OBD port ISUZU TF SERIES 2004 Owner's Manual
Page 1733 of 4264
4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–361
SYMPTOM DIAGNOSIS
PRELIMINARY CHECKS
Before using this section, perform the “On-Board
Diagnostic (OBD) System Check” and verify all of the
following items:
The engine control module (ECM) and check engine
lamp (MIL=malfunction indicator lamp are operating
correctly.
There are no Diagnostic Trouble Code(s) stored.
Tech 2 data is within normal operating range. Refer to
Typical Scan Data Values.
Verify the customer complaint and locate the correct
symptom in the table of contents. Perform the
procedure included in the symptom chart.
VISUAL/PHYSICAL CHECK
Several of the symptom procedures call for a careful
visual/physical check. This can lead to correcting a
problem without further checks and can save valuable
time. This check should include the following items:
ECM grounds for cleanliness, tightness and proper
location.
Vacuum hoses for splits, kinks, and proper
connection. Check thoroughly for any type of leak or
restriction.
Air intake ducts for collapsed or damaged areas.
Air leaks at throttle body mounting area, mass air flow
(MAF) sensor and intake manifold sealing surfaces.
Wiring for proper connections, pinches and cuts.
INTERMITTENT
Important: An intermittent problem may or may not turn
on the check engine lamp (MIL=malfunction indicator
lamp) or store a Diagnostic Trouble Code. Do NOT use
the Diagnostic Trouble Code (DTC) charts for
intermittent problems.
The fault must be present to locate the problem.
Most intermittent problems are cased by faulty electrical
connections or wiring. Perform a careful visual/physical
check for the following conditions.
Poor mating of the connector halves or a terminal not
fully seated in the connector (backed out).
Improperly formed or damaged terminal.
All connector terminals in the problem circuit should
be carefully checked for proper contact tension.
Poor terminal-to-wire connection. This requires
removing the terminal form the connector body to
check.
Check engine lamp (MIL=malfunction indicator lamp)
wire to ECM shorted to ground.
Poor ECM grounds. Refer to the ECM wiring
diagrams.Road test the vehicle with a Digital Multimeter
connected to a suspected circuit. An abnormal voltage
when the malfunction occurs is a good indication that
there is a fault in the circuit being monitored.
Using Tech 2 to help detect intermittent conditions. The
Tech 2 have several features that can be used to
located an intermittent condition. Use the following
features to find intermittent faults:
To check for loss of diagnostic code memory,
disconnect the MAF sensor and idle the engine until the
check engine lamp (MIL=malfunction indicator lamp)
comes on. Diagnostic Trouble Code P0100 should be
stored and kept in memory when the ignition is turned
OFF.
If not, the ECM is faulty. When this test is completed,
make sure that you clear the Diagnostic Trouble Code
P0100 from memory.
An intermittent check engine lamp (MIL=malfunction
indicator lamp) with no stored Diagnostic Trouble Code
may be caused by the following:
Check engine lamp (MIL=malfunction indicator lamp)
wire to ECM short to ground.
Poor ECM grounds. Refer to the ECM wiring
diagrams.
Check for improper installation of electrical options such
as light, cellular phones, etc. Check all wires from ECM
to the ignition control module for poor connections.
Check for an open diode across the A/C compressor
clutch and check for other open diodes (refer to wiring
diagrams in Electrical Diagnosis).
If problem has not been found, refer to ECM connector
symptom tables.
Check the “Broadcast Code” of the ECM, and
compare it with the latest Isuzu service bulletins and/
or Isuzu EEPROM reprogramming equipment to
determine if an update to the ECM's reprogrammable
memory has been released.
This identifies the contents of the reprogrammable
software and calibration contained in the ECM.
If the “Broadcast Code” is not the most current
available, it is advisable to reprogram the ECM's
EEPROM memory, which may either help identify a
hard-to find problem or may fix the problem.
The Service Programming System (SPS) will not allow
incorrect software programming or incorrect calibration
changes.
Page 2066 of 4264
6E-70 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Fuel Quality
Fuel quality is not a new issue for the automotive
industry, but its potential for turning on the MIL (“Check
Engine" lamp) with OBD systems is new.
