Transmi JEEP LIBERTY 2002 KJ / 1.G Workshop Manual

Page 638 of 1803

magnitude than that of the electronic impact sensors,
and must be closed in order for the airbags/seat belt
tensioner to deploy. A pre-programmed decision algo-
rithm in the ACM microprocessor determines when
the deceleration rate as signaled by the impact sen-
sors and the safing sensor indicate an impact that is
severe enough to require front supplemental
restraint system protection and, based upon the sta-
tus of the seatbelt switch inputs and the severity of
the monitored impact, determines what combination
of driver seat belt tensioner and/or front airbag
deployment is required for each front seating posi-
tion. When the programmed conditions are met, the
ACM sends the proper electrical signals to deploy the
driver seat belt tensioner and/or the multistage dual
front airbags at the programmed force levels.
The hard wired inputs and outputs for the ACM
may be diagnosed and tested using conventional
diagnostic tools and procedures. However, conven-
tional diagnostic methods will not prove conclusive in
the diagnosis of the ACM, the PCI data bus network,
or the electronic message inputs to and outputs from
the ACM. The most reliable, efficient, and accurate
means to diagnose the ACM, the PCI data bus net-
work, and the electronic message inputs to and out-
puts from the ACM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
REMOVAL
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: THE AIRBAG CONTROL MODULE CON-
TAINS THE IMPACT SENSOR, WHICH ENABLES
THE SYSTEM TO DEPLOY THE FRONT SUPPLE-
MENTAL RESTRAINTS. NEVER STRIKE OR DROP
THE AIRBAG CONTROL MODULE, AS IT CAN DAM-
AGE THE IMPACT SENSOR OR AFFECT ITS CALI-
BRATION. IF AN AIRBAG CONTROL MODULE ISACCIDENTALLY DROPPED DURING SERVICE, THE
MODULE MUST BE SCRAPPED AND REPLACED
WITH A NEW UNIT. FAILURE TO OBSERVE THIS
WARNING COULD RESULT IN ACCIDENTAL,
INCOMPLETE, OR IMPROPER FRONT SUPPLEMEN-
TAL RESTRAINT DEPLOYMENT AND POSSIBLE
OCCUPANT INJURIES.
(1) Disconnect and isolate the battery negative
cable. Wait two minutes for the system capacitor to
discharge before further service.
(2) Remove the center console from the top of the
floor panel transmission tunnel. (Refer to 23 - BODY/
INTERIOR/FLOOR CONSOLE - REMOVAL).
(3) From the left side of the floor panel transmis-
sion tunnel, remove the Airbag Control Module
(ACM) cover from the ACM (Fig. 7). The cover flange
is secured to the silencer pad on the floor panel
transmission tunnel with double-faced tape.
(4) Remove the ground screw that secures the
ground lug on the left rear corner of the ACM hous-
ing to the ACM bracket on the floor panel transmis-
sion tunnel.
Fig. 7 ACM Cover Remove/Install
1 - FLANGE
2 - COVER
3 - TAPE
4 - SCREW
5 - BRACKET
6 - AIRBAG CONTROL MODULE
7 - FLOOR PANEL TRANSMISSION TUNNEL
KJRESTRAINTS 8O - 11
AIRBAG CONTROL MODULE (Continued)

