position DAEWOO MATIZ 2003 Service Service Manual
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2003, Model line: MATIZ, Model: DAEWOO MATIZ 2003Pages: 1184, PDF Size: 36 MB
Page 186 of 1184

1F–88 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F130
DIAGNOSTIC TROUBLE CODE (DTC) – P0132 OXYGEN SENSOR HIGH
V O LTA G E
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 44 and
13. The oxygen (O2) sensor varies the voltage within a
range of about 1volt if the exhaust is rich, down to about
100mm volts if the exhaust is lean. The O
2 sensor is like
an open circuit and produces no voltage when it is below
350°C(600°F). An open O
2 sensor circuit or a cold O2
sensor causes “open loop” operation.
Conditions for Setting the DTC
The oxygen sensor voltage is more than 4.8V for at
least 0.2 seconds.
A high voltage condition exists.
Action Taken when the DTC Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Records buffers.
A history DTC is stored.
Conditions for Clearing the MIL/DTC
The MIL will turn off after consecutive ignition cycles
in which the diagnostic runs without a fault.A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Disconnecting the ECM battery feed for 10 seconds.
Diagnostic Aids
Normal scan tool voltage varies between 0.1volts and
0.9volts while in closed loop.
Inspect the oxygen (O2) sensor wire. The O2 sensor
may be positioned incorrectly and contacting the ex-
haust manifold.
Check for an intermittent ground in the wire between the
O
2 sensor and the engine control module.
Perform an injector 2alance test to determine if a re-
stricted fuel injector may be causing the lean condition.
Vacuum of crankcase leaks will cause a lean running
condition.
An exhaust manifold gasket leak of a cracked exhaust
manifold may cause outside air to be pulled into the ex-
haust and past the sensor.
Page 192 of 1184

1F–94 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F140
DIAGNOSTIC TROUBLE CODE (DTC) – P0137 HEATED OXYGEN SENSOR LOW
V O LTA G E
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 44 and
13. The oxygen (O
2) sensor varies the voltage within a
range of about 1volt if the exhaust is rich, down to about
100mm volts if the exhaust is lean. The O
2 sensor is like
an open circuit and produces no voltage when it is below
360°C(600°F). An open O
2 sensor circuit or a cold O2
sensor causes “open loop” operation.
Conditions for Setting the DTC
(Case A)
The engine controls system is in closed loop.
Engine speed is less than 6,000rpm.
The heated oxygen sensor voltage is below 0.07V for
at least 40 seconds.
DTCs P0107, P0108, P0117, P0118, P0122, P0123,
P0335, P0336, P0341, P0342, P0400, P0404,
P0405, P0406 are NOT SET.
(Case B)
The engine controls system is in closed loop.
Engine speed is less than 6,000rpm.
The heated oxygen sensor voltage is between 0.352
and 0.499 at least 60 seconds.
Action Taken when the DTC Sets
Emission related.
“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Normal scan tool voltage varies between 0.1 volts
and 0.9 volts while in closed loop.
Inspect the oxygen (O
2) sensor wire. The O2 sensor
may be positioned incorrectly and contacting the ex-
haust manifold.
Check for an intermittent ground in the wire between
the O
2 sensor and the engine control module.
Perform an injector balance test to determine if a re-
stricted fuel injector may be causing the lean condi-
tion.
Vacuum of crankcase leaks will cause a lean running
condition.
An exhaust manifold gasket leak of a cracked ex-
haust manifold may cause outside air to be pulled into
the exhaust and past the sensor.
Page 196 of 1184

1F–98 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F140
DIAGNOSTIC TROUBLE CODE (DTC) – P0138 HEATED OXYGEN SENSOR HIGH
V O LTA G E
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 64 and
13. The Heated oxygen (O
2) sensor varies the voltage
within a range of about 1volt if the exhaust is rich, down
to about 100mm volts if the exhaust is lean. The Heated
O
2 sensor is like an open circuit and produces no volt-
age when it is below 360°C(600°F). An open O
2 sensor
circuit or a cold O
2 sensor causes “open loop” operation.
