lock DAEWOO LACETTI 2004 Service Repair Manual
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: LACETTI, Model: DAEWOO LACETTI 2004Pages: 2643, PDF Size: 80.54 MB
Page 707 of 2643

ENGINE CONTROLS 1F – 461
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0342
CAMSHAFT POSITION SENSOR NO SIGNAL
System Description
The Camshaft Position (CMP) Sensor is used to correlate
crankshaft to camshaft position so that the Engine Control
Module (ECM) can determine which cylinder is ready to be
fueled by the injector. The CMP is also used to determine
which cylinder is misfiring when a misfire is present. When
the ECM cannot use the information from the CMP sensor,
a Diagnostic Trouble Code (DTC) is set, and the ECM will
fuel the engine using the Alternating Synchronous Double
Fire (ASDF) method.
Conditions for Setting the DTC
S CMP Sensor pulse is not detected at the correct
interval every 4 cylinders.
S Engine is running.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
S Physical damage to the wiring harness
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
Page 710 of 2643

1F – 464IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0351
IGNITION CONTROL CIRCUIT A FAULT (CYLINDER 1 & 4)
Circuit Description
The Engine Control Module (ECM) provides a ground for
the electronic spark timing A circuit. When the ECM re-
moves the ground path of the ignition primary coil, the
magnetic field produced by the coil collapses. The collaps-
ing magnetic field produces a voltage in the secondary coil
which fires the spark plug.
The circuit between the ECM and the electronic ignition
system ignition coil is monitored for an open circuit, short
to voltage, and short to ground. When the ECM detects a
problem in the electronic spark timing A circuit, it will set
Diagnostic Trouble Code (DTC) P0351.
Conditions for Setting the DTC
S Monitor fault feedback signal.
S Ignition ON.
S Fault flag increments fail count.
S Must receive more than 200 failures within 255 test
cycles.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S Low speed coolant fan turns on.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for:
S Poor connection – Inspect the ECM harness and
connectors for improper mating, broken locks, im-
properly formed or damaged terminals, and poor
terminal–towire connection.
Page 712 of 2643

1F – 466IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0352
IGNITION CONTROL CIRCUIT B FAULT (CYLINDER 2 & 3)
Circuit Description
The Engine Control Module (ECM) provides a ground for
the electronic spark timing A circuit. When the ECM re-
moves the ground path of the ignition primary coil, the
magnetic field produced by the coil collapses. The collaps-
ing magnetic field produces a voltage in the secondary coil
which fires the spark plug.
The circuit between the ECM and the electronic ignition
system ignition coil is monitored for an open circuit, short
to voltage, and short to ground. When the ECM detects a
problem in the electronic spark timing A circuit, it will set
Diagnostic Trouble Code (DTC) P0351.
Conditions for Setting the DTC
S Monitor fault feedback signal.
S Ignition ON.
S Fault flag increments fail count.
S Must receive more than 200 failures within 255 test
cycles.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S Low speed coolant fan turns on.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for:
S Poor connection – Inspect the ECM harness and
connectors for improper mating, broken locks, im-
properly formed or damaged terminals, and poor
terminal–towire connection.
Page 730 of 2643