Fuel additives such as “dry gas" and “octane
enhancers" may affect the performance of the fuel. The
Reed Vapor Pressure of the fuel can also create
problems in the fuel system, especially during the spring
and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could sho
w
up as a Fuel Trim DTC due to excessive canister
loading. High vapor pressures generated in the fuel
tank can also affect the Evaporative Emission
diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the majo
r
fuel companies advertise that using “premium" gasoline
will improve the performance of your vehicle. Mos
t
premium fuels use alcohol to increase the octane rating
of the fuel. Although alcohol-enhanced fuels may raise
the octane rating, the fuel's ability to turn into vapor in
cold temperatures deteriorates. This may affect the
starting ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the MIL
(“Check Engine" lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition
system. If the ignition system is rain-soaked, it can
temporarily cause engine misfire and turn on the MIL
(“Check Engine" lamp).
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 5Km miles of driving. This type o
f
operation contributes to the fuel fouling of the spark
plugs and will turn on the MIL (“Check Engine" lamp).
Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the MIL
(“Check Engine" lamp) to turn on if the vehicle is no
t
maintained properly. Restricted air filters, fuel filters,
and crankcase deposits due to lack of oil changes o
r
improper oil viscosity can trigger actual vehicle faults
that were not previously monitored prior to OBD. Poo
r
vehicle maintenance can not be classified as a
“non-vehicle fault", but with the sensitivity of OBD
diagnostics, vehicle maintenance schedules must be
more closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an
excessive amount of mud on the wheels, can have the
same effect on crankshaft speed as misfire.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
One example would be that if the ECM detected a
Misfire fault, the diagnostics on the catalytic converte
r
would be suspended until Misfire fault was repaired. If
the Misfire fault was severe enough, the catalytic
converter could be damaged due to overheating and
would never set a Catalyst DTC until the Misfire faul
t
was repaired and the Catalyst diagnostic was allowed to
run to completion. If this happens, the customer may
have to make two trips to the dealership in order to
repair the vehicle.
Maintenance Schedule
Refer to the Maintenance Schedule.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical inspection:
Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
Inspect hoses that are difficult to see behind othe
r
components.
Inspect all wires in the engine compartment fo
r
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with ho
t
exhaust manifolds or pipes.
Page 2067 of 4264
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the curren
t
ignition cycle.
The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Inlet Air Temperature (IAT) Sensor
Crankshaft Position (CKP) Sensor
Throttle Position Sensor (TPS)
Engine Coolant Temperature (ECT) Sensor
Camshaft Position (CMP) Sensor
Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
Idle Air Control (IAC) Valve
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Refer to ECM and Sensors in General Descriptions.
Page 2068 of 4264
6E-72 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors
a vehicle system or component. Conversely, an active
test, actually takes some sort of action when performing
diagnostic functions, often in response to a failed
passive test.
Intrusive Diagnostic Tests
This is any on-board test run by the Diagnostic
Management System which may have an effect on
vehicle performance or emission levels.
Warm-Up Cycle
A warm-up cycle means that engine at temperature
must reach a minimum of 70
C (160F) andrise at
least 22
C (40F) over the course of a trip.
The Diagnostic Executive
The Diagnostic Executive is a unique segment of
software which is designed to coordinate and prioritize
the diagnostic procedures as well as define the protocol
for recording and displaying their results. The main
responsibilities of the Diagnostic Executive are listed as
follows:
Commanding the MIL (“Check Engine" lamp) on and
off
DTC logging and clearing
Freeze Frame data for the first emission related DTC
recorded
Current status information on each diagnostic
The Diagnostic Executive records DTCs and turns on
the MIL when emission-related faults occur. It can also
turn off the MIL if the conditions cease which caused
the DTC to set.
Diagnostic Information
The diagnostic charts and functional checks are
designed to locate a faulty circuit or component through
a process of logical decisions. The charts are prepared
with the requirement that the vehicle functioned
correctly at the time of assembly and that there are no
t
multiple faults present.
There is a continuous self-diagnosis on certain control
functions. This diagnostic capability is complemented
by the diagnostic procedures contained in this manual.
The language of communicating the source of the
malfunction is a system of diagnostic trouble codes.
When a malfunction is detected by the control module,
a diagnostic trouble code is set and the MIL (“Check
Engine" lamp) is illuminated.
Check Engine Lamp (MIL)
The Check Engine Lamp (MIL) looks the same as the
MIL you are already familiar with (“Check Engine"
lamp).
Basically, the MIL is turned on when the ECM detects a
DTC that will impact the vehicle emissions.
