fuse MITSUBISHI MONTERO 1998 Service Manual

Page 28 of 1501

\
\b\
\
\
\
\
\


EAC Electric Assist Choke 

EACV Electric Air Control Valve 

EBCM Electronic Brake Control Module 

ECA Electronic Control Assembly 

ECAT Electronically Controlled Automatic Transaxle 

ECM Electronic Control Module 

ECT Engine Coolant Temperature Sensor 

ECU Electronic Control Unit or Engine Control Unit 

EDF Electric Drive Fan relay assembly 

EDIS Electronic Distributorless Ignition System 

EEC Electronic Engine Control 

EECS Evaporative Emission Control System 

EEPROM Electronically Erasable PROM 

EFE Early Fuel Evaporation 

EFI Electronic Fuel Injection 

EGO Exhaust Gas Oxygen sensor (see HEGO) 

EGR Exhaust Gas Recirculation system 

EGRC EGR Control solenoid or system 

EGRV EGR Vent solenoid or system 

EMR Emission Maintenance Reminder Module 

ESA Electronic Spark Advance 

ESC Electronic Spark Control 

EST Electronic Spark Timing 

ETR Emergency Tensioning Retractor 

EVAP Fuel Evaporative System 

EVIC Electronic Vehicle Information Center 

EVO Electronic Variable Orifice 

EVP EGR Valve Position Sensor 

EVR EGR Valve Regulator 

EVRV Electronic Vacuum Regulator Valve 

Elect. Electronic 

Eng. Engine 

Evap. Evaporative 

Exc. Except 


\
 \
\
\
\
\
\
\f

"F" ABBREVIATION TABLE
"F" ABBREVIATION TABLE\
\
\
\
\
\
\
 
ABBREVIATION DEFINITION 

\
\b\
\
\
\
\
\


F Fahrenheit (Degrees) 

F/B Fuse Block 

FBC Feedback Carburetor 

FI Fuel Injector or Fuel Injection 

FICD Fast Idle Control Device 

FIPL Fuel Injector Pump Lever 

FP Fuel Pump 

FPM Fuel Pump Monitor 

FPR-VSV Fuel Pressure Regulator Vacuum Switching Valve 

FWD Front Wheel Drive 

Fed. Federal 

Ft. Lbs. Foot Pounds 


\
 \
\
\
\
\
\
\f

"G" ABBREVIATION TABLE
"G" ABBREVIATION TABLE\
\
\
\
\
\
\


ABBREVIATION DEFINITION 

Page 44 of 1501

* A/C-HEATER SYSTEM UNIFORM INSPECTION GUIDELINES *
1998 Mitsubishi Montero
GENERAL INFORMATION
A/C-Heater System Motorist Assurance Program
Standards For Automotive Repair
All Makes and Models
INTRODUCTION TO MOTORIST ASSURANCE PROGRAM (MAP)
CONTENTS
Motorist Assurance Program (MAP)
OVERVIEW
OVERVIEW OF SERVICE REQUIREMENTS & SUGGESTIONS
Heating, Ventilation and Air Conditioning
ACCUMULATORS
ACTUATORS (ELECTRICAL)
ACTUATORS (VACUUM)
AIR CONDITIONING FITTINGS
AIR CONDITIONING HOSES
AIR CONDITIONING METAL LINES, HOSES AND FITTING ASSEMBLIES
AIR CONTROL DOORS
AIR DAMS (EXTERNAL)
AIR DISTRIBUTION SYSTEM
BELTS
BLEND DOORS
BLOWER FANS (BLOWER WHEEL OR SQUIRREL CAGE)
BLOWER MOTORS
BLOWER RESISTORS
BLOWER SWITCHES
CABIN AIR FILTERS
CIRCUIT BREAKERS
COMPRESSOR CLUTCH ASSEMBLIES
COMPRESSORS
CONDENSER AIR SEALS
CONDENSER FAN MOTORS
CONDENSERS
CONNECTORS
CONTROL CABLES
CONTROL HEADS (FUNCTION SELECTORS)
CONTROL LINKAGES
CONTROL MODULES
COOLANT
COOLING FAN BLADES
COOLING FAN CLUTCHES
COOLING FAN MOTORS
EVAPORATOR DRAIN TUBES
EVAPORATOR PRESSURE REGULATORS (EPRS)
EVAPORATORS
EXPANSION VALVES
FUNCTION SELECTORS
FUSES, FUSIBLE LINKS AND CIRCUIT BREAKERS
FUSIBLE LINKS
GASKETS
HEATER CASES
HEATER CONTROL VALVES
HEATER CORES