Page 639 of 1803

(5) Remove the two screws that secure the ACM to
the ACM bracket that is welded onto the top of the
floor panel transmission tunnel (Fig. 8).
(6) Lift the ACM from the ACM bracket on the top
of the floor panel transmission tunnel and move the
unit to the left far enough to access the ACM wire
harness connectors.
(7) Disconnect the two instrument panel wire har-
ness connectors for the ACM from the ACM connector
receptacles on the right side of the module. To discon-
nect the large instrument panel wire harness connec-
tor from the ACM:
(a) Slide the red Connector Position Assurance
(CPA) lock on the top of the connector toward the
side of the connector.
(b) Depress the connector latch tab and pull the
connector straight away from the ACM connector
receptacle.
(8) Remove the ACM from the left side of the floor
panel transmission tunnel.
INSTALLATION
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THEBATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
WARNING: THE AIRBAG CONTROL MODULE CON-
TAINS THE IMPACT SENSOR, WHICH ENABLES
THE SYSTEM TO DEPLOY THE FRONT SUPPLE-
MENTAL RESTRAINTS. NEVER STRIKE OR DROP
THE AIRBAG CONTROL MODULE, AS IT CAN DAM-
AGE THE IMPACT SENSOR OR AFFECT ITS CALI-
BRATION. IF AN AIRBAG CONTROL MODULE IS
ACCIDENTALLY DROPPED DURING SERVICE, THE
MODULE MUST BE SCRAPPED AND REPLACED
WITH A NEW UNIT. FAILURE TO OBSERVE THIS
WARNING COULD RESULT IN ACCIDENTAL,
INCOMPLETE, OR IMPROPER FRONT SUPPLEMEN-
TAL RESTRAINT DEPLOYMENT AND POSSIBLE
OCCUPANT INJURIES.
(1) Position the Airbag Control Module (ACM) to
the left side of the floor panel transmission tunnel
near the ACM bracket (Fig. 8).
(2) Reconnect the instrument panel wire harness
connectors for the ACM to the ACM connector recep-
tacles on the right side of the module. Be certain that
the latches on both connectors and the red Connector
Position Assurance (CPA) lock on the large connector
are each fully engaged.
(3) Carefully position the ACM into the ACM
bracket on the top of the floor panel transmission
tunnel. When the ACM is correctly positioned, the
arrow on the ACM housing will be pointed forward in
the vehicle.
(4) Install and tighten the two screws that secure
the ACM to the ACM bracket that is welded onto the
floor panel transmission tunnel. Tighten the screws
to 36 N´m (26 ft. lbs.).
(5) Install and tighten the ground screw that
secures the ground lug on the left rear corner of the
ACM housing to the ACM bracket on the floor panel
transmission tunnel (Fig. 7). Tighten the screw to 12
N´m (105 in. lbs.).
(6) From the left side of the floor panel transmis-
sion tunnel, carefully position the ACM cover back
over the top of the ACM.
Fig. 8 Airbag Control Module Remove/Install
1 - AIRBAG CONTROL MODULE
2 - WIRE HARNESS CONNECTOR (2)
3 - BRACKET
4 - SCREW (2)
8O - 12 RESTRAINTSKJ
AIRBAG CONTROL MODULE (Continued)

Page 640 of 1803

NOTE: The integral flange on the left side of the
ACM cover is secured to the floor panel transmis-
sion tunnel with a short piece of double-faced tape
as an assembly aid during the manufacturing pro-
cess, but this tape does not require replacement
following service removal.
(7) Reinstall the center console onto the top of the
floor panel transmission tunnel. (Refer to 23 - BODY/
INTERIOR/FLOOR CONSOLE - INSTALLATION).
(8) Do not reconnect the battery negative cable at
this time. The airbag system verification test proce-
dure should be performed following service of any
supplemental restraint system component. (Refer to
8 - ELECTRICAL/RESTRAINTS - STANDARD PRO-
CEDURE - VERIFICATION TEST).
CHILD TETHER ANCHOR
DESCRIPTION
All vehicles are equipped with three, fixed-position,
child seat tether anchors (Fig. 9). Two anchors are
integral to the back of the right rear seat back panel,
and one is integral to the left rear seat back panel.
The child seat tether anchors cannot be adjusted or
repaired and, if faulty or damaged, they must be
replaced as a unit with the rear seat back panel.
OPERATION
See the owner's manual in the vehicle glove box for
more information on the proper use of the factory-in-
stalled child seat tether anchors.
CLOCKSPRING
DESCRIPTION
The clockspring assembly is secured with two inte-
gral plastic latches onto the upper steering column
housing near the top of the steering column behind
the steering wheel (Fig. 10). The clockspring consists
of a flat, round molded plastic case with a stubby tail
that hangs below the steering column and contains
two connector receptacles that face toward the
instrument panel (Fig. 11). Within the plastic hous-
ing is a spool-like molded plastic rotor with a large
exposed hub and several plastic rollers. The upper
surface of the rotor hub has a large center hole, a
release button, a clear plastic inspection window, two
short pigtail wires with connectors, and a connector
receptacle that faces toward the steering wheel. Two
versions of the clockspring are used on this model,
one is a seven circuit unit for vehicles not equipped
with optional remote radio switches on the steering
wheel and can be visually identified by the use of yel-
low heat-shrink tubing on the pigtail wires, while the
other is a nine circuit unit for vehicles with remote
radio switches and can be visually identified by the
use of black heat-shrink tubing on the pigtail wires.
A rubber bumper block is located on each side of
the tower formation that contains the connector
receptacle and pigtail wires on the upper surface of
the rotor hub. The lower surface of the rotor hub has
Fig. 9 Child Tether Anchors
1 - REAR SEAT BACK (LEFT)
2 - REAR SEAT BACK (RIGHT)
3 - CHILD TETHER ANCHOR (3)
Fig. 10 Clockspring
1 - PIGTAIL WIRE (2)
2 - UPPER CONNECTOR RECEPTACLE
3 - BUMPER (2)
4 - BRACKET (2)
5 - LABEL
6 - SHIELD
7 - CASE
8 - WINDOW
9 - ROTOR
KJRESTRAINTS 8O - 13
AIRBAG CONTROL MODULE (Continued)

