engine SSANGYONG MUSSO 1998 Workshop Repair Manual
[x] Cancel search | Manufacturer: SSANGYONG, Model Year: 1998, Model line: MUSSO, Model: SSANGYONG MUSSO 1998Pages: 1463, PDF Size: 19.88 MB
Page 837 of 1463

WHEEL ALIGNMENT 2B-9
GENERAL DESCRIPTION AND SYSTEM OPERATION
FOUR WHEEL ALIGNMENT
CASTER
Caster is the tilting 91 the uppermost point of the steering
axis either forward or backward from the vertical when
viewed from the side of the vehicle. A backward tilt is
positive, and a forward tilt is negative. Caster influences
directional control of the steering but does not affect
tire wear. Weak springs or overloading a vehicle will affect
caster. One wheel with more positive caster will pull
toward the center of the car. This condition will cause
the car to move or lean toward the side with the least
amount of positive caster. Caster is measured in degrees.
CAMBER
Camber is the tilting of the top of the tire from the vertical
when viewed from the front of the vehicle. When the
tires tilt outward, the camber is positive. When the tires
tilt inward, the camber is negative. The camber angle is
measured in degrees from the vertical. Camber
influences both directional control and tire wear.
If the vehicle has too much positive camber, the outside
shoulder of the tire will wear. If the vehicle has too much
negative camber, the inside shoulder of the tire will wear. The first responsibility of engineering is to design safe
steering and suspension systems. Each component
must be strong enough to withstand and absorb extreme
punishment. Both the steering system and the front and
the rear suspension must function geometrically with
thebody mass.
The steering and the suspension systems require that
the front wheels self-return and that the tire rolling effort
and the road friction be held to a negligible force in order
to allow the customer to direct the vehicle with the least
effort and the most comfort.
A complete wheel alignment check should include
measurements of the rear toe and camber.
Four-wheel alignment assures that all four wheels will
be running in precisely the same direction.
When the vehicle is geometrically aligned, fuel economy
and tire life are at their peak, and steering and
performance are maximized.
TOE
Toe-in is the turning in of the tires, while toe-out is the
turning out of the tires from the geometric centerline or
thrust line. The toe ensures parallel rolling of the wheels.
The toe serves to offset the small deflections of the wheel
support system which occur when the vehicle is rolling
forward. The specified toe angle is the setting which
achieves 0 degrees of toe when the vehicle is moving.
Incorrect toe-in or toe-out will cause tire wear and
reduced fuel economy. As the individual steering and
suspension components wear from vehicle mileage,
additional toe will be needed to compensate for the wear.
Always correct the toe dimension last.
Page 873 of 1463

FRONT DRIVE AXLE 3A-5
VACUUM CIRCUIT
1 Engine
2 Vacuum Pump
3 3-way Connector
4 T-connector
5 Check Valve6 Auto locking Hub Solenoid Valve
7 T-connector Hose
8 Hub Hose (left)
9 Hub Hose (right)
Page 922 of 1463

HYDRAULIC BRAKES 4A-7
MAINTENANCE AND REPAIR
ON-VEHICLE SERVICE
BLEEDING THE BRAKES
For Master Cylinder Replacement
1. Add oil after master cylinder replacement.
2. Run the engine and depress the brake pedal several times
to build pressure and then keep the pedal fully depressed.
3. Loosen the screws of primary and secondary pipe at the
master cylinder outlets to bleed air.
4. Repeat above step No.3 several times until there are no
more air bubbles.
5. Bleed air in the system at the hydraulic unit outlet pipe and
wheel if pressure building is not enough by depressing the
pedal only after above air bleeding.
For Caliper and Brake Hose Replacement
1. Check the oil level from the oil reservoir and refill if necessary.
2. Run the engine and depress the pedal several times to
build pressure and then keep the pedal fully depressed.
3. Connect a vinyl tube to the caliper breather and prepare a
container to coentain brake oil.
4. Loosen the breather screw until there are no more bubbles.
5. Bleed air in the system at four (4) wheels in order as shown
in right figure if pressure building is not enough by depressing
the pedal after above air bleeding.
Tightening Torque
9 - 14 Nm
Item
Front Bleeder Screw
Rear Bleeder Screw
Notice
lDo not reuse the bled brake fluid.
lAlways bleed the air after replacing brake fluid or
master cylinder, caliper, brake hose and pipe.
lAlways operate in normal order.
Page 923 of 1463

