light MITSUBISHI MONTERO 1998 Service Manual
[x] Cancel search | Manufacturer: MITSUBISHI, Model Year: 1998, Model line: MONTERO, Model: MITSUBISHI MONTERO 1998Pages: 1501, PDF Size: 25.81 MB
Page 717 of 1501

98V220000: FRONT BRAKE LINE INSPECTION
1998 Mitsubishi Montero
NHTSA RECALL BULLETIN
Model(s): 1997-98 Mitsubishi Montero
Campaign No: 98V220000
Number of Affected Vehicles: 61800
Beginning Date of Manufacture: 1996 JUN
Ending Date of Manufacture: 1998 MAY
VEHICLE DESCRIPTION:
Sport utility vehicles.
DESCRIPTION OF DEFECT:
The front brake lines can develop pin holes due to chaffing against
the edge of the pass-through hole in the inner fender.
CONSEQUENCE OF DEFECT:
Brake fluid can leak resulting in deteriorated braking performance and
illumination of the brake indicator lamp.
CORRECTIVE ACTION:
Dealers will inspect the front brake lines for signs of wear and
routing. If the lines are not correctly centered in the pass-through
hole, the lines will be repositioned by bending slightly to correct.
If there is evidence of brake line wear, the brake line will be
replaced.
OWNER NOTIFICATION:
Owner notification is expected to begin October 19, 1998. Owners who
take their vehicles to an authorized dealer on an agreed upon service
date and do not receive the free remedy within a reasonable time
should contact Mitsubishi at 1-800-222-0037. Also contact the
National Highway Traffic Safety Administration's Auto Safety Hotline
at 1-888-dash-2-dot (1-888-327-4236).
ADDITIONAL INFORMATION:
The National Highway Traffic Safety Administration operates Monday
through Friday from 8:00 AM to 4:00 PM, Eastern Time. For more
information call (800) 424-9393 or (202) 366-0123. For the hearing
impaired, call (800) 424-9153.
Page 719 of 1501

* Load Value (Displayed As Percent)
* Engine Coolant Temperature
* Short Term Fuel Trim (Displayed As Percent)
* Long Term Fuel Trim (Displayed As Percent)
* MAP Vacuum
* Engine RPM
* Vehicle Speed Sensor
* DTC During Data Recording
SELF-DIAGNOSTIC SYSTEM
SERVICE PRECAUTIONS
Before proceeding with diagnosis, following precautions must
be observed:
* Ensure vehicle has a fully charged battery and functional
charging system.
* Visually inspect connectors and circuit wiring being worked
on.
* DO NOT disconnect battery or PCM. This will erase any DTCs
stored in PCM.
* DO NOT cause short circuits when performing electrical tests.
This will set additional DTCs, making diagnosis of original
problem more difficult.
* DO NOT use a test light in place of a voltmeter.
* When checking for spark, ensure coil wire is NOT more than
1/4" from chassis ground. If coil wire is more than 1/4" from
chassis ground, damage to vehicle electronics and/or PCM may
result.
* DO NOT prolong testing of fuel injectors. Engine may
hydrostatically (liquid) lock.
* When a vehicle has multiple DTCs, always repair lowest number
DTC first.
VISUAL INSPECTION
Most driveability problems in the engine control system
result from faulty wiring, poor electrical connections or leaking air
and vacuum hose connections. To avoid unnecessary component testing,
perform a visual inspection before beginning self-diagnostic tests.
ENTERING ON-BOARD DIAGNOSTICS
NOTE: DO NOT skip any steps in self-diagnostic tests or incorrect
diagnosis may result. Ensure self-diagnostic test applies to
vehicle being tested.
DTCs may be retrieved by using a scan tool only. Proceed to
DTC retrieval method.
NOTE: Although other scan tools are available, Mitsubishi
recommends using Multi-Use Tester II (MUT II) scan tool.
Using Scan Tool
1) Refer to manufacturer's operation manual for instructions
in use of scan tool. Before entering on-board diagnostics, see
SERVICE PRECAUTIONS . Locate Data Link Connector (DLC) under instrument
panel, near steering column.