Page 662 of 1803

(1) Unlatch the rear seat back and fold it forward
far enough to access the screw that secures the rear
seat belt buckle anchor to the rear floor panel
between the rear seat back and the rear seat cush-
ion.
(2) Remove the screw that secures the rear seat
belt buckle anchor to the rear floor panel (Fig. 32).
(3) Lift the rear seat belt buckle anchor off of the
stud on the rear floor panel.
(4) Remove the rear seat belt buckle and anchor
from between the rear seat back and the rear seat
cushion as a unit.
INSTALLATION
WARNING: DURING AND FOLLOWING ANY SEAT
BELT SERVICE, CAREFULLY INSPECT ALL SEAT
BELTS, BUCKLES, MOUNTING HARDWARE, AND
RETRACTORS FOR PROPER INSTALLATION,
OPERATION, OR DAMAGE. REPLACE ANY BELT
THAT IS CUT, FRAYED, OR TORN. STRAIGHTEN
ANY BELT THAT IS TWISTED. TIGHTEN ANY
LOOSE FASTENERS. REPLACE ANY BELT THAT
HAS A DAMAGED OR INOPERATIVE BUCKLE OR
RETRACTOR. REPLACE ANY BELT THAT HAS A
BENT OR DAMAGED LATCH PLATE OR ANCHOR
PLATE. NEVER ATTEMPT TO REPAIR A SEAT BELT
COMPONENT. ALWAYS REPLACE DAMAGED OR
FAULTY SEAT BELT COMPONENTS WITH THE COR-
RECT, NEW AND UNUSED REPLACEMENT PARTS
LISTED IN THE MOPAR PARTS CATALOG.(1) Unlatch the rear seat back and fold it forward
far enough to access the mounting location for the
rear seat belt buckle anchor to the rear floor panel
between the rear seat back and the rear seat cush-
ion.
(2) Position the rear seat belt buckle and anchor
between the rear seat back and the rear seat cushion
as a unit (Fig. 32).
(3) Lower the rear seat belt buckle anchor over the
stud on the rear floor panel.
(4) Install and tighten the screw that secures the
rear seat belt buckle anchor to the rear floor panel.
Tighten the screw to 43 N´m (32 ft. lbs.).
SEAT BELT SWITCH
DESCRIPTION
The seat belt switch for this model is actually a
Hall Effect-type sensor. This sensor consists of a
fixed-position, Hall Effect Integrated Circuit (IC) chip
and a small, movable, permanent magnet that are
integral to each front seat belt buckle. The front seat
belt buckles are each located on a stamped steel
stanchion secured with a screw to the inboard side of
each front seat cushion frame between the seat and
the floor panel transmission tunnel (Fig. 33). The
seat belt switches are connected to the vehicle elec-
trical system through a two-lead pigtail wire and
connector on the seat belt buckle-half, which is con-
nected to a wire harness connector and take out of
the seat wire harness beneath the rear edge of the
seat cushion frame. A diagnostic resistor is connected
Fig. 32 Rear Seat Belt Buckle Remove/Install
1 - SCREW (1)
2 - BUCKLE (SINGLE)
3 - REAR SEAT
4 - BUCKLE (DOUBLE)
5 - SCREW (1)
6- REAR FLOOR PANEL
Fig. 33 Front Seat Belt Buckle
1 - FRONT SEAT BELT BUCKLE
2 - INBOARD SIDE SHIELD
3 - SCREW
4 - PIGTAIL WIRE
KJRESTRAINTS 8O - 35
REAR SEAT BELT BUCKLE (Continued)