Conditions for Setting the DTC
The Heated oxygen sensor voltage is more than 4.8V
for at least 0.2 seconds.
A high voltage condition exists.
Action Taken when the DTC Sets
Emission related.
“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.
MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Normal scan tool voltage varies between 0.1volts and
0.9volts while in closed loop.
Inspect the oxygen (O
2) sensor wire. The O2 sensor
may be positioned incorrectly and contacting the ex-
haust manifold.
Check for an intermittent ground in the wire between
the O
2 sensor and the engine control module.
Perform an injector 2alance test to determine if a re-
stricted fuel injector may be causing the lean condi-
tion.
Vacuum of crankcase leaks will cause a lean running
condition.
An exhaust manifold gasket leak of a cracked ex-
haust manifold may cause outside air to be pulled into
the exhaust and past the sensor.
Page 202 of 1184

1F–104 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F140
DIAGNOSTIC TROUBLE CODE (DTC) – P0141 HEATED OXYGEN SENSOR
HEATER MALFUNCTION
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 44 and
13. The oxygen (O
2) sensor varies the voltage within a
range of about 1volt if the exhaust is rich, down to about
100mm volts if the exhaust is lean. The O
2 sensor is like
an open circuit and produces no voltage when it is below
360°C(600°F). An open O
2 sensor circuit or a cold O2
sensor causes “open loop” operation.
Conditions for Setting the DTC
Heated oxygen sensor 5V reference voltage supply
circuit high voltage or ground.
Heated oxygen sensor 5V reference voltage supply
circuit open.
Action Taken when the DTC Sets
Emission related.
“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.
MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Normal scan tool voltage varies between 0.1volts and
0.9 volts while in closed loop.
Inspect the oxygen (O
2) sensor wire. The O2 sensor
may be positioned incorrectly and contacting the ex-
haust manifold.
Check for an intermittent ground in the wire between
the O
2 sensor and the engine control module.
Perform an injector 2alance test to determine if a re-
stricted fuel injector may be causing the lean condi-
tion.
Vacuum of crankcase leaks will cause a lean running
condition.
An exhaust manifold gasket leak of a cracked ex-
haust manifold may cause outside air to be pulled into
the exhaust and past the sensor.
Page 204 of 1184

1F–106 ENGINE CONTROLS
DAEWOO M-150 BL2
DIAGNOSTIC TROUBLE CODE (DTC) – P0171 FUEL TRIM SYSTEM TOO LEAN
System Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a Closed Loop air/
fuel metering system is used. While in Closed Loop, the
Engine Control Module (ECM) monitors the oxygen sen-
sor (O2S) signal voltage and adjusts fuel delivery based
on signal voltage. A change made to fuel delivery will be
indicated by the long and short term fuel trim values
which can be monitored with the scan tool. Ideal fuel trim
values are around 128 (0%). If the O2S signal is indicat-
ing a lean condition, the ECM will add fuel resulting in
fuel trim values above 128 (0% to 100%). If a rich condi-
tion is detected, the fuel trim values will be below 128
(0% to –100%), indicating that the ECM is reducing the
amount of fuel delivered. If exhaust emissions reach an
excessive level due to a lean or rich condition, a fuel trim
Diagnostic Trouble Code (DTC) is set.
Conditions for Setting the DTC
No intrusive tests active.
DTCs P0106, P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0125, P0131, P0132,
P0133, P0134, P0137, P0138, P0140, P0141,
P1167, P1171, P0201, P0202, P0203, P0204,
P0300, P0336, P0337, P0341, P0342, P0402,
P0404, P1404, P0405, P0406, P0443, P0506, and
P0507are not set.
The average of short term fuel trim value is greater
than or equal to 120.
Throttle Position (TP) is less than 95%.
Engine speed is between 700 and 6000 rpm.
Barometric Pressure (BARO) is greater than 92.0
kPa (10.4 psi).
Coolant temperature is between 80°C (176°F) and
11 5°C (239°F).