The MIL is under the control of the Diagnostic
Executive. The MIL will be turned on if an
emissions-related diagnostic test indicates a
malfunction has occurred. It will stay on until the
system or component passes the same test, for three
consecutive trips, with no emissionsrelated faults.
Extinguishing the MIL
When the MIL is on, the Diagnostic Executive will turn
off the MIL after three consecutive trips that a “tes
t
passed" has been reported for the diagnostic test tha
t
originally caused the MIL to illuminate.
Although the MIL has been turned off, the DTC will
remain in the ECM memory (both Freeze Frame and
Failure Records) until forty(40) warm-up cycles after no
faults have been completed.
If the MIL was set by either a fuel trim or misfire-related
DTC, additional requirements must be met. In addition
to the requirements stated in the previous paragraph,
these requirements are as follows:
The diagnostic tests that are passed must occur with
375 RPM of the RPM data stored at the time the las
t
test failed.
Plus or minus ten (10) percent of the engine load tha
t
was stored at the time the last failed.
Similar engine temperature conditions (warmed up o
r
warming up ) as those stored at the time the last tes
t
failed.
Meeting these requirements ensures that the fault which
turned on the MIL has been corrected.
The MIL (“Check Engine" lamp) is on the instrumen
t
panel and has the following functions:
It informs the driver that a fault that affects vehicle
emission levels has occurred and that the vehicle
should be taken for service as soon as possible.
As a bulb and system check, the MIL will come “ON"
with the key “ON" and the engine not running. When
the engine is started, the MIL will turn “OFF."
When the MIL remains “ON" while the engine is
running, or when a malfunction is suspected due to a
driveability or emissions problem, a Powertrain
On-Board Diagnostic (OBD) System Check must be
performed. The procedures for these checks are
given in On-Board Diagnostic (OBD) System Check.
These checks will expose faults which may not be
detected if other diagnostics are performed first.
Page 2069 of 4264
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-73
Intermittent Check Engine Lamp
In the case of an “intermittent" fault, the MIL (“Check
Engine" lamp) may illuminate and then (after three trips)
go “OFF". However, the corresponding diagnostic
trouble code will be stored in the memory. When
unexpected diagnostic trouble codes appear, check fo
r
an intermittent malfunction.
A diagnostic trouble code may reset. Consult the
“Diagnostic Aids" associated with the diagnostic trouble
code. A physical inspection of the applicable sub–
system most often will resolve the problem.
Data Link Connector (DLC)
The provision for communication with the control
module is the Data Link Connector (DLC). The DLC is
used to connect to a Tech 2. Some common uses o
f
the Tech 2 are listed below:
Identifying stored Diagnostic Trouble Codes (DTCs).
Clearing DTCs.
Performing out put control tests.
Reading serial data.
060RW046
Verifying Vehicle Repair
Verification of vehicle repair will be more
comprehensive for vehicles with OBD system
diagnostic. Following a repair, the technician should
perform the following steps:
1. Review and record the Fail Records and/or Freeze
Frame data for the DTC which has been diagnosed
(Freeze Frame data will only be stored for an A or B
type diagnostic and only if the MIL has been
requested).
2. Clear DTC(s).
3. Operate the vehicle within conditions noted in the
Fail Records and/or Freeze Frame data.
4. Monitor the DTC status information for the specific
DTC which has been diagnosed until the diagnostic
test associated with that DTC runs.
Following these steps are very important in verifyin
g
repairs on OBD systems. Failure to follow these steps
could result in unnecessary repairs.
Reading Flash Diagnostic Trouble Codes
The provision for communicating with the Engine
Control Module (ECM) is the Data Link Connecto
r
(DLC). The DLC is located behind the lower front
instrument panel. It is used in the assembly plant to
receive information in checking that the engine is
operating properly before it leaves the plant.
The diagnostic trouble code(s) (DTCs) stored in the
ECM's memory can be read either through a hand-held
diagnostic scanner plugged into the DLC or by counting
the number of flashes of the Check Engine Lamp (MIL)
when the diagnostic test terminal of the DLC is
grounded. The DLC terminal “6" (diagnostic request) is
pulled “Low" (grounded) by jumpering to DLC terminal
“4", which is a ground wire.
This will signal the ECM that you want to “flash" DTC(s),
if any are present. Once terminals “4" and “6" have
been connected, the ignition switch must be moved to
the “ON" position, with the engine not running. At this
point, the “Check Engine" MIL should flash DTC12
three times consecutively.