Page 674 of 1803

SPEED CONTROL
TABLE OF CONTENTS
page page
SPEED CONTROL
DESCRIPTION..........................1
OPERATION............................1
DIAGNOSIS AND TESTING - ROAD TEST.....2
SPECIFICATIONS
TORQUE - SPEED CONTROL.............2
CABLE
DESCRIPTION..........................3
OPERATION............................3
REMOVAL - 3.7L.........................3
INSTALLATION - 3.7L.....................4
SERVO
DESCRIPTION..........................4
OPERATION............................4REMOVAL.............................4
INSTALLATION..........................5
SWITCH
DESCRIPTION..........................5
OPERATION............................5
REMOVAL.............................6
INSTALLATION..........................6
VACUUM RESERVOIR
DESCRIPTION..........................7
OPERATION............................7
DIAGNOSIS AND TESTING - VACUUM
RESERVOIR..........................7
REMOVAL.............................7
INSTALLATION..........................8
SPEED CONTROL
DESCRIPTION
The speed control system is electronically con-
trolled and vacuum operated. Electronic control of
the speed control system is integrated into the Pow-
ertrain Control Module (PCM). The controls consist
of two steering wheel mounted switches. The
switches are labeled: ON/OFF, RES/ACCEL, SET,
COAST, and CANCEL.
The system is designed to operate at speeds above
30 mph (50 km/h).
WARNING: THE USE OF SPEED CONTROL IS NOT
RECOMMENDED WHEN DRIVING CONDITIONS DO
NOT PERMIT MAINTAINING A CONSTANT SPEED,
SUCH AS IN HEAVY TRAFFIC OR ON ROADS THAT
ARE WINDING, ICY, SNOW COVERED, OR SLIP-
PERY.
OPERATION
When speed control is selected by depressing the
ON switch, the PCM allows a set speed to be stored
in PCM RAM for speed control. To store a set speed,
depress the SET switch while the vehicle is moving
at a speed between 35 and 85 mph. In order for the
speed control to engage, the brakes cannot be
applied, nor can the gear selector be indicating the
transmission is in Park or Neutral.
The speed control can be disengaged manually by:
²Stepping on the brake pedal
²Depressing the OFF switch²Depressing the CANCEL switch.
²Depressing the clutch pedal (if equipped).
NOTE: Depressing the OFF switch or turning off the
ignition switch will erase the set speed stored in
the PCM.
For added safety, the speed control system is pro-
grammed to disengage for any of the following condi-
tions:
²An indication of Park or Neutral
²A rapid increase rpm (indicates that the clutch
has been disengaged)
²Excessive engine rpm (indicates that the trans-
mission may be in a low gear)
²The speed signal increases at a rate of 10 mph
per second (indicates that the coefficient of friction
between the road surface and tires is extremely low)
²The speed signal decreases at a rate of 10 mph
per second (indicates that the vehicle may have
decelerated at an extremely high rate)
Once the speed control has been disengaged,
depressing the RES/ACCEL switch (when speed is
greater than 30 mph) restores the vehicle to the tar-
get speed that was stored in the PCM.
While the speed control is engaged, the driver can
increase the vehicle speed by depressing the RES/AC-
CEL switch. The new target speed is stored in the
PCM when the RES/ACCEL is released. The PCM
also has a9tap-up9feature in which vehicle speed
increases at a rate of approximately 2 mph for each
momentary switch activation of the RES/ACCEL
switch.
KJSPEED CONTROL 8P - 1

Page 678 of 1803

mounting bracket displayed in (Fig. 6) is a typical
bracket and may/may not be applicable to this model
vehicle.
(9) Remove servo from mounting bracket. While
removing, note orientation of servo to bracket.INSTALLATION
(1) Position servo to mounting bracket.
(2) Align hole in cable connector with hole in servo
pin. Install cable-to-servo retaining clip.
(3) Insert servo mounting studs through holes in
servo mounting bracket.
(4) Install servo-to-mounting bracket nuts and
tighten. Refer to torque specifications.
(5) Install servo mounting bracket-to-body nuts
and tighten. Refer to torque specifications.
(6) Connect vacuum line at servo.
(7) Connect electrical connector at servo.
(8) Connect servo cable to throttle body. Refer to
servo Cable Removal/Installation.
(9) Install coolant bottle.
(10) Connect negative battery cable to battery.
(11) Before starting engine, operate accelerator
pedal to check for any binding.
SWITCH
DESCRIPTION
There are two separate switch pods that operate
the speed control system. The steering-wheel-
mounted switches use multiplexed circuits to provide
inputs to the PCM for ON, OFF, RESUME, ACCEL-
ERATE, SET, DECEL and CANCEL modes. Refer to
the owner's manual for more information on speed
control switch functions and setting procedures.
The individual switches cannot be repaired. If one
switch fails, the entire switch module must be
replaced.
OPERATION
When speed control is selected by depressing the
ON, OFF switch, the PCM allows a set speed to be
stored in its RAM for speed control. To store a set
speed, depress the SET switch while the vehicle is
moving at a speed between approximately 35 and 85
mph. In order for the speed control to engage, the
brakes cannot be applied, nor can the gear selector
be indicating the transmission is in Park or Neutral.
The speed control can be disengaged manually by:
²Stepping on the brake pedal
²Depressing the OFF switch
²Depressing the CANCEL switch.
The speed control can be disengaged also by any of
the following conditions:
²An indication of Park or Neutral
²The VSS signal increases at a rate of 10 mph
per second (indicates that the co-efficient of friction
between the road surface and tires is extremely low)
²Depressing the clutch pedal.
²Excessive engine rpm (indicates that the trans-
mission may be in a low gear)
Fig. 5 SPEED CONTROL SERVO
1-9T9FITTING
2 - VACUUM LINE
3 - SERVO BRACKET MOUNTING NUTS
4 - SERVO MOUNTING BRACKET
5 - SERVO
6 - SERVO ELECTRICAL CONNECTOR
Fig. 6 SERVO CABLE CLIP REMOVE/INSTALL
TYPICAL
1 - SERVO MOUNTING NUTS (2)
2 - SERVO
3 - CABLE RETAINING CLIP
4 - SERVO CABLE AND SLEEVE
KJSPEED CONTROL 8P - 5
SERVO (Continued)