Manifold Absolute Pressure (MAP) is more than 90
kPa (10.2 psi).
System is in closed loop.
Adaptive index is ready.
Action Taken when the DTC Sets
Emission related.
“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.
MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Important: After repairs, use the scan tool Fuel Trim
Reset function to reset the long-term fuel trim to 128
(0%).
Fuel pressure – The system will be lean if the pres-
sure is too low. It may be necessary to monitor fuel
pressure while driving the vehicle at various road
speeds and/or loads to confirm.
Map sensor – An output that causes the ECM to
sense a lower than normal manifold pressure (high
vacuum) can cause the system to go lean. Discon-
necting the MAP sensor will allow the ECM to substi-
tute a fixed (default) value for the MAP sensor. If the
lean condition is gone when the sensor is discon-
nected, substitute a known good sensor and recheck.
Fuel contamination – Water, in even small amounts,
near the in-tank fuel pump inlet can be delivered to
the injector. The water causes a lean exhaust and
can set DTC P0171.
Check for poor O2S or MAP sensor connection at the
ECM. Inspect the harness connectors for the following
conditions:
Backed-out terminals
Improper mating
Broken locks
Improperly formed
Damaged terminals
Poor terminal-to-wire connection
Inspect the wiring harness for damage. If the harness
appears to be OK, observe the O2S display on the scan
tool while moving the connectors and the wiring harness
related to the engine harness. A change in the display
will indicate the location of the fault.
Check the brake power booster check valve for possible
leaks.
Page 207 of 1184

ENGINE CONTROLS 1F–109
DAEWOO M-150 BL2
DIAGNOSTIC TROUBLE CODE (DTC) – P0172 FUEL TRIM SYSTEM TOO RICH
System Description
To provide the best possible combination of driveability,
fuel economy, and emission control, a Closed Loop air/
fuel metering system is used. While in Closed Loop, the
Engine Control Module (ECM) monitors the oxygen sen-
sor (O2S) signal voltage and adjusts fuel delivery based
on signal voltage. A change made to fuel delivery will be
indicated by the long and short term fuel trim values
which can be monitored with the scan tool. Ideal fuel trim
values are around 128 (0%). If the O2S signal is indicat-
ing a lean condition, the ECM will add fuel resulting in
fuel trim values above 128 (0% to 100%). If a rich condi-
tion is detected, the fuel trim values will be below 128
(0% to –100%), indicating that the ECM is reducing the
amount of fuel delivered. If exhaust emissions reach an
excessive level due to a lean or rich condition, a fuel trim
Diagnostic Trouble Code (DTC) is set.
Conditions for Setting the DTC
No intrusive tests active.
DTCs P0106, P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0131, P0132, P0133,
P0134, P0137, P0138, P1167, P1171, P0300,
P0336, P0337, P0341, P0342, P0402, P0404,
P1404, P0405, P0406, P0443, P0506, and P0507are
not set.
The average of short term fuel trim value is greater
than or equal to 120.
Throttle Position (TP) is less than 95%.
Engine speed is between 700 and 6000 rpm.
Barometric Pressure (BARO) is greater than 90.0
kPa (10.4 psi).
Coolant temperature is between 80°C (176°F) and
11 5°C (239°F).
Manifold Absolute Pressure (MAP) is more than 70
kPa (10.2 psi).
System is in closed loop.
Adaptive index is ready.
Action Taken when the DTC Sets
Emission related.“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.
MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Important: After repairs, use the scan tool Fuel Trim
Reset function to reset the long-term fuel trim to 128
(0%).
Check for poor connection at the ECM. Inspect the har-
ness connectors for the following conditions:
Backed-out terminals.
Improper mating.
Broken locks.
Improperly formed.
Damaged terminals.
Poor terminal-to-wire connection.
Inspect the wiring harness for damage. If the harness
appears to be OK, observe the O2S display on the scan
tool while moving the connectors and the wiring harness
related to the engine harness. A change in the display
will indicate the location of the fault.
If a DTC P1404 is also set, check the 5 volt reference
circuits for a short to voltage.