2) Turn ignition switch to OFF position. Connect scan tool to
DLC. Turn ignition switch to ON position. Read and record scan tool
self-diagnostic output. Proceed to TROUBLE CODE DEFINITION.
Page 746 of 1501

special patterns probe to VAF sensor connector terminal No. 3 or to
PCM connector terminal No. 61.
2) Start engine. Verify waveform high frequency and low
frequency patterns are of about the same length (time). Verify
wavelength decreases and frequency increases as engine RPM increases.
If conditions are not as specified, replace VAF sensor. If conditions
are as specified, go to step 4).
3) Warm vehicle to normal operating temperature. Ensure
headlights and accessories are off. Using scan tool, read VAF sensor
frequency value (item 12). See VOLUME AIRFLOW SENSOR VALUES table.
Frequency should increase when engine is raced. If values are not as
specified, replace VAF sensor. If values are as specified, turn
ignition switch to off position and disconnect VAF sensor connector.
Go to next step.
VOLUME AIRFLOW SENSOR VALUES TABLE
\
\
\
\
\
\
Application Hz @ 700 RPM Hz @ 2500 RPM
Montero ................. 25-51 ................. 80-120
3000GT
DOHC
Non-Turbo ........... 24-50 ................. 71-111
Turbo ............... 26-52 ................. 93-133
SOHC .................. 21-47 .................. 57-97
\
\
\
\
\
\
4) On 3000GT, go to next step. On Montero, disconnect MFI
relay connector. Using DVOM, check for continuity between VAF sensor
connector terminal No. 4 and MFI relay connector terminal No. 1. If
continuity does not exist, repair wiring harness as necessary. If
continuity exists, go to next step.
5) Using DVOM, check for continuity between chassis ground
and VAF sensor connector terminal No. 5. If continuity does not exist,
repair wiring harness as necessary. If continuity exists, go to next
step.
6) Ensure ignition switch is in OFF position. Disconnect PCM
connector. Ground PCM connector terminal No. 19. Using DVOM, check for
continuity between chassis ground and VAF sensor connector terminal
No. 7. If continuity does not exist, repair wiring harness as
necessary. If continuity exists, go to next step.
7) On 3000GT, go to next step. On Montero, ground PCM
connector terminal No. 61. Using DVOM, check for continuity between
chassis ground and VAF sensor connector terminal No. 3. If continuity
does not exist, repair wiring harness as necessary. If continuity
exists, turn ignition switch to ON position and go to step 9).
8) Turn ignition switch to ON position. Using DVOM, check
voltage between chassis ground and VAF sensor connector terminal No.
4. If battery voltage does not exist, repair wiring harness as
necessary. If battery voltage exists, go to next step.
9) Using DVOM, check voltage between chassis ground and VAF
sensor connector terminal No. 3. If voltage is not 4.8-5.2 volts,
replace PCM. If voltage is as specified, condition required to set DTC
is not present at this time. Go to next step.
10) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
DTC P0105: BAROMETRIC (BARO) PRESSURE SENSOR CIRCUIT FAILURE
NOTE: BARO pressure sensor is built into Volume Airflow (VAF)
sensor. For DTC P0105 test purposes, VAF sensor will be
Page 760 of 1501

continuity between chassis ground and EGR solenoid connector terminal
No. 2. If continuity does not exist, repair wiring harness as
necessary. If continuity exists, condition required to set DTC is not
present at this time. Go to next step.
12) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
DTC P0420, P0421 & P0431: CATALYST EFFICIENCY BELOW
THRESHOLD
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
Specific self-diagnostic test not available from manufacturer
at time of publication. Check catalytic converter and check for
cracked exhaust manifold. Also, see F - BASIC TESTING article.
DTC P0442: EVAPORATIVE (EVAP) EMISSION CONTROL SYSTEM LEAK
DETECTED
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
1) Remove fuel cap. Push fuel pipe restrictor to operate On-
board Fuel Vent Valve (OFLV). Install and tighten fuel cap. Remove
fuel cap and ensure distance between filler tube and OFLV is 1.1" (28
mm). If distance is as specified, go to next step. If distance is not
as specified, replace fuel tank filler tube assembly. Go to step 24).