Page 685 of 1803

ergize the combination flasher, the horn relay (except
vehicles with the Rest-Of-World or ROW premium
version of the VTA), and the security indicator. In
addition, in vehicles built for certain markets where
the ROW premium version of the VTA is required,
the BCM also exchanges electronic messages with
the Intrusion Transceiver Module (ITM) over the Pro-
grammable Communications Interface (PCI) data bus
network to provide the features found in this version
of the VTA.
The hard wired circuits and components of the
VTA may be diagnosed and tested using conventional
diagnostic tools and procedures. However, conven-
tional diagnostic methods may not prove conclusive
in the diagnosis of the Body Control Module (BCM),
the ElectroMechanical Instrument Cluster (EMIC),
the Intrusion Transceiver Module (ITM), or the Pro-
grammable Communications Interface (PCI) data bus
network. The most reliable, efficient, and accurate
means to diagnose the BCM, the EMIC, the ITM,
and the PCI data bus network inputs and outputs
related to the VTA requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation. Following are paragraphs that briefly
describe the operation of each of the VTA features.
See the owner's manual in the vehicle glove box for
more information on the features, use and operation
of the VTA.
²ENABLING- The BCM must have the VTA
function electronically enabled in order for the VTA
to perform as designed. The logic in the BCM keeps
its VTA function dormant until it is enabled using a
DRBIIItscan tool. The VTA function of the BCM is
enabled on vehicles equipped with the VTA option at
the factory, but a service replacement BCM must be
VTA-enabled by the dealer using a DRBIIItscan
tool. Refer to the appropriate diagnostic information.
²PRE-ARMING- The VTA has a pre-arming
sequence. Pre-arming occurs when a door, the tail-
gate, or the flip-up glass is open when the vehicle is
locked using a power lock switch, or when the ªLockº
button on the Remote Keyless Entry (RKE) transmit-
ter is depressed. The power lock switch will not ini-
tiate the pre-arming sequence if the key is in the
ignition switch. When the VTA is pre-armed, the
arming sequence is delayed until all of the doors, the
tailgate, and the flip-up glass are closed.
²ARMING- Passive arming of the VTA occurs
when the vehicle is exited with the key removed from
the ignition switch and the doors are locked while
they are open using the power lock switch (see Pre-
Arming). Active arming of the VTA occurs when the
ªLockº button on the Remote Keyless Entry (RKE)
transmitter is depressed to lock the vehicle after all
of the doors, the tailgate, and the flip-up glass are
closed. The VTA will not arm if the doors are lockedusing the key in a lock cylinder or using a mechani-
cal lock button. Once the VTA begins the passive or
active arming sequence, the security indicator in the
instrument cluster will flash rapidly for about six-
teen seconds. This indicates that the VTA arming
sequence is in progress. If the ignition switch is
turned to the On position, if a door is unlocked with
the power lock switch or the RKE transmitter, or if
the tailgate is unlocked by any means during the six-
teen second arming sequence, the security indicator
will stop flashing and the VTA arming sequence will
abort. On vehicles equipped with the hood ajar
switch, the VTA arming sequence will occur regard-
less of whether the hood is open or closed, but the
underhood area will not be protected unless the hood
is closed when the VTA arming sequence begins.
Also, if the status of the hood ajar switch changes
from open (hood closed) to closed (hood open) during
the sixteen second arming sequence, the security
indicator will stop flashing and the VTA arming
sequence will abort. Once the sixteen second arming
sequence is successfully completed, the security indi-
cator will flash at a slower rate, indicating that the
VTA is armed.
²DISARMING- For vehicles built for the North
American market, disarming of the VTA occurs when
the vehicle is unlocked using the key to unlock a door
or the tailgate. Disarming of the VTA for any market
also occurs when the vehicle is unlocked by depress-
ing the ªUnlockº button of the Remote Keyless Entry
(RKE) transmitter, or by turning the ignition switch
to the On position using a valid Sentry Key Immobi-
lizer System (SKIS) key. Once the alarm has been
activated, any of these disarming methods will also
deactivate the alarm.
²POWER-UP MODE- When the armed VTA
senses that the battery has been disconnected and
reconnected, it enters its power-up mode. In the pow-
er-up mode the alarm system returns to the mode
that was last selected prior to the battery failure or
disconnect. If the VTA was armed prior to the battery
disconnect or failure, the technician or vehicle opera-
tor will have to actively or passively disarm the sys-
tem after the battery is reconnected. The power-up
mode will also apply if the battery goes dead while
the system is armed, and battery jump-starting is
then attempted. The VTA will remain armed until
the technician or vehicle operator has actively or pas-
sively disarmed the system. If the VTA is in the dis-
armed mode prior to a battery disconnect or failure,
it will remain disarmed after the battery is recon-
nected or replaced, or if jump-starting is attempted.
²ALARM- The VTA alarm output varies by the
version of the VTA with which the vehicle is
equipped. In all cases, the alarm provides both visual
and audible outputs; however, the time intervals of
8Q - 4 VEHICLE THEFT SECURITYKJ
VEHICLE THEFT SECURITY (Continued)