Check for a restricted exhaust system.
A shorted 5 volt reference circuit may cause a DTC
P0172 to set. Check the 5 volt reference sensors for ab-
normal readings.
Page 209 of 1184

ENGINE CONTROLS 1F–111
DAEWOO M-150 BL2
DTC P0172 – Fuel Trim System Too Rich (Cont’d)
StepActionValue(s)YesNo
12
Check the IAC valve performance. Refer to “DTC
P0506 Idle Speed RPM Lower Than Desired Idle
Speed” or “DTC P0507 Idle Speed RPM Higher
Than Desired Idle Speed” in this section and repair
as necessary.
Is the repair complete?
–
Go to Step 21Go to Step 13
13
1. Disconnect the vacuum hose from the fuel
pressure regulator and inspect the hose for the
presence of fuel.
2. If fuel is presence in the vacuum hose, replace
the fuel pressure regulator.
Is the repair complete?
–
Go to Step 21Go to Step 14
14
1. Turn the ignition ON.
2. Slowly press the acceleration pedal.
Does the Throttle Position (TP) sensor display
increase steady and evenly from its minimum
voltage at closed throttle to its maximum voltage at
Wide-Open Throttle (WOT).
–
Go to Step 15Go to Step 19
15
1. Perform the Fuel System Diagnosis.
2. If the table isolate a problem, repair as needed.
Is the repair complete?
–
Go to Step 21Go to Step 16
16
1. Perform the Evaporative Emission (EVAP)
Control System Diagnosis.
2. If the table isolate a problem, repair as needed.
Is the repair complete?
–
Go to Step 21Go to Step 17
17
1. Perform the Fuel Injector balance Test.
2. If the table isolate a problem, repair as needed.
Is the repair complete?
–
Go to Step 21Go to Step 18
18
1. Remove the Oxygen Sensor (O2S)
2. Visually/physically inspect the O2S for silicone
contamination.
3. Note: this will be indicated by a powdery white
deposit on the portion of the O2S exposed to the
exhaust stream.
4. If contamination is present on the O2S, find the
source and repair as needed.
Is the repair complete?
–
Go to Step 21
Go to
“Diagnostic
Aids”
19
1. Check the TP sensor mounting screws.
2. If they are too loose or missing tighten or replace
them as needed.
3. If the screws are OK, replace the TP sensor.
Is the repair complete?
–
Go to Step 21
–
20
1. Turn the ignition OFF.
2. Replace the MAP sensor.
Is the repair complete?
–
Go to Step 21
–
Page 233 of 1184

ENGINE CONTROLS 1F–135
DAEWOO M-150 BL2
DIAGNOSTIC TROUBLE CODE (DTC) – P0300 MULTIPLE CYLINDER MISFIRE
System Description
The Engine Control Module (ECM) monitors the crank-
shaft and camshaft positions to detect if the engine is
misfiring. The ECM looks for a quick drop in crankshaft
speed. This test is executed in blocks of 100 engine rev-
olution tests. It may take between one to several tests to
store a Diagnostic Trouble Code (DTC) and illuminate
the Malfunction Indicator Lamp (MIL). Under light misfire
conditions, it may also take more than one trip to set a
DTC. Severe misfire will flash the MIL, indicating that
catalyst damage is possible.
Conditions for Setting the DTC
Emission threshold is 3.0% for manual transaxle.
20 engine cycles have occurred since cranking has
started.
A/C compressor clutch has not just engaged or disen-
gaged.
Engine load and engine speed are in a detectable re-
gion and are at or above zero torque.
Camshaft Position (CMP) sensor is in synchroniza-
tion.
Electric Exhaust Gas Recirculation (EEGR) flow
diagnostic is not in progress.
Fuel level is greater than or equal to 20% of rated
tank capacity.
Decel Fuel Cutoff (DFCO) not active.
Fuel is not shutoff from high engine speed of 6500
rpm for manual transaxle vehicle.
Fuel is not shutoff at 255 km/h (158 mph).
