coolant MITSUBISHI MONTERO 1998 Owner's Guide

Page 335 of 1501

Fig. 4: Locating Ignition Timing Check Connector
Courtesy of Mitsubishi Motor Sales of America
3000GT (SOHC)
1) Ignition timing is controlled by Powertrain Control Module
(PCM) and is not adjustable. Manufacturer provides procedure for
checking timing.
2) Start engine and warm engine until engine temperature
coolant is 176-203
F (80-95C). Turn engine off. Insert a paper clip
in noise filter connector. See Fig. 5. Connect a tachometer to paper
clip.
Fig. 5: Locating Noise Filter Connector
Courtesy of Mitsubishi Motor Sales of America
3) Install a timing light. Start engine and allow it to idle.
Using tachometer, read curb idle speed (RPM). Ensure curb idle speed

Page 456 of 1501

Mirage &
Montero Sport ... Behind Right Side Of Instrument Panel (Glove Box)\
Montero ..................................... Right Front Kick Panel
All Others ................................... Behind Center Console
\
\
\
\
\
\
\

NOTE: Components are grouped into 2 categories. The first category
covers INPUT DEVICES, which control or produce voltage
signals monitored by Powertrain Control Module (PCM). The
second category covers OUTPUT SIGNALS, which are components
controlled by PCM.
INPUT DEVICES
Vehicles are equipped with different combinations of input
devices. Not all input devices are used on all models. To determine
input device usage on specific models, see appropriate wiring diagram
in L - WIRING DIAGRAMS article. The following are available input
devices.
Air Conditioning Switch
When A/C is turned on, signal is sent to PCM. With engine at
idle, PCM increases idle speed through Idle Air Control (IAC) motor.
Airflow Sensor Assembly
Assembly is mounted inside air cleaner, and incorporates
barometric pressure sensor, intake air temperature sensor and volume
airflow sensor.
Barometric (BARO) Pressure Sensor
Sensor is incorporated into airflow sensor assembly. Sensor
converts barometric pressure to electrical signal, which is sent to
PCM. PCM adjusts air/fuel ratio and ignition timing according to
altitude.
Camshaft Position (CMP) Sensor
On SOHC engines equipped with a distributor, CMP sensor is
located in distributor. On Eclipse (Turbo) and DOHC V6 engines, sensor\
is located beside camshaft, in front of engine. On all other engines,
CMP sensor is a separate unit mounted in place of distributor. PCM
determines TDC based on pulse signals received from sensor, and then
controls MFI timing.
Closed Throttle Position (CTP) Switch
CTP switch is located in the Throttle Position (TP) sensor.
PCM senses whether accelerator pedal is depressed or not. High voltage
(open) or low voltage (closed) signal is input to PCM, which then
controls Idle Air Control (IAC) motor based on input signal.
Crankshaft Position (CKP) Sensor
CKP sensor is located in distributor on SOHC engines, except
1.5L 4-cylinder with California emissions. On DOHC 4-cylinder, DOHC V6
and 1.5L 4-cylinder engines with California emissions, CKP sensor is
located beside crankshaft, in front of engine. PCM determines
crankshaft position on pulse signals received from sensor, and then
controls MFI timing and ignition timing.
Engine Coolant Temperature (ECT) Sensor
ECT sensor converts coolant temperature to electrical signal
for use by PCM. PCM uses coolant temperature information to control
fuel enrichment when engine is cold.
Heated Oxygen Sensor (HO2S)