Page 686 of 1803

these outputs vary by the requirements of the mar-
ket for which the vehicle is manufactured. In all
cases, the visual output will be a flashing on and off
of the exterior lamps. For vehicles equipped with the
North American or the ROW base version of the
VTA, the audible output will be a pulsing of the horn.
For vehicles with the ROW premium version of the
VTA, the audible output will be a cycling of the
alarm siren. See the owner's manual in the vehicle
glove box for details of the alarm output require-
ments of the specific market for which the vehicle
was manufactured. The inputs that will trigger the
alarm include the door ajar switches, the tailgate
ajar switch, the flip-up glass ajar switch, and in vehi-
cles built for certain markets where they are
required, the hood ajar switch and the Intrusion
Transceiver Module (ITM).
²TAMPER ALERT- The VTA tamper alert fea-
ture will pulse the horn (or the alarm siren for the
ROW premium version of the VTA) three times upon
VTA disarming, if the alarm was triggered and has
since timed-out. This feature alerts the vehicle oper-
ator that the VTA alarm was activated while the
vehicle was unattended.
²INTRUSION ALARM- The intrusion alarm is
an exclusive feature of the ROW premium version of
the VTA, which is only available in certain markets
where it is required. When the VTA is armed, a
motion sensor in the Intrusion Transceiver Module
(ITM) monitors the interior of the vehicle for move-
ment. If motion is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus to
invoke the visual alarm feature, and sends an elec-
tronic message to the alarm siren in the engine com-
partment over a dedicated serial bus to invoke the
audible alarm feature. The motion detect feature of
the ITM can be disabled by depressing the ªLockº
button on the RKE transmitter three times within
fifteen seconds during VTA arming, while the secu-
rity indicator is still flashing rapidly. The VTA pro-
vides a single short siren ªchirpº as an audible
confirmation that the motion detect disable request
has been received. The ITM must be electronically
enabled in order for the intrusion alarm to perform
as designed. The logic in the ITM keeps its intrusion
alarm function dormant until it is enabled using a
DRBIIItscan tool. The intrusion alarm function of
the ITM is enabled on vehicles equipped with thisoption at the factory, but a service replacement ITM
must be configured and enabled by the dealer using a
DRBIIItscan tool. Refer to the appropriate diagnos-
tic information.
SENTRY KEY IMMOBILIZER SYSTEM The Sen-
try Key Immobilizer System (SKIS) is designed to
provide passive protection against unauthorized vehi-
cle use by disabling the engine after about two sec-
onds of running, whenever any method other than a
valid Sentry Key is used to start the vehicle. The
SKIS is considered a passive protection system
because it is always active when the ignition system
is energized and does not require any customer inter-
vention. The SKIS uses Radio Frequency (RF) com-
munication to obtain confirmation that the key in the
ignition switch is a valid key for operating the vehi-
cle. The microprocessor-based SKIS hardware and
software also use electronic messages to communi-
cate with other electronic modules in the vehicle over
the Programmable Communications Interface (PCI)
data bus. (Refer to 8 - ELECTRICAL/ELECTRONIC
CONTROL MODULES/COMMUNICATION - OPER-
ATION).
Pre-programmed Sentry Key transponders are pro-
vided with the vehicle from the factory. Each Sentry
Key Immobilizer Module (SKIM) will recognize a
maximum of eight Sentry Keys. If the customer
would like additional keys other than those provided
with the vehicle, they may be purchased from any
authorized dealer. These additional keys must be pro-
grammed to the SKIM in the vehicle in order for the
system to recognize them as valid keys. This can be
done by the dealer using a DRBIIItscan tool or, if
Customer Learn programming is an available SKIS
feature in the market where the vehicle was pur-
chased, the customer can program the additional
keys, as long as at least two valid Sentry Keys are
already available. (Refer to 8 - ELECTRICAL/VEHI-
CLE THEFT SECURITY - STANDARD PROCE-
DURE - TRANSPONDER PROGRAMMING).
The SKIS performs a self-test each time the igni-
tion switch is turned to the On position, and will
store fault information in the form of Diagnostic
Trouble Codes (DTC's) if a system malfunction is
detected. The SKIS can be diagnosed, and any stored
DTC's can be retrieved using a DRBIIItscan tool.
Refer to the appropriate diagnostic information.
KJVEHICLE THEFT SECURITY 8Q - 5
VEHICLE THEFT SECURITY (Continued)

