Oxygen sensor SUZUKI SWIFT 2000 1.G SF310 Service User Guide

Page 110 of 557

To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-59
DTC P0136 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION
(SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition is detected.
A. Max. output voltage of HO2S-2 is lower than specified value or
Min. output voltage is higher than specified value while vehicle
driving.
B. Engine is warmed up and HO2S-2 voltage is 4.5 V or more.
(circuit open)
2 driving cycle detection logic, monitoring once / 1 driving.Exhaust gas leakage
“G” or “R” circuit open or short
Heated oxygen sensor-2 malfunction
Fuel system malfunction

Page 111 of 557

6-60 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Usual driving: Driving at 30 – 40 mph, 50 – 60 km/h including short stop according to traffic signal. (under driving condition other than high-load,
high-engine speed, rapid accelerating and decelerating)1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)and 50 mph
(80 km / h)
Above 20 mph
(32 km / h) Usual driving
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF.
Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–No exhaust gas leakage and loose connection
2) Warm up engine to normal operating temperature.
3) Drive vehicle under usual driving condition for 5 min. and check HO2S-2 output voltage and “short term fuel
trim” with “Data List” mode on scan tool, and write it down.
4) Stop vehicle (don’t turn ignition switch OFF).
5) Increase vehicle speed to higher than 20 mph, 32 km / h and then stop vehicle.
6) Repeat above steps 5) 4 times.
7) Increase vehicle speed to about 50 mph (80 km / h) in 3rd gear or 2 range.
8) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 10sec.
or more.
9) Stop vehicle (don’t turn ignition switch OFF) and run engine at idle for 2 min.
After this step 9), if “Oxygen Sensor Monitoring TEST COMPLETED” is displayed in “READINESS TESTS”
mode and DTC is not displayed in “DTC” mode, confirmation test is completed.
If “TEST NOT COMPLTD” is still being displayed, proceed to next step 10).
10) Drive vehicle under usual driving condition for 10 min. (or vehicle is at a stop and run engine at idle for 10 min.
or longer)
11) Stop vehicle (don’t turn ignition switch OFF). Confirm test results according to “Test Result Confirmation Flow
Table” in “DTC CONFIRMATION PROCEDURE” of DTC P0420.

Page 113 of 557

6-62 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
To other sensor
Heater Ignition
switch Main
fuse
“IG COIL METER”
To ignition coilTo other sensor
DTC P0141 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT
MALFUNCTION (SENSOR-2)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A or B condition it met.
A. Low voltage at terminal C02-19 for specified time after engine
start or while engine running at high load.
B. High voltage at terminal C02-19 while engine running under
other than above condition.
2 driving cycle detection logic, continuous monitoring.HO2S-2 heater circuit open or shorted
to ground
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF once and then ON.
2) Clear DTC, start engine and warm up engine to normal operating temperature.
3) Keep it at 2000 r / min for 2 min.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.

Page 115 of 557

6-64 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Sensed
information
Exhaust
gasFuel
injector
A/F
mixtureSignal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
INJECTORHEATED
OXYGEN
SENSOR-1
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture
becomes
leanerOxygen
concentration
increases ECM
(PCM)
ECM
(PCM)
Main
fuseIgnition switch“IG COIL METER”
Main relayTo other circuits
Injector resistor
To other
sensorFuel
injector
Heated oxygen sensor-1
HO2S-1
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.

Page 127 of 557

6-76 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Oscilloscope Waveforms
Engine running at
Closed loop conditionFuel
CutIdle after fuel cut 0.5 V / Div
2 sec. / Div Heated
oxygen
sensor-1
Warm up three way
catalytic converter (if equipped)
Three way catalytic converterTo other sensor
To other
sensors
Heated oxygen sensor-2
G
DTC P0420 CATALYST SYSTEM EFFICIENCY BELOW THRESHOLD
CIRCUIT DESCRIPTION
ECM (PCM) monitors oxygen concentration in the exhaust gas which has passed the three way catalytic converter
by HO2S-2.
When the catalyst is functioning properly, the variation cycle of HO2S-2 output voltage (oxygen concentration) is
slower than that of HO2S-1 output voltage because of the amount of oxygen in the exhaust gas which has been
stored in the catalyst.
Reference
DTC DETECTING CONDITIONPOSSIBLE CAUSE
While vehicle running at constant speed under other
than high load.
Time from rich or lean switching command is output
till HO2S-2 output voltage crosses 0.45 V is less than
specified value.
2 driving cycle detection logic, monitoring once / 1
driving.Exhaust gas leak
Three way catalytic converter malfunction
Fuel system malfunction
HO2S-2 malfunction
HO2S-1 malfunction