2) Disconnect and plug air filter-to-EVAP vent solenoid hose
at air filter. Disconnect intake manifold plenum-to-EVAP purge
solenoid at intake manifold plenum. Install a "T" fitting between
vacuum hose and intake manifold plenum. Connect a hand-held
pressure/vacuum pump to "T" fitting. Go to next step.
CAUTION: DO NOT apply more than 0.57 psi in following step. Applying
more than specified psi can crack fuel tank.
NOTE: Ensure fuel tank is at least 1/4 full. The lower the fuel
level in fuel tank, the longer it takes to pressurize fuel
system.
3) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Using hand-held pressure/vacuum pump, apply\
0.42 psi. If scan tool reading reaches 0.42 psi, go to next step. If
reading does not reach 0.42 psi, go to step 9).
4) Wait 20 seconds and read scan tool. If scan tool reading
increases 0.06 psi or less, go to next step. If scan tool reading
increases more than 0.06 psi, go to step 21).
5) Disconnect EVAP canister purge hose. Connect Purge Flow
Indicator (MB995061) between EVAP canister and disconnected hose. Turn\
engine on and allow it to reach operating temperature. Turn all lights
and accessories off. Place transmission in Park or Neutral. Observe
purge flow indicator while increasing engine RPM several times. If
purge flow indicator reads less than 2.5 SCFH (20 cm(3)/sec), check
EVAP canister purge hose and EVAP canister port for clogging. If hose
and port are okay, check EVAP purge solenoid. See DTC P0443. If
solenoid is okay, replace EVAP canister. Go to step 24).
6) Using scan tool, read Engine Coolant Temperature (ECT)
sensor temperature (item 21). Compare scan tool reading with
Page 765 of 1501

system.
3) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Using hand-held pressure/vacuum pump, apply\
0.42 psi. If scan tool reading reaches 0.42 psi, go to next step. If
reading does not reach 0.42 psi, go to step 8).
4) Disconnect EVAP canister purge hose. Connect Purge Flow
Indicator (MB995061) between EVAP canister and disconnected hose. Turn\
engine on and allow it to reach operating temperature. Turn all lights
and accessories off. Place transmission in Park or Neutral. Observe
purge flow indicator while increasing engine RPM several times. If
purge flow indicator reads less than 2.5 SCFH (20 cm(3)/sec), check
EVAP canister purge hose and EVAP canister port for clogging. If hose
and port are okay, check EVAP purge solenoid. See DTC P0443. If
solenoid is okay, replace EVAP canister. Go to step 20).
5) Using scan tool, read Engine Coolant Temperature (ECT)
sensor temperature (item 21). Compare scan tool reading with
temperature gauge reading. If readings are about the same, go to next
step. If readings are not about the same, go to DTC P0115 test.
6) Using a thermometer, check engine compartment ambient
temperature. Using scan tool, read Intake Air Temperature (IAT) sensor\
temperature (item 13). Compare IAT sensor and thermometer readings. If\
readings are not about the same, go to DTC P0110 test. If readings are
about the same, go to next step.
7) Using scan tool, read Power Steering Pressure (PSP) switc\
h
status (item 27). Switch status should read ON when steering wheel is
turned. If switch status is as specified, go to step 20). If switch
status is not as specified, go to DTC P0551 test.
8) Remove fuel cap. Install a fuel tank filler tube adapter
in place of fuel cap. Plug fuel filler tube adapter hose. Disconnect
and plug air filter-to-EVAP vent solenoid hose at air filter.
Disconnect intake manifold plenum-to-EVAP purge solenoid at intake
manifold plenum. Install a "T" fitting between vacuum hose and intake
manifold plenum. Connect hand-held pressure/vacuum pump to "T"
fitting. Go to next step.
CAUTION: DO NOT apply more than 0.57 psi in following step. Applying
more than specified psi can crack fuel tank.
NOTE: Ensure fuel tank is at least 1/4 full. The lower the fuel
level in fuel tank, the longer it takes to pressurize fuel
system.
9) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Using hand-held pressure/vacuum pump, apply\
0.42 psi. If scan tool reading reaches 0.42 psi, replace fuel cap. Go
to step 20). If reading does not reach 0.42 psi, go to next step.