Page 696 of 1803

electronic circuitry of the ITM which includes a
microprocessor, and an ultrasonic receive transducer.
A molded plastic connector receptacle containing six
terminal pins that is soldered to a small circuit board
and extends through a clearance hole in the left front
corner of the ITM housing, and an ultrasonic trans-
mit transducer housing extends from the center of
the right side of the ITM housing. Both the transmit
transducer on the right side of the module and the
receive transducer on the ITM circuit board are
aimed through two small round holes in the sight
shield of the trim cover. The ITM is connected to the
vehicle electrical system by a dedicated take out and
connector of the overhead wire harness that is inte-
gral to the headliner.
The ITM unit cannot be adjusted or repaired and,
if faulty or damaged, it must be replaced. The ITM is
serviced as a unit with the trim cover.
OPERATION
The microprocessor in the Intrusion Transceiver
Module (ITM) contains the motion sensor logic cir-
cuits and controls all of the features of the premium
version of the Vehicle Theft Alarm (VTA). The ITM
uses On-Board Diagnostics (OBD) and can communi-
cate with other electronic modules in the vehicle as
well as with the DRBIIItscan tool using the Pro-
grammable Communications Interface (PCI) data bus
network. This method of communication is used by
the ITM to communicate with the Body Control Mod-
ule (BCM) and for diagnosis and testing through the
16-way data link connector located on the driver side
lower edge of the instrument panel. The ITM also
communicates with the alarm siren over a dedicated
serial bus circuit.
The ITM microprocessor continuously monitors
inputs from its on-board motion sensor circuitry as
well as inputs from the BCM and the alarm siren
module. The on-board ITM motion sensor circuitry
transmits ultrasonic signals into the vehicle cabin
through a transmit transducer, then listens to the
returning signals as the bounce off of objects in the
vehicle interior. If an object is moving in the interior,
a detection circuit in the ITM senses this movement
through the modulation of the returning ultrasonic
signals that occurs due to the Doppler effect. The
motion detect function of the ITM can be disabled by
depressing the ªLockº button on the Remote Keyless
Entry (RKE) transmitter three times within fifteen
seconds, while the security indicator is still flashing
rapidly. The ITM will signal the alarm siren module
to provide a single siren ªchirpº as an audible confir-
mation that the motion sensor function has been dis-
abled.
If movement is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus toflash the exterior lighting and sends an electronic
message to the alarm siren module over a dedicated
serial bus line to sound the siren. When the BCM
detects a breach in the perimeter protection through
a door, tailgate, flip-up glass, or hood ajar switch
input, it sends an electronic message to the ITM and
the ITM sends an electronic message to the BCM
over the PCI data bus to flash the exterior lighting
and sends an electronic message to the alarm siren
module over a dedicated serial bus line to sound the
siren. The ITM also monitors inputs from the alarm
siren module for siren battery or siren input/output
circuit tamper alerts, and siren battery condition
alerts, then sets active and stored Diagnostic Trouble
Codes (DTC) for any monitored system faults it
detects. An active fault only remains for the current
ignition switch cycle, while a stored fault causes a
DTC to be stored in memory by the ITM. If a fault
does not recur for fifty ignition cycles, the ITM will
automatically erase the stored DTC.
The ITM is connected to the vehicle electrical sys-
tem through a dedicated take out and connector of
the overhead wire harness. The ITM receives battery
current on a fused B(+) circuit through a fuse in the
Junction Block (JB), and receives ground through a
ground circuit and take out of the body wire harness.
This ground take out has a single eyelet terminal
connector that is secured by a ground screw to the
base of the left D-pillar behind the quarter trim
panel. These connections allow the ITM to remain
operational, regardless of the ignition switch position.
The hard wired inputs and outputs for the ITM may
be diagnosed and tested using conventional diagnos-
tic tools and procedures. However, conventional diag-
nostic methods will not prove conclusive in the
diagnosis of the ITM, the PCI data bus network, or
the electronic message inputs to and outputs from
the ITM. The most reliable, efficient, and accurate
means to diagnose the ITM, the PCI data bus net-
work, and the electronic message inputs to and out-
puts from the ITM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) While pulling downward lightly on either rear
corner of the Intrusion Transceiver Module (ITM)
trim cover, insert a small thin-bladed screwdriver
through each of the service holes on the rear edge of
the trim cover to depress and release the two inte-
gral rear latch features of the module from the
mounting bracket above the headliner (Fig. 11).
(3) Pull the ITM trim cover rearward far enough
to disengage the two integral front latch features of
KJVEHICLE THEFT SECURITY 8Q - 15
INTRUSION TRANSCEIVER MODULE (Continued)