Page 458 of 1501

usage on specific models, see appropriate wiring diagram in
L - WIRING DIAGRAMS article. For theory and operation on each
output component, refer to system indicated after component.
Data Link Connector (DLC)
See SELF-DIAGNOSTIC SYSTEM .
EGR Control Solenoid Valve
See EXHAUST GAS RECIRCULATION (EGR) CONTROL under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pressure Control Solenoid Valve (Turbo)
See FUEL DELIVERY under FUEL SYSTEM.
Fuel Pressure Regulator
See FUEL DELIVERY under FUEL SYSTEM.
Idle Air Control (IAC) Motor
See IDLE SPEED under FUEL SYSTEM.
Malfunction Indicator Light
See SELF-DIAGNOSTIC SYSTEM .
Power Transistor(s) & Ignition Coils
See IGNITION SYSTEMS .
Purge Control Solenoid Valve
See EVAPORATIVE CONTROL under EMISSION SYSTEMS.
Wastegate Control Solenoid Valve
See TURBOCHARGED ENGINES under AIR INDUCTION SYSTEM.
FUEL SYSTEM
FUEL DELIVERY
Electric fuel pump, located in gas tank, feeds fuel through
in-tank fuel filter, external fuel filter (located in engine
compartment) and fuel injector rail.
Fuel Pump
Fuel pump consists of a motor-driven impeller. Pump has an
internal check valve to maintain system pressure, and a relief valve
to protect fuel pressure circuit. Pump receives voltage supply from
MFI control relay.
Fuel Pressure Control Solenoid Valve (Turbo)
Valve prevents rough idle due to fuel percolation. On engine
restart, if engine coolant or intake air temperature reaches a preset
value, PCM applies voltage to fuel pressure control solenoid valve for
2 minutes after enginerestart. Valve will open, allowing atmospheric
pressure to be applied to fuel pressure regulator diaphragm. This
allows maximum available fuel pressure at injectors, enriching fuel
mixture and maintaining stable idle at high engine temperatures.
Fuel Pressure Regulator
Located on fuel injector rail, this diaphragm-operated relief
valve adjusts fuel pressure according to engine manifold vacuum.
As engine manifold vacuum increases (closed throttle), fuel

Page 459 of 1501

pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). PCM controls amount\
of fuel metered through injectors based on information received from
sensors.
IDLE SPEED
Air Conditioning (A/C) Relay
When A/C is turned on with engine at idle, PCM signals IAC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, PCM momentarily opens A/C relay
circuit.
Idle Air Control (IAC) Motor
Motor controls pintle-type air valve to regulate volume of
intake air at idle.
During start mode, PCM controls idle intake air volume
according to Engine Coolant Temperature (ECT) sensor input. After
starting, with idle position switch activated (throttle closed), fast
idle speed is controlled by IAC motor and fast idle air control valve
(if equipped).
When idle switch is deactivated (throttle open), IAC motor
moves to a preset position in accordance with ECT sensor input.
PCM signals IAC motor to increase engine RPM in the following
situations: A/T (if applicable) is shifted from Neutral to Drive, A/C
is turned on, or power steering pressure reaches a preset value.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS)
Depending on number of cylinders, ignition system is a 2 or
3-coil, distributorless ignition system. On Eclipse (Turbo) and DOHC
V6 engines, Camshaft Position (CMP) sensor is located beside camshaft,\
in front of engine. On all other engines equipped with DIS, CMP sensor
is a separate unit mounted in place of distributor. On DOHC 4-
cylinder, DOHC V6 and 1.8L 4-cylinder engines with California
emissions, Crankshaft Position (CKP) sensor is located beside
crankshaft, in front of engine. PCM determines TDC based on pulse
signals received from sensors and then controls MFI and ignition
timing.
Power Transistors & Ignition Coils
Based on crankshaft position and CMP sensor inputs, PCM
controls timing and directly activates each power transistor to fire
coils. On 4-cylinder engines, power transistor "A" controls primary
current of ignition coil "A" to fire spark plugs on cylinders No. 1
and No. 4 at the same time. Power transistor "B" controls primary
current of ignition coil "B" to fire spark plugs on cylinders No. 2
and No. 3 at the same time. On V6 engines, companion cylinders No. 1
and 4, 2 and 5, and 3 and 6 are fired together.
On all models, although each coil fires 2 plugs at the same
time, ignition takes place in only one cylinder, since the other

Page 471 of 1501

\
\
\
\
\
\
\

Component Component Location\
\
\
\
\
\
\

ABS Speed Sensors (4) On bracket, on each wheel hub.\
Air Inlet Sensor In evaporator air duct.
Camshaft Position Sensor At bottom of left camshaft
gear.
Crankshaft Position Sensor Above crankshaft gear.
Engine Coolant Temperature Gauge Unit On thermostat housing.
Engine Coolant Temperature Sensor On thermostat housing.
Front Impact Sensor (Left) (SRS) On left front of engine
compartment.
Front Impact Sensor (Right) (SRS) On right front of engine
compartment.
Fuel Gauge Unit In fuel tank.
Fuel Tank Differential Pressure Sensor
(Calif.) Top of fuel tank.
G-Sensor (ABS) In center console, rear of
parking brake lever.
Geomagnetic Sensor (Compass) On top center of dash.