1F – 484IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0420
CATALYST OXYGEN SENSOR LOW EFFICIENCY
Circuit Description
In order to control exhaust emissions of Hydrocarbons
(HC), Carbon Monoxide (CO) and Nitrogen Oxide (NOx),
a Three–Way Catalytic Converter (TWC) is used. The cat-
alyst within the converter promotes a chemical reaction
which oxidizes the HC and CO present in the exhaust gas,
converting them into harmless water vapor and carbon
dioxide, it also reduces NOx, converting it into nitrogen.
The catalytic converter also has the ability to store oxygen.
The Engine Control Module (ECM) has the capability to
monitor this process using a Heated
Rear Heated Oxygen Sensor (HO2S2) located in the ex-
haust stream past the TWC. The HO2S2 produces an out-
put signal which indicates the oxygen storage capacity of
the catalyst; this in turn indicates the catalyst’s ability to
convert exhaust emissions effectively. The ECM monitors
the catalyst efficiency by first allowing the catalyst to heat
up, waiting for a stabilization period while the engine is id-
ling, and then adding and removing fuel while monitoring
the reaction of the HO2S2. When the catalyst is function-
ing properly, the HO2S2 response to the extra fuel is slow
compared to the Front Heated Oxygen Sensor (HO2S1).
When the HO2S2 response is close to that of the HO2S1,
the Oxygen storage capability or efficiency of the catalyst
is considered to be bad, and the Malfunction Indicator
Lamp (MIL) will illuminate.
Conditions for Setting the DTC
S Oxygen storage capacity index time is less than 0.3
seconds.
S Before idle test, the vehicle needs to be driven for
at least:
S 15 seconds at airflow is greater than 9.2 g/sec.
for manual transaxle.
S 11 seconds at airflow is greater than 12 g/sec
for automatic transaxle.
S Oxygen Sensor Capacity test condition:
S Closed loop stoichiometry.
S Purge concentration learned.
S Engine is running more than 330 seconds.
S Airflow is between 2.5 and 7.25 g/sec.
S Throttle Position (TP) sensor is less than 1.5%.
S Intake Air Temperature (IAT) is between –7°C
(19.4°F) and 105°C (221°F).
S Barometric pressure (BARO) is greater than 72 kPa
(10.4 psi).
S Catalyst temperature is between 500°C (932°F)
and 850°C (1562°F) for automatic transaxle.
S Catalyst temperature is between 450°C (842°F)
and 850°C (1562°F) for automatic transaxle.
S Closed Loop integrator change is less than 0.03.
S Idle time is less than 1 minute.
S Vehicle speed is less than 3 km/h (1.9 mph).S Block Learn Mode is learned.
S Above condition is stabilized for 5 seconds.
Note : Test is aborted for this idle if:
S Change in engine speed is greater than 80 rpm.
S A/C status changed.
S Cooling fan status changed.
S Insufficient air/fuel shift.
S DTC(s) P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0131, P0132, P0133, P1133,
P0134, P0135, P0137, P0138, P0140, P0141,
P1167, P1171, P0171, P0172, P0201, P0202,
P0203, P0204, P0300, P0336, P0337, P0341,
P0342, P0351, P0352, P0402, P0404, P1404,
P0405, P0406, P0443, P0502, P0506, P0507, and
P0562 are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
The catalyst test may abort due to a change in the engine
load. Do not change the engine load (i.e. A/C, coolant fan,
heater motor) while a catalyst test is in progress.
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
Any circuitry, that is suspected as causing the intermittent
complaint, should be thoroughly checked for the following
conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
Page 735 of 2643

ENGINE CONTROLS 1F – 489
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0461
FUEL LEVEL STUCK
Circuit Description
The Engine Control Module (ECM) uses the signal from
the fuel level sensor to calculate expected vapor pressure
within the fuel system. Vapor pressure varies as the fuel
level changes. The fuel level signal also used to determine
if the fuel level is too high or too low to be able to detect
Evaporative Emission (EVAP) system faults. This Diag-
nostic Trouble Code (DTC) indicates the fuel level stuck.
Conditions for Setting the DTC
S Change in fuel level sensor output is less than 3.5%
after 250 km (155 mile) driving.
S Ignition ON.
S DTCs P0462, P0463 and P0502 are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in Failure Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
rubber.
Check for a poor connection or damaged ECM harness.
Inspect the fuel level circuit terminal for the following con-
ditions:
S Improper mating.
S Broken locks.
S Improperly formed.
S Damaged terminals.
S Poor terminal–to–wire connection.
S Damaged harness.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an
2. Determine if fault is present. Reviews Freeze
Frame data to determine when the DTC set. Al-
ways record this information.
Page 738 of 2643

1F – 492IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0462
FUEL LEVEL LOW VOLTAGE
Circuit Description
The Engine Control Module (ECM) uses the signal from
the fuel level sensor to calculate expected vapor pressure
within the fuel system. Vapor pressure varies as the fuel
level changes. The fuel level signal also used to determine
if the fuel level is too high or too low to be able to detect
Evaporative Emission (EVAP) system faults. This Diag-
nostic Trouble Code (DTC) detects a continuous short to
low or open in either the signal circuit or the fuel level sen-
sor.
Conditions for Setting the DTC
S Fuel level sensor output is less than 5% of sensor
reading scale.
S Ignition ON.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in Failure Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.Diagnostic Aids
Inspect harness connector for backed–out terminal, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection.
Inspect wiring harness for damage.
A stuck fuel level sensor may cause the DTC set.
If the DTC P0462 cannot be duplicate, the information in-
cluded on the Failure record data can be useful in deter-
mine vehicle conditions when the DTC was first set.
Resistance checks for fuel level sensor:
S Empty = 280 ohms or over.
S Half Full = about 90 ohms.
S Full = 38 ohms or less
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Determine if fault is present. Review Freeze Frame
data to determine when the DTC set. Always record
this information.
Page 741 of 2643