4A-8 HYDRAULIC BRAKES
For Hydraulic Unit Replacement
1. Add oil after hydraulic unit replacement.
2. Run the engine and depress the pedal several times to
build pressure and then keep the pedal fully depressed.
3. Loosen hydraulic pipe screws at the hydraulic unit outlets
to bleed air.
4. Repeat above step No.3 several times until there are no
more air bubbles.
5. Bleed air in the system from the wheels if pressure building
is not enough by pressing the pedal only after above air
bleeding.
Page 938 of 1463

POWER BOOSTER 4C-5
PEDAL STROKE INSPECTION
1. Start the engine and stop it after one or two minutes.
Depress the brake pedal several times.
If the pedal goes down furthest the first time, but gradually
rises after the second or third time, brake booster is normal.
If there is no change in pedal stroke, the brake booster is
abnormal.
2. Depress the brake pedal several times with engine stopped,
and depress the brake pedal and start the engine. If the
pedal goes down slightly, the booster is normal.
3. Depress the brake pedal with engine running, and stop it
with the pedal depressed. If there is no change in pedal
height during 30 sec., the booster is normal.
Page 979 of 1463

5A-2 AUTOMATIC TRANSMISSION
SPECIFICATIONS
MODEL PART NUMBERS AND APPLICATIONS
Transmission
0574-000001 (9)
0574-000002 (8)
0574-000004 (10)
0574-000005 (7)Torque Converter
179K
160K
160K
179KEngine Version
661LA
E32
662LA(Turbo)
E23
MODEL SPECIFICATIONS
Application
Torque Converter
Mean diameter of fluid circuit
Maximum torque multiplication
Stall speed (rpm)
0574-000001 (D23LA)
0574-000002 (E32)
0574-000004 (D29LA)
0574-000005 (E23)
0574-000020
0574-000021
Gear Ratios
First
Second
Third
Fourth
Reverse
Lubricant
Type
Capacity
Dry System
Service Refill
Gear Train End Float
Gear Set Pinion End FloatDescriprtion
260
2.0 : 1
2100 - 2250
2050 - 2250
2100 - 2200
1800 - 2100
2.741 : 1
1.508 : 1
1.000 : 1
0.708 : 1
2.429 : 1
Castrol TQ95 or other approved fluid
9.0 Litres (approx)
4.5 Litres (approx)
0.50 - 0.65 mm
0.10 - 0.50 mm DWMC P/NO
36100-05420 (1)
36100-05430 (1)
36100-05410 (1)
36100-05440 (1)
Page 995 of 1463

5A-18 AUTOMATIC TRANSMISSION
INTRODUCTION
The BTR Automotive Model 74 Four Speed Automatic Transmission is an electronically controlled overdrive four
speed unit with a lock-up torque converter. The lock-up torque converter results in lower engine speeds at cruise and
eliminates unnecessary slippage. These features benefit the customer through improved fuel economy and noise
reduction. Refer to table 1.1 for details of power, torque and configuration.
Of primary significance is the transmission control unit (TCU) which is a microprocessor based control system. The
TCU utilizes throttle position, rate of throttle opening, engine speed, transmission output speed, transmission sump
temperature, gear selector position and mode selector inputs, and in some applications a ‘kickdown’ switch to control
all shift feel and shift schedule aspects.
The TCU drives a single proportional solenoid multiplexed to three regulator valves to control all shift feel aspects.
The output pressure of this solenoid is controlled as a function of transmission sump temperature to maintain consistent
shift feel throughout the operating range.
Shift scheduling is highly flexible, and several independent schedules are programmed depending on the vehicle.
Typically the ‘NORMAL’ schedule is used to maximise fuel economy and driveability, and a ‘POWER’ schedule is used
to maximise performance. ‘WINTER’ schedule is used to facilitate starting at second gear.
Figure 1.1 details the differences between conventional and electronic transmission control systems.
Max Torque (Nm)
320Configuration
260 mm Torque Converter
Wide Ratio Gear Set
Splined Output for Transfer CaseMin Torque (Nm)
160 Model
M74 4WD
Transmission Table 1.1 - M74 Torque, Power and Configuration
Page 998 of 1463