Page 474 of 1501

Center Differential Lock Operation
Detection Switch On transfer case.
Dual Pressure Switch On high pressure line, on
receiver-drier.
Engine Coolant Temperature Switch Top right front of engine.
Free Wheel Engage Switch Right side of engine
compartment.
High Range/Low Range Detection Switch On transfer case.
Low Range Operation Detection Switch On transfer case.
Oil Pressure Switch Lower left front of engine.
Parking Brake Switch At base of parking brake
lever.
Power Steering Pressure Switch On power steering pump.
Rear Differential Lock Detection
Switch Under rear of vehicle, on
differential.
Reed Switch Integral with speedometer.
Seat Belt Switch On driver-side seat belt
buckle.
Stoplight Switch On bracket, above brake pedal.
2WD/4WD Detection Switch On transfer case.
4WD Operation Detection Switch On transfer case.
\
\
\
\
\
\
\

MISCELLANEOUS
\
\
\
\
\
\
\

Component Component Location\
\
\
\
\
\
\

Amplifier Under center console, below
floor.
Data Link Connector (DLC) Behind left side of dash,
near relay box.

Page 496 of 1501

Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Refer to manufacturer's diagnostic trouble code procedure
and require repair or replacement of affected
component(s).
( 2) - Determine cause and correct prior to repair or replacement
of part.
( 3) - Determine source of contamination, such as engine
coolant, fuel, metal particles, or water. Require
repair or replacement.
( 4) - Inoperative includes intermittent operation or out of OEM
specification. Some components may be serviceable; check
for accepted cleaning procedure.
\
\
\
\
\
\
\

CRUISE CONTROL BRAKE SWITCHES
See SWITCHES.
CRUISE CONTROL CABLES
See CRUISE CONTROL LINKAGES AND CABLES .
CRUISE CONTROL CLUTCH SWITCHES
See SWITCHES.
CRUISE CONTROL LINKAGES AND CABLES
CRUISE CONTROL LINKAGE AND CABLE INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement
of hardware.
Bent .................... A .. Require repair or replacement.
Binding ................. A .. Require repair or replacement.
Bracket bent, affecting
performance ............ A .. Require repair or replacement.
Bracket bent, not
affecting performance .. .. ........ No service suggested or
required.
Bracket broken, affecting
performance ............ A ............ Require replacement.
Bracket broken, not
affecting performance .. .. ........ No service suggested or
required.
Bracket corroded,
affecting performance .. A .. Require repair or replacement.
Bracket corroded, not
affecting performance .. 2 .. Suggest repair or replacement.

Page 542 of 1501

These 3 orifices are opened and closed by electric solenoids. The
solenoids are, in turn, controlled by the Electronic Control Module
(ECM). When a solenoid is energized, the armature with attached shaft
and swivel pintle is lifted, opening the orifice. See Fig. 11.
The ECM uses inputs from the Coolant Temperature Sensor
(CTS), Throttle Position Sensor (TPS) and Mass Airflow (MAF) senso\
rs
to control the EGR orifices to make 7 different combinations for
precise EGR flow control. At idle, the EGR valve allows a very small
amount of exhaust gas to enter the intake manifold. This EGR valve
normally operates above idle speed during warm engine operation.
Verify EGR valve is present and not modified or purposely
damaged. Ensure thermal vacuum switches, pressure transducers, speed
switches, etc., (if applicable) are not by-passed or modified. Ensure
vacuum hose(s) to EGR valve is not plugged. Ensure electrical
connector to EGR valve is not disconnected.
Fig. 11: Typical Digital EGR Valve
Courtesy of General Motors Corp.
Integrated Electronic EGR Valve
This type functions similar to a ported EGR valve with a