This would be the following flash, sequence: "flash,
pause, flash?flash, long pause, flash, pause,
flash?flash, long pause, flash, pause, flash?flash". DTC
12 indicates that the ECM's diagnostic system is
operating. If DTC 12 is not indicated, a problem is
present within the diagnostic system itself, and should
be addressed by consulting the appropriate diagnostic
chart in DRIVEABILITY AND EMISSIONS.
Following the output of DTC 12, the “Check Engine" MIL
will indicate a DTC three times if a DTC is present, or i
t
will simply continue to output DTC12. If more than one
DTC three has been stored in the ECM's memory, the
DTC(s) will be output from the lowest to the highest,
with each DTC being displayed three times.
Reading Diagnostic Trouble Codes Using a
TECH 2
The procedure for reading diagnostic trouble code(s) is
to used a diagnostic Tech 2. When reading DTC(s),
follow instructions supplied by Tech 2 manufacturer.
For the 1998 model year, Isuzu dealer service
departments will continue to use Tech 2.
Page 2104 of 4264
6E-108 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Injector Coil Test Procedure (Steps 1-6) and Injector Balance Test Procedure
(Steps 7-11)
Step Action Value(s) YES NO
1
Was the “On-Board Diagnostic (OBD) System Check"
performed?
— Go to Step 2 Go to OBD
System Check
2 1. Turn the engine “OFF."
In order to prevent flooding of a single cylinder and
possible engine damage, relieve the fuel pressure
before performing the fuel injector coil test procedure.
2. Relieve the fuel pressure. Refer to Test
Description Number 2.
3. Connect the 5–8840–2618–0 Fuel Injector Tester
to B+ and ground, and to the 5–8840–2635–0
Injector Switch Box.
4. Connect the injector switch box to the gray fuel
injector harness connector located at the rear of
the air cleaner assembly.
5. Set the amperage supply selector switch on the
fuel injector tester to the “Coil Test" 0.5 amp
position.
6. Connect the leads from the Digital Voltmeter
(DVM) to the injector tester. Refer to the
illustrations associated with the test description.
7. Set the DVM to the tenths scale (0.0).
8. Observe the engine coolant temperature.
Is the engine coolant temperature within the specified
values? 10C (50F) to
35C (95F) Go to Step 3 Go to Step 5
3
1. Set injector switch box injector #1.
2. Press the “Push to Start Test" button on the fuel
injector tester.
3. Observe the voltage reading on the DVM.
Important: The voltage reading may rise during the
test.
4. Record the lowest voltage observed after the first
second of the test.
5. Set the injector switch box to the next injector and
repeat steps 2, 3, and 4.
Did any fuel injector have an erratic voltage reading
(large fluctuations in voltage that did not stabilize) or a
voltage reading outside of the specified values? 5.7-6.6 V Go to Step 4 Go to Step 7
4 Replace the faulty fuel injector(s). Refer to Fuel
Injector.
Is the action complete? — Go to Step 7 —
Page 2106 of 4264
6E-110 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Step Action Value(s) YES NO
9
1. Connect the 5–8840–2618–0 Fuel Injector Tester
and 5–8840–2635–0 Injector Switch Box the fuel
injector harness connector.
2. Set the amperage supply selector switch on the
fuel injector tester to the “Balance Test" 0.5-2.5
amp position.
3. Using the Tech 2 turn the fuel pump “ON" then
“OFF" in order to pressurize the fuel system.
4. Record the fuel pressure indicated by the fuel
pressure gauge after the fuel pressure stabilizes.
This is the first pressure reading.
5. Energize the fuel injector by depressing the “Push
to Start Test" button on the fuel injector tester.
6. Record the fuel pressure indicated by the fuel
pressure gauge after the fuel pressure gauge
needle has stopped moving. This is the second
pressure reading.
7. Repeat steps 1 through 6 for each fuel injector.
8. Subtract the second pressure reading from the first
pressure reading for one fuel injector. The result
is the pressure drop value.
9. Obtain a pressure drop value for each fuel injector.
10. Add all of the individual pressure drop values.
This is the total pressure drop.
11. Divide the total pressure drop by the number of
fuel injectors. This is the average pressure drop.