Throttle position change is less than 3% per 125 ms.
Vehicle has not encountered an abusive engine
speed of 7000 rpm.Crankshaft speed patters are normal.
Throttle position is less than 4% when vehicle speed
is greater than 10 km/h (6 mph).
Engine speed is between 800 and 4500 rpm.
Vehicle voltage is between 11 and 16 volts.
Engine Coolant Temperature (ECT) is between –7°C
(20°F) and 120°C (248°F).
The engine speed is less than or equal to 1800 rpm or
the crank angle sensing error has not been learned.
There is the correct ratio between Crankshaft Posi-
tion (CKP) sensor pulses and CMP sensor pulses.
DTCs P0106, P0107, P0108, P0117, P0118, P0122,
P0123, P0320, P0337, P0341, P0342 and P0502 are
not set.
Action Taken when the DTC Sets
The malfunction Indicator Lamp (MIL) will blinking.
The ECM will record operating conditions at the time
the diagnostic fails. The information will be stored in
the Freeze Frame and failure records buffers.
A history DTC is stored.
Conditions for Clearing the MIL/DTC
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
An intermittent can also be the result of a defective re-
luctor wheel. Remove the CKP sensor and inspect the
reluctor wheel through the sensor mount hole. Check for
porosity and the condition of wheel. If the DTC is inter-
mittent refer to “Symptoms Diagnosis” in this section.
DTC P0300 – Multiple Cylinder Misfire
StepActionValue(s)YesNo
1
Perform an Euro On-Board Diagnostic (EOBD)
System Check.
Was the check performed?
–
Go to Step 2
Go to
“On-Board
Diagnostic
System Check”
2
1. Install a scan tool to the Data Link Connector
(DLC).
2. Turn the ignition ON, with the engine OFF.
3. Request Diagnostic Trouble Codes (DTCs)
Are DTCs P0201, P0202, P0203, P0204 set?
–Go to
Applicable DTC
table
Go to Step 3
3
Perform a visual/physical inspection.
Make any repairs that are necessary.
Is the repair complete?–
Go to Step 27Go to Step 4
4Start the engine and allow it to idle.
Are any Misfire Current counters incrementing?–
Go to Step 5Go to Step 6
5Are all counters equal (within a percentage of each
other)?–Go to Step 7Go to Step 11
Page 237 of 1184

ENGINE CONTROLS 1F–139
DAEWOO M-150 BL2
DIAGNOSTIC TROUBLE CODE (DTC) – P0300 MULTIPLE CYLINDER MISFIRE
System Description
The Engine Control Module (ECM) monitors the crank-
shaft and camshaft positions to detect if the engine is
misfiring. The ECM looks for a quick drop in crankshaft
speed. This test is executed in blocks of 100 engine rev-
olution tests. It may take between one to several tests to
store a Diagnostic Trouble Code (DTC) and illuminate
the Malfunction Indicator Lamp (MIL). Under light misfire
conditions, it may also take more than one trip to set a
DTC. Severe misfire will flash the MIL, indicating that
catalyst damage is possible.
Conditions for Setting the DTC
Emission threshold is 3.0% for automatic transaxle
and 3.0% for manual transaxle.
20 engine cycles have occurred since cranking has
started.
A/C compressor clutch has not just engaged or disen-
gaged.
Engine load and engine speed are in a detectable re-
gion and are at or above zero torque.
Camshaft Position (CMP) sensor is in synchroniza-
tion.
Electric Exhaust Gas Recirculation (EEGR) flow
diagnostic is not in progress.
Fuel level is greater than or equal to 20% of rated
tank capacity.
Decel Fuel Cutoff (DFCO) not active.
Fuel is not shutoff from high engine speed of 6500
rpm for manual transaxle vehicle or 6500 rpm in drive
and 6250 rpm in park for automatic transaxle ve-
hicles.
Fuel is not shutoff at 255 km/h (158 mph).
An automatic transmission is not shifting.
Throttle position change is less than 3% per 125 ms.