Page 587 of 1501

Engine pre-oiling can be done using pressure oiler (if
available). Connect pressure oiler to cylinder block oil passage
such as oil pressure sending unit. Operate pressure oiler long enough
to ensure correct amount of oil has filled crankcase. Check oil level
while pre-oiling.
If pressure oiler is not available, disconnect ignition
system. Remove oil pressure sending unit and replace with oil pressure
test gauge. Using starter motor, rotate engine starter until gauge
shows normal oil pressure for several seconds. DO NOT crank engine
for more than 30 seconds to avoid starter motor damage.
Ensure oil pressure has reached the most distant point from
the oil pump. Reinstall oil pressure sending unit. Reconnect ignition
system.
INITIAL START-UP
Start the engine and operate engine at low speed while
checking for coolant, fuel and oil leaks. Stop engine. Recheck coolant
and oil level. Adjust if necessary.
CAMSHAFT
Break-in procedure is required when a new or reground
camshaft has been installed. Operate and maintain engine speed between
1500-2500 RPM for approximately 30 minutes. Procedure may vary due to
manufacturers recommendations.
PISTON RINGS
Piston rings require a break-in procedure to ensure seating
of rings to cylinder walls. Serious damage may occur to rings if
correct procedures are not followed.
Extremely high piston ring temperatures are produced obtained
during break-in process. If rings are exposed to excessively high RPM
or high cylinder pressures, ring damage can occur. Follow piston ring
manufacturer's recommended break-in procedure.
FINAL ADJUSTMENTS
Check or adjust ignition timing and dwell (if applicable).
Adjust valves (if necessary). Adjust carburetion or injection idle
speed and mixture. Retighten cylinder heads (if required). If
cylinder head or block is aluminum, retighten bolts when engine is
cold. Follow the engine manufacturer's recommended break-in procedure
and maintenance schedule for new engines.
NOTE: Some manufacturer's require that head bolts be retightened
after specified amount of operation. This must be done to
prevent head gasket failure.

Page 589 of 1501

CLUTCH PEDAL POSITION SWITCHES
COLD START INJECTORS
CONNECTORS
COOLANT
COOLANT RECOVERY TANKS
COOLING FAN MOTOR MODULES
COOLING FAN MOTOR RELAYS AND MODULES
COOLING FAN MOTOR RESISTORS
COOLING FAN MOTOR SENSORS AND SWITCHES
COOLING FAN MOTOR SWITCHES
COOLING FAN MOTORS
CRANKSHAFT POSITION SENSORS
DECEL VALVES
DEFLECTORS
DIP STICKS AND TUBES
DIP STICK TUBES
DISTRIBUTOR ADVANCES AND RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR BOOTS AND SHIELDS
DISTRIBUTOR CAPS
DISTRIBUTOR RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR ROTORS
DISTRIBUTOR SHIELDS
DISTRIBUTORS
EARLY FUEL EVAPORATION VALVES (HEAT RISER ASSEMBLIES)
EGR COOLERS
EGR EXHAUST MANIFOLD PASSAGES
EGR INTAKE AND EXHAUST MANIFOLD PASSAGES
EGR PLATES AND COOLERS
ELECTRONIC SPARK CONTROL MODULES
ELECTRONIC TRANSMISSION CONTROL DEVICES
ELECTRONIC TRANSMISSION FEEDBACK DEVICES
ENGINE COOLANT TEMPERATURE SENSORS
ENGINE COOLING SYSTEMS
ENGINE COVERS (OIL PAN, VALVE COVER, TIMING COVER)
ENGINE OIL
ENGINE OIL CANISTERS
ENGINE OIL COOLERS (EXTERNAL)
ENGINE OIL DRAIN PLUGS AND GASKETS
ENGINE OIL FILTERS AND CANISTERS
ENGINE OIL GASKETS
ENGINE OIL PRESSURE GAUGES (MECHANICAL)
EVAPORATIVE EMISSION (EVAP) CANISTER FILTERS
EVAPORATIVE EMISSION (EVAP) CANISTER PURGE DEVICES
EVAPORATIVE EMISSION (EVAP) CANISTERS
EVAPORATIVE EMISSION (EVAP) FEEDBACK DEVICES
EXHAUST GAS RECIRCULATION DEVICES
EXHAUST GAS RECIRCULATION FEEDBACK DEVICES
EXPANSION PLUGS
FAN CONTROL SENSORS
FUEL
FUEL ACCUMULATORS AND DAMPERS
FUEL AND COLD START INJECTORS
FUEL DAMPERS
FUEL DELIVERY CHECK VALVES
FUEL DISTRIBUTORS (BOSCH CIS)
FUEL FILLER NECKS AND RESTRICTORS
FUEL FILTERS
FUEL INJECTORS
FUEL LEVEL SENDERS7
FUEL PRESSURE REGULATORS
FUEL PUMPS (IN-TANK AND EXTERNAL, ELECTRICAL OR MECHANICAL)
FUEL RAILS
FUEL RESTRICTORS

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 ... 130 next >