10) Disconnect hand-held pressure/vacuum pump from "T"
fitting. Install an evaporative emission system tester in place of
vacuum held pump and apply 0.49 psi. Wait two minutes. If pressure
drops less than 0.20 psi, go to next step. If pressure drops 0.29 psi
or more, go to step 13).
11) Disconnect EVAP purge solenoid-to-EVAP canister hose at
EVAP canister. Connect hand-held pressure/vacuum pump to hose and
apply 0.9 psi. If pressure is not maintained, check EVAP purge
solenoid for leak. If EVAP purge solenoid is okay, replace hose. Go to
step 24). If pressure is maintained, go to next step.
12) Disconnect EVAP vent solenoid-to-EVAP canister hose at
EVAP canister. Connect hand-held pressure/vacuum pump to hose and
apply 0.9 psi. If pressure is not maintained, check EVAP vent solenoid
for leak. If EVAP vent solenoid is okay, replace hose. Go to step 20).
If pressure is maintained, replace EVAP canister. Go to step 24).
13) Ensure hoses are properly routed and connected. See M -
Page 771 of 1501

9) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
10) Road test vehicle and attempt to duplicate conditions
that caused original complaint. Recheck for DTCs. If no DTCs are
displayed, test is complete.
DTC P0510: CLOSED THROTTLE POSITION (TP) SWITCH FAILURE
NOTE: Closed TP switch is built into TP sensor. For DTC P0510
test purposes, TP sensor will be referred to as closed
TP switch. For terminal identification, see TP sensor under
TERMINAL IDENTIFICATION . For circuit and wire color
identification, see L - WIRING DIAGRAMS article.
1) If using scan tool, go to step 3). Disconnect closed TP
switch connector. Check for continuity between closed TP switch
connector terminals No. 1 and 2 on Montero or No. 3 and 4 on 3000GT.
Go to next step.
2) Depress accelerator pedal. Continuity should not exist.
Release accelerator pedal. Continuity should exist. If continuity is
not as specified, replace TP sensor. If continuity is as specified, go
to step 4).
3) Using scan tool, read closed TP switch state (item 26).
With accelerator pedal released, scan tool should read ON. With
accelerator pedal slightly depressed, scan tool should read OFF. If
closed TP switch does not test as specified, replace TP sensor. If
closed TP switch tests as specified, disconnect closed TP switch
connector and go to next step.
4) On 3000GT, go to next step. On Montero, turn ignition
switch to OFF position. Disconnect PCM connector. Ground PCM connector
terminal No. 79. Using DVOM, check continuity between chassis ground
and closed TP switch connector terminal No. 2. If continuity does not
exist, repair wiring harness as necessary. If continuity exists, go to
next step.
5) Check continuity between chassis ground and closed TP
switch connector terminal No. 1 on Montero or No. 4 on 3000GT. If
continuity does not exist, repair wiring harness as necessary. If
continuity exists, go to next step.
6) Turn ignition switch to ON position. Check voltage between
chassis ground and closed TP switch connector terminal No. 2 on
Montero or No. 3 on 3000GT. If voltage is less than 4 volts, replace
PCM. If voltage is more than 4 volts, condition required to set DTC is
not present at this time. Go to next step.
7) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
DTC P0551: POWER STEERING PRESSURE (PSP) SENSOR CIRCUIT
PERFORMANCE
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
1) Using scan tool, read Power Steering Pressure (PSP) statu\
s
(item 27). Switch status should read ON when steering wheel is turned.\
If switch status is as specified, fault is intermittent. See
INTERMITTENT DTCS . If switch status is not as specified, go to next
step.
Page 780 of 1501

GENERATOR & REGULATOR
1998 Mitsubishi Montero
1998 STARTING & CHARGING SYSTEMS
Mitsubishi - Generators & Regulators
Diamante, Eclipse, Galant, Mirage, Montero, Montero Sport,
3000GT
DESCRIPTION & OPERATION
NOTE: The terms generator and alternator are interchangeable.