Does any fuel injector have a pressure drop value that
is either higher than the average pressure drop or
lower than the average pressure drop by the specified
value? 10 kPa
(1.5 psi) Go to Step 10 Go to OBD
System Check
10 Re-test any fuel injector that does not meet the
specification. Refer to the procedure in step 11.
Do not repeat any portion of this test before running
the engine in order to prevent the engine from
flooding.
Does any fuel injector still have a pressure drop value
that is either higher than the average pressure drop or
lower than the average pressure drop by the specified
value? 10 kPa
(1.5 psi) Go to Step 11 Go to
Symptoms
11 Replace the faulty fuel injector(s). Refer to Fuel
Injector.
Is the action complete? — Verify repair —
Page 2119 of 4264
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-123
A/C CLUTCH DIAGNOSIS
This chart should be used for diagnosing the electrical
portion of the A/C compressor clutch circuit. A Tech 2
will be used in diagnosing the system. The Tech 2 has
the ability to read the A/C request input to the ECM. The
Tech 2 can display when the ECM has commanded the
A/C clutch “ON." The Tech 2 should have the ability to
override the A/C request signal and energize the A/C
compressor relay.
A/C Clutch Control Circuit Diagnosis
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
Are the A/C setting conditions met?
- Go to Step 3 Set the setting
condition and Go
to Step 3
3
Is the A/C compressor worked properly?
- Diagnosis
completed Go to Step 4
4
Does the blower motor operate?
- Go to Step 6 Go to Step 5
5
Repair the blower motor circuit.
Is the action complete?
- Verify repair -
6
1. Using the Tech 2, ignition "On" and engine "On".
2. Select the "Miscellaneous Test" and perform the
"A/C Clutch Relay" in the "Relays".
3. Operate the Tech 2 in accordance with procedure.
Was the A/C compressor magnet clutch engaged,
when the Tech 2 is operated?
- Go to Step 15 Go to Step 7
7
Check the "A/C" fuse (10A). If the fuse is burnt out,
repair as necessary.
Was the problem found?
- Verify repair Go to Step 8
Page 2176 of 4264
6E-180 3.5L ENGINE DRIVEABILITY AND EMISSIONS
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from about 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is one of the most important inputs
used by the Engine Control Module (ECM) for fuel
control and many of the ECM-controlled outputs. The
ECM monitors throttle position and compares actual
throttle position from the TPS to a predicted TPS value
calculated from engine speed. If the ECM detects an
out-of-range condition, DTC P0121 will set.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the ECT display on the Tech 2 while moving
connectors and wiring harnesses related to the
sensor. A change in the display will indicate the
location of the fault.
If DTC P0121 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
Diagnostic Trouble Code (DTC) P0121 (Flash Code 21) Throttle Position
Sensor (TPS) Circuit Range/Performance
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0121 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0121 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
1. Using the Tech 2, ignition "On" and engine "Off".
2. Monitor the "Throttle Position" in the data display.
Does the Tech 2 indicate correct "Throttle Position"
from 0% to 100% depending on accelerator pedal
operation?
- Go to Step 6 Go to Step 5
5
1. Using the Tech 2, ignition "On" and engine "Off
2. Monitor the "Throttle Position" in the data display.
3. Adjust the TPS within 0% to 100%.
Was the problem solved?
- Verify repair Go to Step 12
Page 2255 of 4264
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-259
CIRCUIT DESCRIPTION
The engine control module (ECM) monitors the EGR
valve pintle position input to ensure that the valve
responds properly to commands from the PCM, and to
detect a fault if pintle position is differen
t
fromcommanded position.
DIAGNOSTIC AIDS
Check for the following conditions:
Excessive carbon deposit on EGR valve shaf
t
maycause EGR stuck open or unsmooth operation.
Those carbon deposit may occur by unusual
portoperation. Clean up carbon may make
smoothfunction of EGR valve.
Poor connection or damaged harness Inspec
t
thewiring harness for damage. If the harness
appears to be OK, observe the EGR actual position
display on the Tech 2 while moving connectors and
wiring harnesses related to EGR valve. A change in
the display will indicate the location of the fault.
Diagnostic Trouble Code (DTC) P0404 (Flash Code 32) EGR Circuit
Range/Perfomance (Open Valve)
Diagnostic Trouble Code (DTC) P1404 (Flash Code 32) EGR Circuit
Range/Perfomance (Closed Valve)
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0404 or P1404 stored as "Present
Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0404 or P1404 stored in this ignition
cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4