Page 185 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-29
SCAN TOOL DATA
As the data values given below are standard values estimated on the basis of values obtained from the normally
operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition,
there may be cases where the checked value does not fall within each specified data range. Therefore, judgment
as abnormal should not be made by checking with these data alone.
Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and
output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in
the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.
NOTE:
With the generic scan tool, only star () marked data in the table below can be read.
When checking the data with the engine running at idle or racing, be sure to shift M / T gear to the neutral
gear position and A / T gear to the “Park” position and pull the parking brake fully. Also, if nothing or “no
load” is indicated, turn OFF A / C, all electric loads, P / S and all the other necessary switches.
SCAN TOOL DATAVEHICLE CONDITIONNORMAL CONDITION /
REFERENCE VALUES
FUEL SYSTEM B1 (FUEL
SYSTEM STATUS)At specified idle speed after warming upCLOSED
(closed loop)

CALC LOAD
(CALCULATED LOADAt specified idle speed with no load after
warming up3 – 9%(
VALUE)At 2500 r / min with no load after warming up12 – 17%

COOLANT TEMP.
(ENGINE COOLANT
TEMP.)
At specified idle speed after warming up85 – 100C,
185 – 212F
SHORT FT BI (SHORT
TERM FUEL TRIM)At specified idle speed after warming up–20 – +20%
LONG FT BI (LONG
TERM FUEL TRIM)At specified idle speed after warming up–15 – +15%

MAP (INTAKE
MANIFOLD ABSOLUTE
PRESSURE)At specified idle speed with no load after
warming up24 – 37 kPa,
180 – 280 mmHg
ENGINE SPEEDAt idling with no load after warming up
Desired
idle speed
± 50 r / min
VEHICLE SPEEDAt stop0 km / h, 0 MPH

IGNITION ADVANCE
(IGNITION TIMING
ADVANCE FOR NO.1
CYLINDER)
At specified idle speed with no load after
warming up9 – 15 BTDC
INTAKE AIR TEMP.At specified idle speed after warming upAmbient +35C (95F)
temp.–5C (23F)
MAF (MASS AIR FLOW
RATE)
At specified idle speed with no load after
warming up0 – 4 gm / sec
RATE)At 2500 r / min with no load after warming up4 – 9 gm / sec

THROTTLE POS
(ABSOLUTE
Ignition switch
ON / engineThrottle valve fully closed7 – 18%
(ABSOLUTE
THROTTLE POSITION)
ON / engine
stoppedThrottle valve fully open70 – 100%
O2S B1 S1 (HEATED
OXYGEN SENSOR-1)At specified idle speed after warming up0.05 – 0.95 V
O2S B1 S2 (HEATED
OXYGEN SENSOR-2)When engine is running at 2000 r / min. for
3 min or longer after warming up.0 – 0.95 V
O2S FT B1 S1At specified idle speed after warning up–20 – +20%
DIS. WITH MIL ON————