Page 47 of 1501

or the vehicle manufacturer's recommended service interval and must be
documented.
Some conditions indicate that service or part replacement is
required because the part in question is no longer providing the
function for which it is intended, does not meet a vehicle
manufacturer's design specification or is missing.
Example:
An exhaust pipe has corroded severely and has a hole in it
through which exhaust gases are leaking. Replacement of the
exhaust pipe in this case is required due to functional
failure.
Example:
A brake rotor has been worn to the point where it measures
less than the vehicle manufacturer's discard specifications.
Replacement of the rotor is required because it does not meet
design specifications.
Some conditions indicate that a service or part replacement
is suggested because the part is close to the end of its useful life
or addresses a customer's need, convenience or request. If a
customer's vehicle has one of these conditions, the procedure may be
only to suggest service.
Example:
An exhaust pipe is rusted, corroded or weak, but no leaks are
present. In this case, the exhaust pipe has not failed.
However, there is evidence that the pipe may need replacement
in the near future. Replacement of the pipe may be suggested
for the customer's convenience in avoiding a future problem.
Example:
The customer desires improved ride and/or handling, but the
vehicle's shocks or struts have not failed. In this case,
replacement may be suggested to satisfy the customer's
wishes. In this case, replacement of the shocks or struts may
not be sold as a requirement.
A customer, of course, has the choice of whether or not a
shop will service his or her vehicle. He or she may decide not to
follow some of your suggestions. When a repair is required, a MAP shop
must refuse partial service on that system if, in the judgment of the
service provider, proceeding with the work could create or continue an
unsafe condition. When a procedure states that required or suggested
repair or replacement is recommended, the customer must be informed of
the generally acceptable repair/replacement options whether or not
performed by the shop.
When presenting suggested repairs to the customer, you must
present the facts, allowing the customer to draw their own conclusions
and make an informed decision about how to proceed.
The following reasons may be used for required and suggested
services. These codes are shown in the "Code" column of the MAP
Uniform Inspection & Communications Standards that follow:
Reasons to Require Repair or Replacement
A - Part no longer performs intended purpose
B - Part does not meet a design specification (regardless of
performance)
C - Part is missing
NOTE: When a repair is required, the shop must refuse partial

Page 55 of 1501

Connector missing ....... C ............ Require replacement.
Inoperative ............. A ........ (2) Require replacement.
Insulation overheated ... A ............ Require replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... ( 1) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
( 1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Inoperative includes intermittent operation or out of
OEM specification.
\
\
\
\
\
\
\

BLOWER SWITCHES
See SWITCHES.
CABIN AIR FILTERS
CABIN AIR FILTER INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Air flow obstruction .... A ............. Require cleaning or
replacement.
Maintenance intervals ... 3 ............ Suggest replacement.
Missing ................. C ............ Require replacement.
\
\
\
\
\
\
\

CIRCUIT BREAKERS
See FUSES, FUSIBLE LINKS AND CIRCUIT BREAKERS .
COMPRESSOR CLUTCH ASSEMBLIES
COMPRESSOR CLUTCH ASSEMBLY INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Air gap incorrect ....... B .. Require repair or replacement.
Bearing seized .......... A .. Require replacement of bearing
or assembly.
Bearing worn, affecting
performance ............ A .. Require replacement of bearing
or assembly.
Coil shows signs of
overheating ............ 1 .... Suggest replacement of coil.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking .......... A .. Require repair or replacement.
Connector melted,

Page 67 of 1501

(such as compression
fitting) ............... B ............ Require replacement.
Flange leaking .......... A .. Require repair or replacement.
Leaking ................. A .. Require repair or replacement.
Restricted internally ... A .. Require repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
\
\
\
\
\
\
\

EXPANSION VALVES
EXPANSION VALVE INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Application incorrect ... B ............ Require replacement.
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement
of hardware.
Corroded internally ..... 1 ............ Suggest replacement.
Filter screen torn ...... A .. Require replacement of screen.
Inoperative ............. A ........... ( 1) Require repair or
replacement.
Leaking ................. A ............ Require replacement.
Restricted .............. A .. Require repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
( 1) - Expansion valve operation may be affected by capillary
tube location, corrosion, and insulation tape.
Inoperative includes intermittent operation.
\
\
\
\
\
\
\