Page 713 of 1803

(5) Reinstall the cowl plenum cover/grille panel
over the cowl plenum. (Refer to 23 - BODY/EXTERI-
OR/COWL GRILLE - INSTALLATION).
(6) Reinstall both front wiper arms onto the wiper
pivots. (Refer to 8 - ELECTRICAL/FRONT WIPERS/
WASHERS/FRONT WIPER ARM - INSTALLATION).
(7) Close and latch the hood.
FRONT WIPER ARM
DESCRIPTION
The front wiper arms are the rigid members located
between the wiper pivots that protrude from the cowl
plenum cover/grille panel near the base of the wind-
shield and the wiper blades on the windshield glass
(Fig. 9). These wiper arms feature an over-center hinge
that allows easy access to the windshield glass for
cleaning. The wiper arm has a die cast metal pivot end
with a large tapered mounting hole at one end. A
molded black plastic cap fits over the wiper arm retain-
ing nut to conceal the nut and this mounting hole fol-
lowing wiper arm installation. The wide end of a
tapered, stamped steel channel hinges on and is secured
with a hinge pin to the blade end of the wiper arm pivot
end. One end of a long, rigid, stamped steel strap, with
a small hole near its pivot end, is riveted and crimped
within the narrow end of the stamped steel channel.
The tip of the wiper blade end of this strap is bent back
under itself to form a small hook. Concealed within the
stamped steel channel, one end of a long spring is
engaged with a wire hook on the underside of the diecast pivot end, while the other end of the spring is
hooked through the small hole in the steel strap. The
entire wiper arm has a satin black finish applied to all
of its visible surfaces.
A wiper arm cannot be adjusted or repaired. If
damaged or faulty, the entire wiper arm unit must be
replaced.
OPERATION
The front wiper arms are designed to mechanically
transmit the motion from the wiper pivots to the wiper
blades. The wiper arm must be properly indexed to the
wiper pivot in order to maintain the proper wiper blade
travel on the glass. The tapered mounting hole in the
wiper arm pivot end interlocks with the serrations on
the tapered outer circumference of the wiper pivot shaft,
allowing positive engagement and finite adjustment of
this connection. The mounting nut locks the wiper arm
to the threaded stud of the wiper pivot shaft. The
spring-loaded wiper arm hinge controls the down-force
applied through the tip of the wiper arm to the wiper
blade on the glass. The hook formation on the tip of the
wiper arm provides a cradle for securing and latching
the wiper blade pivot block to the wiper arm.
REMOVAL
(1) Lift the front wiper arm to its over-center posi-
tion to hold the wiper blade off of the glass and
relieve the spring tension on the wiper arm to wiper
pivot shaft connection.
(2) Carefully pry the plastic nut cap off of the
pivot end of the wiper arm (Fig. 10).
(3) Remove the nut that secures the wiper arm to
the wiper pivot shaft.
Fig. 9 Front Wiper Arm
1 - HOOK
2 - STRAP
3 - CHANNEL
4 - PIVOT END
5 - PIVOT HOLE
6 - HINGE PIN
7 - TENSION SPRING
Fig. 10 Front Wiper Arm Remove/Install
1 - FRONT WIPER BLADE & ARM (2)
2 - CAP (2)
3 - NUT (2)
4 - PIVOT SHAFT (2)
5 - T-SHAPED ALIGNMENT MARK (2)
8R - 12 FRONT WIPERS/WASHERSKJ
FRONT WASHER NOZZLE (Continued)

Page:   < prev 1-10 ... 81-90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 ... 230 next >