Page 187 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-31
SCAN TOOL DATA DEFINITIONS
FUEL SYSTEM (FUEL SYSTEM STATUS)
Air / fuel ratio feedback loop status displayed as either
open or closed loop. Open indicates that ECM (PCM)
ignores feedback from the exhaust oxygen sensor.
Closed indicates final injection duration is corrected
for oxygen sensor feedback.
CALC LOAD (CALCULATED LOAD VALUE, %)
Engine load displayed as a percentage of maximum
possible load. Value is calculated mathematically us-
ing the formula: actual (current) intake air volume 
maximum possible intake air volume x 100%.
COOLANT TEMP.
(ENGINE COOLANT TEMPERATURE, C, F)
It is detected by engine coolant temp. sensor
SHORT FT B1 (SHORT TERM FUEL TRIM, %)
Short term fuel trim value represents short term
corrections to the air / fuel mixture computation. A val-
ue of 0 indicates no correction, a value greater than
0 means an enrichment correction, and a value less
than 0 implies an enleanment correction.
LONG FT B1 (LONG TERM FUEL TRIM, %)
Long term fuel trim Value represents long term correc-
tions to the air / fuel mixture computation. A value of 0
indicates no correction, a value greater than 0 means
an enrichment correction, and a value less than 0 im-
plies an enleanment correction.
MAP (INTAKE MANIFOLD ABSOLUTE
PRESSURE, kPa, inHg)
It is detected by manifold absolute pressure sensor and
used (among other things) to compute engine load.
ENGINE SPEED (rpm)
It is computed by reference pulses from crankshaft
position sensor.
VEHICLE SPEED (km / h, MPH)
It is computed based on pulse signals from vehicle
speed sensor.
IGNITION ADVANCE
(IGNITION TIMING ADVANCE FOR NO.1
CYLINDER, )
Ignition timing of NO.1 cylinder is commanded by
ECM (PCM). The actual ignition timing should be
checked by using the timing light.
INTAKE AIR TEMP. (C, F)
It is detected by intake air temp. sensor and used to
determine the amount of air passing into the intake
manifold as air density varies with temperature.
MAF (MASS AIR FLOW RATE, gm / s, lb / min)
It represents total mass of air entering intake manifold
which is computed based on signals from MAP sen-
sor, IAT sensor, TP sensor, etc.
THROTTLE POS
(ABSOLUTE THROTTLE POSITION, %)
When throttle position sensor is fully closed position,
throttle opening is indicated as 0% and 100% full open
position.
OXYGEN SENSOR B1 S1
(HEATED OXYGEN SENSOR-1, V)
It indicates output voltage of HO2S-1 installed on ex-
haust manifold (pre-catalyst).
OXYGEN SENSOR B1 S2
(HEATED OXYGEN SENSOR-2, V)
It indicates output voltage of HO2S-2 installed on ex-
haust pipe (post-catalyst). It is used to detect catalyst
deterioration.
DESIRED IDLE (DESIRED IDLE SPEED, rpm)
The Desired Idle Speed is an ECM (PCM) internal pa-
rameter which indicates the ECM (PCM) requested
idle. If the engine is not running, this number is not valid.
TP SENSOR VOLT (THROTTLE POSITION
SENSOR OUTPUT VOLTAGE, V)
The Throttle Position Sensor reading provides throttle
valve opening information in the form of voltage.
INJ PULSE WIDTH
(FUEL INJECTION PULSE WIDTH, msec.)
This parameter indicates time of the injector drive
(valve opening) pulse which is output from ECM
(PCM) (but injector drive time of NO.1 cylinder for
multiport fuel injection).
IAC FLOW DUTY (IDLE AIR (SPEED) CONTROL
DUTY, %)
This parameter indicates current flow time rate within
a certain set cycle of IAC valve (valve opening rate)
which controls the amount of bypass air (idle speed).
TOTAL FUEL TRIM (%)
The value of Total Fuel Trim is obtained by putting val-
ues of short Term Fuel Trim and Long Term Fuel Trim
together. This value indicates how much correction is
necessary to keep the air / fuel mixture stoichiomet-
rical.
BATTERY VOLTAGE (V)
This parameter indicates battery positive voltage in-
putted from main relay to ECM (PCM).

Page 190 of 557

6-1-34 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CONNECTOR “C01”
TERMINAL
NO.CIRCUITNORMAL
VOLTAGECONDITION
1Ground——
2Ground——
3Ground——
4EVAP canister purge valve10 – 14 VIgnition switch ON
Indication
deflection
5Power steering switch
deflection
repeated
0 V and
Ignition switch ON
0 V and
10 – 14 V
6Idle air control valve0 – 13 VAt specified idle speed after engine warmed
up
7Heater of HO2S-110 – 14 VIgnition switch ON
8Fuel injector NO.410 – 14 VIgnition switch ON
9Fuel injector NO.110 – 14 VIgnition switch ON
10Sensor ground——
11Camshaft position sensor0 – 0.8 V
and 4 – 6 VIgnition switch ON
12Blank——
13Heater oxygen sensor-1Refer to DTC P0130 diag. flow table
14Engine coolant temp. sensor0.55 – 0.95 VIgnition switch ON
Engine coolant temp.: 80C (176F)
15Intake air temp. sensor2.0 – 2.7 VIgnition switch ON
Intake air temp.: 20C (68F)
16Blank——
17Electric load signal (+)
0 – 1 VIgnition switch ON
Small light and rear defogger OFF
17Electric load signal (+)
10 – 14 VIgnition switch ON
Small light and rear defogger ON
18Blank——
19Ignition coil #2——
20Ignition coil #1——
21Fuel injector NO.210 – 14 VIgnition switch ON
22Power source for sensor4.75 – 5.25 VIgnition switch ON
23Crankshaft position sensor (+)——
24Crankshaft position sensor (–)——
25Blank——
26Manifold absolute pressure
sensor3.3 – 4.0 VIgnition switch ON
Barometric pressure: 100 kPa (760 mmHg)
27Blank——
28Immobilizer indicator lamp0 – 2 VIgnition switch ON28Immobilizer indicator lamp10 – 14 VWhen engine running
29Blank——
30Blank——
31Fuel injector NO.310 – 14 VIgnition switch ON