FUNCTION SELECTORS
See CONTROL HEADS (FUNCTION SELECTORS) .
FUSES, FUSIBLE LINKS AND CIRCUIT BREAKERS
FUSE, FUSIBLE LINK AND CIRCUIT BREAKER INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Application incorrect ... B ............ Require replacement.
Blown ................... A ........ ( 1) Require replacement.
Corroded, affecting
performance ............ A .. Require repair or replacement.
Corroded, not affecting
performance ............ 2 .. Suggest repair or replacement.
Cracked, affecting
performance ............ A .. Require repair or replacement.
Cracked, not affecting
performance ............ 1 .. Suggest repair or replacement.
Inoperative ............. A ... ( 2) Require replacement.
Insulation damaged,

Page 68 of 1501

conductors exposed ..... A .. Require repair or replacement.
Insulation damaged,
conductors not exposed . 1 .. Suggest repair or replacement.
Missing ................. C ............ Require replacement.
Routed incorrectly ...... B ................. Require repair.
Secured incorrectly ..... B ................. Require repair.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned, affecting
performance ............ A ........... (1) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
( 1) - Determine cause and correct prior to replacement
of part.
( 2) - Inoperative includes intermittent operation.
\
\
\
\
\
\
\

FUSIBLE LINKS
See FUSES, FUSIBLE LINKS AND CIRCUIT BREAKERS .
GASKETS
GASKET INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Leaking ................. A ........... ( 1) Require repair or
replacement.
( 1) - Require inspection of mating and sealing surface and
repair or replace as necessary.
\
\
\
\
\
\
\

HEATER CASES
See PLENUMS.
HEATER CONTROL VALVES
HEATER CONTROL VALVE INSPECTION\
\
\
\
\
\
\

Condition Code Procedure
Application incorrect ... B ............ Require replacement.
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement

Page 86 of 1501

ADJUSTMENTS
NOTE: For adjustment procedures, see HEATER SYSTEM article.
TROUBLE SHOOTING
NO COOLING
1) Ensure compressor clutch is operating. If compressor
clutch is operating, go to next step. If compressor clutch is not
operating, check fuses and A/C switch. Check dual-pressure switch.
Check air inlet sensor and air thermosensor. Check A/C compressor
relay. Check A/C compressor clutch coil. Check A/C control unit.
2) Ensure system is properly charged with correct amount of
refrigerant. Evacuate and charge system as necessary. Ensure receiver-
drier is not clogged. Check compressor belt for proper tension. Check
for clogged expansion valve. Check compressor operation. Repair or
replace components as necessary.
INSUFFICIENT AIRFLOW
Check for air leakage at air duct joint. Check for frost on
evaporator. Ensure blower motor is operating properly. Check for
obstructed air intake.
INSUFFICIENT COOLING
Ensure system is properly charged with correct amount of
refrigerant and free of air and moisture. Evacuate and charge system
as necessary. Ensure receiver-drier is not clogged. Ensure sufficient
airflow through condenser exists. Check compressor belt for proper
tension. Check compressor operation. Repair or replace compressor as
necessary. Check for clogged expansion valve. Replace expansion valve
as necessary. Check A/C compressor clutch coil.
INTERMITTENT COOL AIR
Check for air or moisture in system. Evacuate and charge
system as necessary. Check for expansion valve malfunction. Replace
expansion valve if necessary. Check compressor belt for proper
tension.
TESTING
* PLEASE READ THIS FIRST *
WARNING: To avoid injury from accidental air bag deployment, read and
carefully follow all SERVICE PRECAUTIONS and DISABLING &
ACTIVATING AIR BAG SYSTEM procedures in AIR BAG RESTRAINT
SYSTEM article.
NOTE: For testing procedures not covered in this article, see
HEATER SYSTEM article.
A/C SYSTEM PERFORMANCE
1) Park vehicle out of direct sunlight. Install A/C gauge
set. Start engine and allow it to idle at 1000 RPM. Turn A/C on. Set
A/C controls to recirculated air, panel (vent) mode and full cold