Mitsubishi generators are conventional 3-phase, self-
rectifying type units containing 6 diodes (3 positive and 3 negative)
which are used to rectify current. All models use a case-mounted
Integrated Circuit (IC) voltage regulator.
Generator relay or resistor with diode is used to ensure
charging of battery even if charging indicator light is defective.
ADJUSTMENTS
BELT TENSION
For belt tension, see DRIVE BELT ADJUSTMENT table.
DRIVE BELT ADJUSTMENT TABLE
\
\
\
\
\
\
\
( 1) Deflection ( 1) Deflection
Application New Belt In. (mm) Used Belt In. (mm\
)
Diamante ( 2) ........... .24-.28 (6.0-7.2) ..... .32-.37 (8.2-9.3)
Eclipse
2.0L Non-Turbo ( 3) ... .30-.41 (7.5-10.5) ... .35-.47 (9.0-12.0)
2.0L Turbo ( 4) ....... .30-.35 (7.5-9.0) ............ .39 (10.0)
2.4L ( 4) ............. .30-.35 (7.5-9.0) ............ .39 (10.0)
Galant ( 4) ............. .30-.35 (7.5-9.0) ............ .39 (10.0)
Mirage ( 3)
1.5L ................. .36-.42 (9.2-10.6) .... .26-.33 (6.6-8.3\
)
1.8L ................. .33-.39 (8.5-10.0) .... .28-.31 (7.0-8.0\
)
Montero ( 4) ............ .22-.29 (5.5-7.5) ..... .31-.35 (8.0-9.0)
Montero Sport
2.4L ( 4) ............. .22-.29 (5.5-7.5) ..... .30-.33 (7.5-8.3)
3.0L ( 4) ............. .22-.29 (5.5-7.5) ..... .31-.35 (8.0-9.0)
3000GT
DOHC ( 5) ............. .14-.16 (3.5-4.0) ..... .16-.20 (4.0-5.0)
SOHC ( 6) ............. .16-.20 (4.0-5.0) ..... .24-.32 (6.0-8.0)
( 1) - With 22 lbs. (10 kg) pressure applied midway on belt run.
( 2) - Measure between A/C compressor pulley and crankshaft pulley.
( 3) - Measure between crankshaft pulley and generator pulley.
( 4) - Measure between water pump pulley and generator pulley.
( 5) - Measure between crankshaft pulley and idler pulley.
( 6) - Measure between power steering pulley and idler pulley.
\
\
\
\
\
\
\
TROUBLE SHOOTING
NOTE: See TROUBLE SHOOTING article in the GENERAL INFORMATION
section.
Page 781 of 1501

ON-VEHICLE TESTING
GENERATOR TO BATTERY CONTINUITY TEST
NOTE: Check generator wiring harness connections and drive belt
tension and ensure battery is fully charged before
performing test.
1) Turn ignition off. Disconnect negative battery cable.
Remove output lead from generator terminal "B". See Fig. 1. Install a
100-amp or 130-amp ammeter in series with terminal "B" and
disconnected output lead. Install positive lead of ammeter to terminal
"B" and negative lead to disconnected output wire.
Fig. 1: Identifying Generator Terminals (Typical)
Courtesy of Mitsubishi Motor Sales of America
2) Install positive lead of digital voltmeter to terminal "B"
and negative lead to positive battery terminal. Install a tachometer
and reconnect negative battery cable.
3) Start and operate engine at 2500 RPM. Turn accessories on
and adjust engine speed until ammeter indicates slightly greater than
30 amps, and note voltmeter reading. If voltmeter indicates .3 volt or
less, system is okay.
4) If voltage is greater than .3 volt, check wiring between
generator terminal "B", fusible link and positive battery terminal. If
terminal is not sufficiently tight or if harness is discolored due to
overheating, repair as necessary and retest.
Page 782 of 1501

GENERATOR OUTPUT TEST
NOTE: A slightly discharged battery should be used, as a fully
charged battery may not allow full generator output.
1) Turn ignition off. Disconnect negative battery cable.
Disconnect generator output wire from terminal "B". Connect positive
lead of 100-amp ammeter to terminal "B" and negative lead to
disconnected output lead.
CAUTION: Tighten each connection securely, as heavy current flow will
exist. DO NOT use clips on ammeter. An inductive-type
ammeter is recommended.