Page 191 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-35
CONNECTOR “C02”
TERMINAL
NO.CIRCUITNORMAL
VOLTAGECONDITION
1A / C ON output signal0 VIgnition switch ON
2EGR valve (stepper motor10 – 14 VIgnition switch ON2coil 1)0 – 1 VEngine running at idle speed
3Data link connector10 – 14 VIgnition switch ON
4Heater of HO2S-210 – 14 VIgnition switch ON
5Power source10 – 14 VIgnition switch ON
6Power source10 – 14 VIgnition switch ON
7Power source for buck-up10 – 14 VIgnition switch ON and OFF
8EGR valve (stepper motor10 – 14 VIgnition switch ON8coil 3)10 – 14 VEngine running at idle speed
9EGR valve (stepper motor10 – 14 VIgnition switch ON9coil 2)10 – 14 VEngine running at idle speed
10Main relay10 – 14 VIgnition switch OFF10Main relay0.4 – 1.5 VIgnition switch ON
112-range signal (A / T)10 – 14 VIgnition switch ON, Select lever at 2-range
12N-range signal (A / T)10 – 14 VIgnition switch ON, Select lever at N-range
13Heated oxygen sensor-2Refer to DTC P0130 diag. flow table
14D-range signal (A / T)10 – 14 VIgnition switch ON, Select lever at D-range
15R-range signal (A / T)10 – 14 VIgnition switch ON, Select lever at R-range
16A/C input signal
10 – 14 VIgnition switch ON
A / C switch OFF
16A/C in ut signal
0 – 2 VIgnition switch ON
A / C switch ON
17EGR valve (stepper motor10 – 14 VIgnition switch ON17coil 4)0 – 1 VEngine running at idle speed
18Radiator fan control relay
10 – 14 V
Ignition switch ON
Engine coolant temp.: Below 92.5C
(199F)
18Radiator fan control relay
0 – 1 V
Ignition switch ON
Engine coolant temp.: Below 97.5C
(208F) or higher
19Fuelpumprelay0 – 1 VFor 2 seconds after ignition switch ON19Fuel um relay10 – 14 VAfter the above time
20Blank——
21P-range signal (A / T)
Indication
deflection
repeated
0 V and
10 – 14 V
Ignition switch ON
22Fuel level sensor (gauge)
0 – 2 VIgnition switch ON
Fuel tank fully filled
22Fuel level sensor (gauge)
4.5 – 7.5 VIgnition switch ON
Fuel tank emptied
23L-range signal (A / T)10 – 14 VIgnition switch ON, Select lever at L-range
24Blank——

Page 194 of 557

INFORMATION SENSORS
-1. MAP sensor
-2. TP sensor
-3. IAT sensor
-4. ECT sensor
-5. Heated oxygen sensor-1
5-1. Heated oxygen sensor-2
-6. VSS (A / T)
-7. Transmission range switch (A / T)
-8. Battery
-9. CMP sensor
-10. CKP sensor
-11. Fuel level sensor (gauge) (in fuel tank)
-12. PSP switch
-13. A / C control module (if equipped)
-14. VSS (speedometer) (M / T)OTHERS
A: ECM (PCM)
B: Main relay
C: EVAP canister
D: Data link connector CONTROL DEVICES
a: Fuel injector
b: EVAP canister purge valve
c: Fuel pump relay
d: EGR valve (step motor)
e: Malfunction indicator lamp
f: Ignition coil assembly
g: Radiator fan control relay
h: IAC valve
6-1-38 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
COMPONENT LOCATION

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 ... 60 next >