volt) when
exposed to heated exhaust gas. HO2S is electrically heated for faster
warm-up. Heating element is powered through Auto Shutdown (ASD) relay.\
HO2S acts like a rich/lean (air/fuel ratio) switch by
monitoring oxygen content in exhaust gas. This information is used by
PCM to adjust air/fuel ratio by adjusting injector pulse width.
HO2S produces low voltage when oxygen content in exhaust gas
is high. When oxygen content in exhaust gas is low, HO2S produces a
higher voltage.
Ignition Switch
Ignition switch sends signal to PCM indicating whether switch
is on, off or cranking (ST). When PCM receives ON signal, it energizes\
ASD relay coil and supplies power to sensors and actuators. When PCM
receives ST signal, it controls fuel injection rate, idle speed,
ignition timing, etc. for optimum cranking conditions.
Intake Air Temperature (IAT) Sensor
IAT sensor measures temperature of incoming intake air. This
information is used by PCM to adjust air/fuel mixture.
Manifold Absolute Pressure (MAP) Sensor
MAP sensor monitors intake manifold vacuum. Sensor transmits
information on manifold vacuum and barometric pressure to PCM. MAP
sensor information is used with information from other sensors to
adjust air/fuel mixture.
Oil Pressure Sensor
Sensor sends a signal to PCM to indicate oil pressure.
Park/Neutral (P/N) Switch (A/T Models)
This switch may also be referred to as a Park/Neutral
Position (PNP) switch. P/N switch is available on vehicles equipped
with A/T only. Switch prevents engine starter from engaging if vehicle
is in any gear except Park or Neutral.
P/N switch input (varied with gear selection) is used to
determine idle speed, fuel injector pulse and ignition timing.
Page 1478 of 1691
Power Steering Pressure Switch
On 2.5L Dakota only, power steering pressure switch sends a
signal to PCM. PCM will raise idle speed to prevent stalling during
high power steering pressure (375-575 psi), low RPM conditions.
Serial Communication Interface (SCI) Receive
SCI receive circuit is a serial communication link used when
diagnosing vehicle using scan tool. PCM receives data and device
activation commands from scan tool on this circuit.
Throttle Position (TP) Sensor
TP sensor monitors opening angle of throttle blade. TP sensor
will vary output voltage from about .26 volt at minimum throttle
opening (idle), to about 4.5 volts at Wide Open Throttle (WOT). PCM
uses this information and other sensor inputs to determine engine
operation. In response, PCM will adjust fuel injection pulse width and
ignition timing.
Transmission Governor Pressure Sensor (A/T Models)
Sensor sends PCM a signal indicating governor pressure. PCM
uses signal as feedback for governor solenoid control.
Transmission Overdrive/Override (OD/OR) Switch (A/T Models)
On models with Overdrive (OD), PCM regulates 3-4 OD upshift
and downshift through OD solenoid. Transmission OD/OR switch is
mounted in instrument panel.
OD/OR switch is normally closed. If OD/OR switch is depressed
and it opens, transmission will not enter OD. Transmission will
downshift if it is in OD and OD/OR switch is depressed.
OD/OR switch circuit includes a transmission fluid
temperature sensor. If this sensor opens, transmission will not shift
into overdrive, or will downshift if already in overdrive.
Transmission Temperature Sensor (A/T Models)
Transmission temperature sensor monitors transmission fluid
temperature and sends an input signal to PCM. Input signal is used for
controlling torque converter clutch operation, overdrive shifts, low
temperature shift compensation, wide open throttle shift strategy and
governor pressure. Transmission temperature sensor is located in
transmission valve body, incorporated into governor pressure sensor.
If transmission fluid temperature is more than 260
F (126C),
PCM forces a 4-3 downshift and engages torque converter clutch until
fluid cools. Once fluid cools to less than 230
F (110C), PCM allows a
3-4 shift. PCM prevents torque converter clutch engagement and
overdrive operation when fluid temperature is less than 50
F (10C).