Page 108 of 1501

When ignition switch is turned to ON or START position, SRS
warning light on instrument panel should come on for about 7 seconds
and then go off. This indicates SRS-ECU has determined SRS is
functioning properly. If SRS warning light flashes, stays on all the
time, or does not come on, a fault exists in SRS. See
DIAGNOSIS & TESTING.
FRONT IMPACT SENSORS
Sensors are inertia switches that verify direction and
severity of impact. If impact is great enough, switch contacts close,
completing an electrical circuit. Front impact sensors are located
under front fenders. See Fig. 1.
AIR BAG MODULE(S)
An inflator assembly in the air bag module produces nitrogen
gas to fill air bag. See Fig. 1. When a small amount of current from
SRS-ECU is applied, ignitor starts a thermal reaction, which spreads
to a pellet-filled canister that produces nitrogen gas. Gas pressure
builds and discharges from inflator through a diffuser and screen
assembly, forcing trim cover to burst along its seams until air bag is
fully inflated. When air bag is fully inflated, gas escapes through
vents on sides of air bag.
SRS AIR BAG CONTROL UNIT (ECU)
SRS-ECU (with integral safing and analog impact sensor) is
located behind front floor console assembly. See Fig. 1. If a system
fault occurs, SRS-ECU memory stores a diagnostic trouble code (DTC).
DATA LINK CONNECTOR (DLC)
DLC is located under left side of dash. See Fig. 1. DLC is
used to access SRS self-diagnostics through Mitsubishi Multi-Use
Tester II (MUT-II) (MB991502).
CLOCKSPRING
Clockspring connects driver-side air bag module to steering
column wiring, forming SRS circuit. See Fig. 1. Clockspring is a flat,
ribbon-like cable that winds and unwinds when steering wheel is
turned. Because of clockspring's constant movement, it is the most
fragile part in the system.
SYSTEM OPERATION CHECK
WARNING: After servicing, always turn ignition on from passenger-side
of vehicle in case of accidental air bag deployment.
Turn ignition switch to ON position. SRS warning light on
instrument panel should come on for about 7 seconds and then turn off.
This indicates SRS is functioning properly. If SRS warning light does
not come on, stays on, or comes on while driving, SRS is
malfunctioning and needs repair. See DIAGNOSIS & TESTING.
SERVICE PRECAUTIONS
Observe the following precautions when working with SRS:
* Disable SRS before servicing any SRS or steering column

Page 109 of 1501

component. Failure to do this may result in accidental air
bag deployment and possible personal injury. Refer to
DISABLING & ACTIVATING AIR BAG SYSTEM .
* For about 60 seconds after air bag system is disabled, it
retains enough voltage to deploy air bags. After disabling
system, wait at least 60 seconds before servicing.
* After servicing, always turn ignition on from passenger-side
of vehicle in case of accidental air bag deployment.
* After servicing, check SRS warning light to verify system
operation. See SYSTEM OPERATION CHECK.
* Always wear safety glasses when servicing or handling an
air bag.
* The SRS-ECU must be stored in its original special container
until used for service. It must be stored in a clean, dry
place, away from sources of extreme heat, sparks and high
electrical energy.
* DO NOT expose air bag module and clockspring to temperatures
greater than 200
F (93C).
* When placing a live air bag module on a bench or other
surface, always face air bag module and trim cover up, away
from surface. This will reduce motion of module if air bag
accidentally deploys.
* After air bag deploys, air bag surface may contain deposits
of sodium hydroxide, which irritates skin. Always wear
safety glasses, rubber gloves and long-sleeved shirt during
clean-up. Wash hands using mild soap and water. Follow
correct clean-up and disposal procedures. Refer to
DISPOSAL PROCEDURES .
* Because of critical system operating requirements, DO NOT
service any SRS components. Repairs are only made by
replacing defective part(s).
* DO NOT allow any electrical source near inflator on the back
of air bag module.
* When carrying a live (undeployed) air bag module, trim cover
must be pointed away from body to minimize injury in case of
accidental air bag deployment.
* DO NOT probe wire harness connector terminals. Instead, use
SRS Check Harness (MB991530).
* DO NOT probe a wire through insulator, as this will damage
it and eventually cause failure due to corrosion.
* When performing electrical tests, prevent accidental
shorting of terminals. Such shorts can damage fuses or
components and may cause a second fault code to set, making
diagnosis of original problem more difficult.
* Never use an analog volt/ohm meter or test light in place of
a Digital Volt/Ohm Meter (DVOM). Use only a DVOM with a
maximum test current of 2 mA (milliamps) at minimum range of
resistance measurement. Also see SPECIAL TOOLS.
* If SRS is not fully functional for any reason, DO NOT drive
vehicle until system is repaired and is fully functional. DO
NOT remove bulbs, modules, sensors or other components, or
in any way disable system from operating normally. If SRS is
not functional, park vehicle until repairs are made.
SPECIAL TOOLS
To avoid air bag deployment when working on SRS, DO NOT use
electrical test equipment such as test lights, battery or A/C-powered
volt/ohmmeter, or any type of electrical equipment other than those
specified by manufacturer. See SRS RECOMMENDED TOOLS table.
SRS RECOMMENDED TOOLS TABLE
\
\
\
\
\
\