ENGINE CONTROLS 1F – 495
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0463
FUEL LEVEL HIGH VOLTAGE
Circuit Description
The Engine Control Module (ECM) uses the signal from
the fuel level sensor to calculate expected vapor pressure
within the fuel system. Vapor pressure varies as the fuel
level changes. The fuel level signal also used to determine
if the fuel level is too high or too low to be able to detect
Evaporative Emission (EVAP) system faults. This Diag-
nostic Trouble Code (DTC) detects a continuous short to
low or open in either the signal circuit or the fuel level sen-
sor.
Conditions for Setting the DTC
S Fuel level sensor output is greater than 85% of sen-
sor reading scale.
S Ignition ON.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in Failure Records buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.Diagnostic Aids
Inspect harness connector for backed–out terminal, im-
proper mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connection.
Inspect wiring harness for damage.
A stuck fuel level sensor may cause the DTC set.
If the DTC P0462 cannot be duplicate, the information in-
cluded on the Failure record data can be useful in deter-
mine vehicle conditions when the DTC was first set.
Resistance checks for fuel level sensor:
S Empty = 280 ohms or over.
S Half Full = about 90 ohms.
S Full = 38 ohms or less.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Determine if fault is present. Review Freeze Frame
data to determine when the DTC set. Always record
this information.
Page 745 of 2643

ENGINE CONTROLS 1F – 499
DAEWOO V–121 BL4
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
VSS signal circuit should be thoroughly checked for the
following conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
S Physical damage to the wiring harness
Ensure the VSS is correctly tightened with proper torque
to the transmission housing.
Refer to ”Intermittents”in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. The permanent magnet generator only produces a
signal if the drive wheels are turning greater than 5
mph (8 km/h). This step determines if DTC P0502
is the result of a hard failure or an intermittent con-
dition.
3. Proper engine loads cannot be achieved in a shop
environment to properly run the vehicle within the
Freeze Frame Data conditions. It will be necessary
to drive the vehicle on the road to obtain the proper
engine loads.
4. This step verifies that the ECM is receiving a signal
from the vehicle speed sensor.
5. Refer to service bulletin information for the latest
calibration update.
6. Refer to the latest Techline information for program-
ming procedures.
8. A resistance reading that is higher than the speci-
fied value indicates that the VSS circuitry is open.
10. If the displayed resistance is less than the 1300
ohms, the VSS high and low circuits are shorted
together.
11. This checks the resistance of the VSS if no opens
or shorts were found on the VSS high and low cir-
cuits.
13. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
DTC P0502 – Vehicle Speed Sensor No Signal (Engine Side)
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
2Notice : Running the vehicle in gear with the wheels
hanging down at full travel will damage the drive
axles.
1. Install a scan tool to the Data Link Connector
(DLC).
2. Raise the drive wheels.
3. Support the lower control arms so that the
drive axles are in a horizontal (straight) posi-
tion.
4. Start the engine and allow to idle in gear.
Does the scan tool display vehicle speed above the
specific value?0 mphGo to Step 3Go to Step 4
Page 748 of 2643