Vehicle has not encountered an abusive engine
speed of 7000 rpm.
Crankshaft speed patters are normal.Throttle position is less than 4% when vehicle speed
is greater than 10 km/h (6 mph).
Engine speed is between 600 and 4500 rpm.
Vehicle voltage is between 11 and 16 volts.
Engine Coolant Temperature (ECT) is between –7°C
(20°F) and 120°C (248°F).
The engine speed is less than or equal to 1800 rpm or
the crank angle sensing error has not been learned.
There is the correct ratio between Crankshaft Posi-
tion (CKP) sensor pulses and CMP sensor pulses.
DTCs P0106, P0107, P0108, P0117, P0118, P0122,
P0123, P0320, P0337, P0341, P0342 and P0502 are
not set.
Action Taken when the DTC Sets
Emission related.
“Armed” after two trip with a fail.
“Disarmed” after one trip with a pass.
MIL on if failure is detected in three consecutive trips.
Stores a History DTC on the third consecutive with a
fail (The DTC will be armed after the second fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).
Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Disconnecting the ECM battery feed for 10 seconds.
Diagnostic Aids
An intermittent can also be the result of a defective re-
luctor wheel. Remove the CKP sensor and inspect the
reluctor wheel through the sensor mount hole. Check for
porosity and the condition of wheel. If the DTC is inter-
mittent refer to “Symptoms Diagnosis” in this section.
DTC P0300 – Multiple Cylinder Misfire
StepActionValue(s)YesNo
1
Perform an Euro On-Board Diagnostic (EOBD)
System Check.
Was the check performed?
–
Go to Step 2
Go to
“On-Board
Diagnostic
System Check”
2
1. Install a scan tool to the Data Link Connector
(DLC).
2. Turn the ignition ON, with the engine OFF.
3. Request Diagnostic Trouble Codes (DTCs)
Are DTCs P0201, P0202, P0203, P0204 set?
–Go to
Applicable DTC
table
Go to Step 3
Page 240 of 1184

1F–142 ENGINE CONTROLS
DAEWOO M-150 BL2
DIAGNOSTIC TROUBLE CODE (DTC) – P1320 CRANKSHAFT SEGMENT
PERIOD SEGMENT ADAPTATION AT LIMIT
Circuit Description
The 58X reference signal is produced by the Crankshaft
Position (CKP) sensor. During one crankshaft revolu-
tion, 58 crankshaft pulses will be produced. The Engine
Control Module (ECM) uses the 58X reference signal to
calculate engine rpm and CKP. The ECM constantly
monitors the number of pulses on the 58X reference cir-
cuit and compares them to the number of Camshaft
Position (CMP) signal pulses being received. If the ECM
receives and incorrect number of pulses on the 58X ref-
erence circuit, Diagnostic Trouble Code (DTC) P0320
will set.
Conditions for Setting the DTC
Engine is running.
Number of extra or missing teeth is greater than or
equal to 2 per revolution.
Above condition is detected in 10 of 100 crankshaft
rotations.
Action Taken When the DTC Sets
The Malfunction Indicator Lamp (MIL) will illuminate.
The ECM will record operating conditions at the time
the diagnostic fails. This information will be stored in
the Freeze Frame and Failure Records buffers.
A history DTC is stored.Conditions for Clearing the MIL/DTC
The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
A history DTC will clear after 40 consecutive warm-up
cycles without a fault.
DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed-through wire insulation or a wire broken inside
the insulation. Check for:
Poor connection – Inspect the ECM harness and con-
nectors for improper mating, broken locks, improperly
formed or damaged terminals, and poor terminal-to-
wire connections.
Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, disconnect
the ECM, turn the ignition ON and observe a voltme-
ter connected to the 58X reference circuit at the ECM
harness connector while moving the connectors and
the wiring harnesses related to the ECM. A change in
voltage will indicate the location of the fault.
Reviewing the Failure Records vehicle mileage since
the diagnostic test last failed may help determine how
often the condition that caused the DTC to be set oc-
curs. This may assist in diagnosing the condition.