Page 130 of 1501

for one second, and then go out. Turn ignition switch to START
position. Warning light should come on and stay on.
2) When ignition switch is turned from START to ON position,
warning light should come on for one second, and then go out. If
warning light functions as specified, go to step 3). If warning light
does not function as specified, see appropriate trouble shooting test:
* IGNITION SWITCH IN ON POSITION (ENGINE NOT RUNNING),
ANTI-LOCK WARNING LIGHT INOPERATIVE
* AFTER ENGINE STARTS, ANTI-LOCK WARNING LIGHT REMAINS ON
* IGNITION SWITCH IN START POSITION, ANTI-LOCK WARNING LIGHT
INOPERATIVE
* IGNITION SWITCH IN ON POSITION, ANTI-LOCK WARNING LIGHT
BLINKS TWICE. IN START POSITION, LIGHT STAYS ON. WHEN
IGNITION SWITCH IS CYCLED FROM START TO ON POSITION, LIGHT
BLINKS ONCE, THEN TURNS OFF
3) Test drive vehicle. If ANTI-LOCK warning light does not
come on at low speed, go to next step. If light comes on at low speed,
motor relay, solenoid valve or Wheel Speed Sensor (WSS) malfunction is\
indicated. Go to step 6). If insufficient braking force or ABS
malfunction exists, go to next step. If none of listed symptoms exist,
go to step 6).
4) Check conventional brake system components for proper
operation. Check for mechanical lock of hydraulic unit solenoid valve.
Check for plugged hydraulic line in hydraulic unit. Repair or replace
as necessary. If hydraulic unit is okay, go to next step.
5) Ensure WSS rotor gap is correct. See WHEEL SPEED SENSOR
(WSS) under ADJUSTMENTS. Check for faulty wheel speed sensor. See
WHEEL SPEED SENSOR (WSS) under COMPONENT TESTS. Replace sensor as
necessary. See WHEEL SPEED SENSOR (WSS) under REMOVAL & INSTALLATION.
Inspect ECU connectors and related wiring harness. See WIRING DIAGRAMS
. If testing indicates no mechanical or electrical failures,
substitute ECU with known-good unit and retest.
6) Enter ABS self-diagnostics and retrieve Diagnostic Trouble
Codes (DTCs). See RETRIEVING DTCs under SELF-DIAGNOSTIC SYSTEM. If no
DTCs are displayed, fault may be intermittent. Attempt to make
malfunction reoccur. If no diagnostic output exists, check and repair
wiring harness between ECU and data link connector. See
WIRING DIAGRAMS .
NOTE: Trouble shoot ANTI-LOCK warning light in following sequence:
instrument cluster circuit, ECU and valve relay.
Ignition Switch In ON position (Engine Not Running),
ANTI-LOCK Warning Light Inoperative
1) If all other warning lights come on with ignition on, go
to step 3). If other warning lights do not come on, check fuse No. 11
in main fuse panel. If fuse is blown, correct cause of blown fuse, and
replace fuse. If fuse is okay, go to next step.
2) Remove instrument cluster. Turn ignition on. Using DVOM,
check voltage between vehicle ground and instrument cluster ANTI-LOCK
warning light terminal No. 28. See Fig. 2. If light does not come on,
go to next step. If light comes on, check and repair connectors and
related wiring harness between instrument cluster, ABS valve relay and
ECU. See WIRING DIAGRAMS .
3) Turn ignition off. Check for faulty warning light bulb.
Replace bulb as necessary. If bulb is okay, check and repair
connectors and related wiring harness between instrument cluster and
ECU. See WIRING DIAGRAMS . If connectors and wiring are okay, replace
instrument cluster.

Page:   1-10 11-20 21-30 31-40 41-50 ... 60 next >