1F – 502IENGINE CONTROLS
DAEWOO V–121 BL4
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. A normally operating IAC system will be able to be
extended and retracted by a scan tool and change
the engine idle rpm. Valve movement is verified by
an engine rpm change.
3. If the scan tool was able to command the IAC valve
smoothly, a malfunction may still exist internally
within the IAC valve. This can be checked by
checking the IAC valves internal resistance.
5. The IAC circuits always have ground or voltage sig-
nals on them in pairs. If the test light illuminates on
more or less than 2 terminals, 1 of the circuits is
shorted to voltage or open.6. The IAC circuits always have ground or voltage sig-
nals on them in pairs. If the test light illuminates on
more or less than 2 terminals, 1 of the circuits is
shorted to ground or open
8. The IAC circuits are constantly switched between
ground and voltage so the test light should blink on
all circuits when connected to ground.
10. Any circuitry, that is suspected as causing the inter-
mittent complaint, should be thoroughly checked for
backed–out terminals, improper mating, broke
locks, improperly formed or damaged terminals,
poor terminal– to–wiring connections or physical
damage to the wiring harness.
12. A test light that remains ON constantly indicates
that the circuit is shorted to voltage.
14. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
16. If no malfunctions have been found at this point and
no additional DTCs were set, refer to ”Diagnostic
Aids” in this section for additional checks and infor-
mation.
DTC P0506 – Idle Speed RPM Lower Than Desired Idle Speed
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install a scan tool to the Data Link Connector
(DLC).
2. Operate the engine to idle speed.
3. Transmission in park or neutral and the parking
brake set.
4. A/C is off.
5. Using scan tool, command the Idle Air Control
(IAC) valve up and down between the specified
value.
Does the rpm change smoothly when he command-
ed by the scan tool?900–1200 rpmGo to Step 3Go to Step 5
31. Turn the ignition OFF.
2. Disconnect the IAC valve connector.
3. Measure the resistance between terminal D
and C of the IAC valve.
4. Measure the resistance between terminal B
and A of the IAC valve.
Is the resistance within the specified value?40–80 WGo to Step 4Go to Step 13
41. Measure the resistance between terminal C
and B of the IAC valve.
2. Measure the resistance between terminal D
and A of the IAC valve.
Is the resistance equal to the specified value?Go to Step 15Go to Step 13
Page 751 of 2643

ENGINE CONTROLS 1F – 505
DAEWOO V–121 BL4
S Fuel system too rich or too lean.
S Foreign material in the throttle body bore or in the
air induction system.
S A leaking or restricted intake manifold.
S Excessive engine overloading. Check for seized
pulleys, pumps, or motors on the accessory drive.
S Overweight engine oil.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. A normally operating IAC system will be able to be
extended and retracted by a scan tool and change
the engine idle rpm. Valve movement is verified by
an engine rpm change.
3. If the scan tool was able to command the IAC valve
smoothly, a malfunction may still exist internally
within the IAC valve. This can be checked by
checking the IAC valves internal resistance.5. The IAC circuits always have ground or voltage sig-
nals on them in pairs. If the test light illuminates on
more or less than 2 terminals, 1 of the circuits is
shorted to voltage or open.
6. The IAC circuits always have ground or voltage sig-
nals on them in pairs. If the test light illuminates on
more or less than 2 terminals, 1 of the circuits is
shorted to ground or open
8. The IAC circuits are constantly switched between
ground and voltage so the test light should blink on
all circuits when connected to ground.
10. Any circuitry, that is suspected as causing the inter-
mittent complaint, should be thoroughly checked for
backed–out terminals, improper mating, broken
locks, improperly formed or damaged terminals,
poor terminal– to–wiring connections or physical
damage to the wiring harness.
12. A test light that remains ON constantly indicates
that the circuit is shorted to voltage.
14. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
16. If no malfunctions have been found at this point and
no additional DTCs were set, refer to ”Diagnostic
Aids” in this section for additional checks and infor-
mation for additional checks and information.
DTC P0507 – Idle Speed RPM Higher Than Desired Idle Speed
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed? –Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Install a scan tool to the Data Link Connector
(DLC).
2. Operate the engine to idle speed.
3. Transmission in park or neutral and the parking
brake set.
4. A/C is Off.
5. Using scan tool, command the Idle Air Control
(IAC) valve up and down between the specified
value.
Does the rpm change smoothly when he command-
ed by the scan tool?900–1200 rpmGo to Step 3Go to Step 5
31. Turn the ignition OFF.
2. Disconnect the IAC valve connector.
3. Measure the resistance between terminal D
and C of the IAC valve.
4. Measure the resistance between terminal B
and A of the IAC valve.
Is the resistance within the specified value?40–80 WGo to Step 4Go to Step 13
41. Measure the resistance between terminal C
and B of the IAC valve.
2. Measure the resistance between terminal D
and A of the IAC valve.
Is the resistance equal to the specified value?–Go to Step 15Go to Step 13