2) Connect positive voltmeter lead (0-20 volts) to generator\
terminal "B" and negative lead to ground. Install a tachometer and
reconnect negative battery cable.
3) Ensure voltmeter indicates battery voltage. If voltage is
not present, check for open circuit in wire between generator terminal
"B" and positive battery terminal. Check grounds and fusible link.
4) Start engine and turn headlights on. Set headlights at
high beam and heater blower switch on HIGH. Increase engine speed to
2500 RPM and note generator output current on ammeter. Minimum output
should be within specification. See
GENERATOR MINIMUM OUTPUT SPECIFICATIONS table.
NOTE: Output voltage changes with electrical load and temperature.
Ensure proper electrical load is applied while checking
output. Nominal output may not be obtained if generator or
ambient temperature is excessive. Allow generator or
temperature to cool, and recheck output. Generator output is
stamped on metal plate attached to generator case.
5) If minimum output is not obtained and generator wiring is
okay, repair generator. Operate engine at idle speed after the test.
GENERATOR MINIMUM OUTPUT SPECIFICATIONS TABLE
\
\
\
\
\
\
Application Amps
Diamante ............................................. 110
Eclipse
2.0L Non-Turbo ...................................... 90
2.0L Turbo .......................................... 75
2.4L ................................................ 90
Galant ................................................ 90
Mirage ................................................ 80
Montero .............................................. 100
Montero Sport
2.4L ................................................ 60
3.0L ................................................ 85
3000GT
DOHC ............................................... 110
SOHC ................................................ 90
\
\
\
\
\
\
REGULATED VOLTAGE TEST
NOTE: Ensure battery is fully charged and proper drive belt
tension exists.
1) Turn ignition switch off. Disconnect negative battery
cable. Connect positive voltmeter lead to terminal "S" of generator.
Page 783 of 1501

See Fig. 1 . Connect negative voltmeter lead to ground.
2) Disconnect generator output wire from terminal "B".
Install a 100-amp ammeter in series with terminal "B" and disconnected
output lead. Connect positive lead of ammeter to terminal "B" and
negative lead to disconnected output wire. Install a tachometer, and
reconnect negative battery cable.
3) Turn ignition switch on and ensure voltmeter indicates
battery voltage. If voltage is not present, check for open in wire
between generator terminal "S" and positive battery terminal. Check
for blown fusible link.
4) Start engine. Ensure all lights and accessories are off.
Operate engine at 2500 RPM and read voltmeter when generator output
current drops to 10 amps or less. Voltage regulator is okay if voltage
output is within specification. See REGULATOR VOLTAGE SPECIFICATIONS
table.
REGULATOR VOLTAGE SPECIFICATIONS TABLE
\
\
\
\
\
\
Ambient Temperature Voltage
-4
F (-20C) ................................... 14.2-15.4
68F (20C) .................................... 13.9-14.9
140F (60C) ................................... 13.4-14.6
176F (80C) ................................... 13.1-14.5 \
\
\
\
\
\
GENERATOR RELAY TEST
NOTE: Information for all other models is not available from
manufacturer at time of publication.
Diamante & Mirage
Remove generator relay. On Diamante, relay is located in
relay box in engine compartment near battery. On Mirage, relay is
located in relay box in engine compartment between battery and strut
tower. On both models, connect positive lead of ohmmeter to relay
terminal No. 4. See WIRING DIAGRAMS. Connect negative lead of ohmmeter
to relay terminal No. 2. Continuity should be present. Switch ohmmeter
lead locations. Continuity should not be present. Replace generator
relay if continuity is not as specified.
BENCH TESTING
RECTIFIER ASSEMBLY
1) Using ohmmeter, check for continuity between diodes and
stator coil lead connection. See Fig. 2. Reverse leads. If continuity
is present in both directions, diode is shorted. Replace rectifier
assembly.
2) To check entire diode assembly, use an ohmmeter to check
for continuity between both ends of each diode. See Fig. 2. Switch
ohmmeter leads. Continuity should be present in one direction only. If
continuity is not as specified, diode is defective. Replace rectifier
assembly.