Vehicle Speed Sensor (VSS)
VSS generates 8 pulses per sensor revolution. VSS input is
used by PCM to determine vehicle speed and distance traveled, and to
maintain set speed during cruise control operation.
PCM interprets speed sensor input along with TP sensor closed
throttle input. This enables PCM to determine if a closed throttle
deceleration or normal throttle idle (vehicle stopped) condition
exists. During deceleration, PCM controls IAC motor to maintain a
desired MAP value. During idle (vehicle stopped), PCM controls IAC
motor to maintain a desired idle speed.
OUTPUT SIGNALS
NOTE: Each vehicle may be equipped with different combinations of
computer-controlled components. The following components may
NOT be used on all models. To determine component location
and output usage on a specific model, see appropriate wiring
Page 1479 of 1691
diagram in appropriate WIRING DIAGRAMS article. For theory
and operation on each output component, refer to indicated
system.
A/C Clutch Relay
See A/C CLUTCH RELAY under MISCELLANEOUS CONTROLS.
Auto Shutdown (ASD) Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Distributorless Ignition System (DIS)
See DISTRIBUTORLESS IGNITION SYSTEM (DIS) under IGNITION
SYSTEM.
Evaporative Canister Purge Control Solenoid (EVAP-CPCS)
See EVAPORATIVE (EVAP) EMISSIONS SYSTEM under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pump Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Generator
See GENERATOR under MISCELLANEOUS CONTROLS.
Idle Air Control (IAC) Motor
See IDLE SPEED under FUEL SYSTEM.
Ignition Coil
See IGNITION SYSTEM.
In-Tank Fuel Pump
See FUEL DELIVERY under FUEL SYSTEM.
Limp-In Mode
See LIMP-IN MODE under MISCELLANEOUS CONTROLS.
Malfunction Indicator Light (MIL)
See MALFUNCTION INDICATOR LIGHT under SELF-DIAGNOSTIC SYSTEM.
Radiator Fan Relay
See RADIATOR FAN RELAY under MISCELLANEOUS CONTROLS.
Serial Communications Interface (SCI) Transmit
See SERIAL COMMUNICATIONS INTERFACE (SCI) under SELF-
DIAGNOSTIC SYSTEM.
Shift Indicator Light
See SHIFT INDICATOR LIGHT under MISCELLANEOUS CONTROLS.
Speed Control Servo
See SPEED CONTROL SERVO under MISCELLANEOUS CONTROLS.
Tachometer
See TACHOMETER under MISCELLANEOUS CONTROLS.
Torque Converter Clutch (TCC) Solenoid
See TORQUE CONVERTER CLUTCH (TCC) SOLENOID under
MISCELLANEOUS CONTROLS.
Page 1480 of 1691
Transmission Governor Pressure Solenoid
See TRANSMISSION GOVERNOR SOLENOID under MISCELLANEOUS
CONTROLS.
Transmission Overdrive/Override (OD/OR) Switch Indicator
Light
See TRANSMISSION OVERDRIVE/OVERRIDE (OD/OR) SWITCH INDICATOR
under MISCELLANEOUS CONTROLS.
Transmission Overdrive (OD) Solenoid
See TRANSMISSION OVERDRIVE (OD) SOLENOID under MISCELLANEOUS
CONTROLS.
FUEL SYSTEM
FUEL DELIVERY
Auto Shutdown (ASD) Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Fuel Pressure Regulator
Fuel pressure regulator is a mechanical device, used to
maintain a constant pressure across fuel injector tip. Spring and
rubber diaphragm will move from an open to closed position keeping
fuel pressure constant. Excess fuel is returned to fuel tank.
Regulator is located in in-tank fuel pump module. Regulator
includes an internal fuel filter. Excess fuel is routed directly into
fuel tank without using a return line. See Fig. 2.
Fig. 2: Cross-Sectional View Of In-Tank Fuel Filter/Fuel Pressure
Regulator (Typical)
Courtesy of Chrysler Corp.
In-Tank Fuel Pump