AUTOMATIC TRANSMISSION 5A-21
Downshift Type
RANGE ‘1’ (MANUAL ‘1’):
RANGE ‘2’ (MANUAL ‘2’):
RANGE ‘3’ (MANUAL ‘3’):
RANGE ‘D’ (DRIVE):
RANGE ‘N’ (NEUTRAL):
RANGE ‘R’ (REVERSE):
RANGE ‘P’ (PARK):Inhibited Above
First gear operation only with inhibited engagement as a function of vehicle
speed. Engine braking is applied with reduced throttle.
First and second gear operation with inhibited engagement of second gear, as
a function of vehicle speed. Engine braking is applied with reduced throttle.
First, second and third gear operation with an inhibited third gear engagement
at high vehicle speed. Refer to the vehicle owner’s manual.
Engine braking is applied with reduced throttle.
First, second, third and fourth gear operation. First to second (1-2), first to third
(1-3), second to third (2-3), second to fourth (2-4), third to fourth (3-4), fourth
to third (4-3), fourth to second (4-2), third to second (3-2), third to first (3-1)
and second to first (2-1), shifts are all available as a function of vehicle speed,
throttle position and the time rate of change of the throttle position (forced
downshift). Lockup clutch may be enabled in 3rd and 4th gears depending on
vehicle type. Refer to the owner’s manual.
Rear band applied only, with inhibited engagement as a function of vehicle
speed, engine speed and throttle position. The inhibitor switch allows the en-
gine to start.
Reverse gear operation, with inhibitor engagement as a function of vehicle
speed, engine speed and throttle position. The inhibitor switch enables reverse
lamp operation.
Rear band applied only, with inhibited engagement as a function of vehicle
speed, engine speed and throttle position. The transmission output shaft is
locked. The inhibitor switch allows the engine to start.
Table 2.1 - Gear Selections
DRIVING MODE SELECTOR
The driving mode selector consists of a mode selection switch and indicator light. The driving mode selector is
located on the centre console. See figure 2,1.
The schedules available to be selected vary with vehicle types. Typically the driver should have the option to select
between ‘NORMAL’ , ‘POWER’ or ‘WINTER’ modes.
When ‘NORMAL’ mode is selected upshifts will occur to maximise fuel economy and the indicator lights remain
extinguished. When ‘POWER’ mode is selected upshifts will occur to give maximum performance and the ‘POWER’
mode indicator light is switched on. When ‘WINTER’ mode is selected, starting at second gear is facilitated, the
‘WINTER’ mode indicator light is switched on and the ‘POWER’ mode indicator light is switched off.
Refer to the vehicle owner’s manual for specific modes for each vehicle type.
Page 1001 of 1463

5A-24 AUTOMATIC TRANSMISSION
Transmission Control Unit(TCU)
The TCU is an in-vehicle micro-processor based transmission management system. It is usually mounted in the
vehicle cabin, under the instrument panel, under the seat, behind the side kick panels or under the floor in the
footwell on the passenger side. Different control units are supplied for different vehicle applications.
The TCU contains:
lProcessing logic circuits which include a central microcontroller and a back-up memory system.
lInput circuits.
lOutput circuits which control external devices such as the variable pressure solenoid (VPS), on/off solenoid
drivers, a diagnostics output and the driving mode indicator light.
The various items which make up the TCU are discussed below.
Processing Logic
Shift schedule and calibration information is stored in an erasable programmable read only memory (EEPROM).
Throttle input calibration constants and the diagnostics information are stored in electrically erasable programmable
read only memory (EEPROM) that retains the memory even when power to the TCU is disconnected.
In operation the software continuously monitors the input values and uses these, via the shift schedule, to determine
the required gear state, At the same time it monitors, via the solenoid outputs, the current gear state. Whenever the
input conditions change such that the required gear state is different to the current gear state, the TCU initiates a
gear shift to bring the two states back into line.
Once the TCU has determined the type of gear shift required the software accesses the shift logic, estimates the
engine torque output, adjusts the variable pressure solenoid ramp pressure then executes the shift.
The TCU continuously monitors every input and output circuit for short or open circuits and operating range. When
a failure or abnormal operation is detected the TCU records the condition code in the diagnostics memory and
implements a limp mode, The actual limp mode used depends upon the failure detected with the object to maintain
maximum driveability without damaging the transmission. In general input failures are handled by providing a default
value. Output failures, which are capable of damaging the transmission, result in full limp mode giving only third or
fourth gear and reverse. For further details of limp modes and memory retention refer to the Diagnostic Section.
The TCU is designed to operate at ambient temperatures between -40 and 85°C . It is also protected against
electrical noise and voltage spikes, however all the usual precautions should be observed, for example when arc
welding or jump starting.
TCU Inputs
To function correctly, the TCU requires engine speed, road speed, transmission sump temperature, throttle position
and gear position inputs to determine the variable pressure solenoid current ramp and on/off solenoid states. This
ensures the correct gear selection and shift feel for all driving conditions.
The inputs required by the TCU are as follows:
lEngine Speed
The engine speed signal is derived from the tachometer signal line, a dedicated sensor or a Controlled Area
Network (CAN).
lRoad Speed
4WD (Diesel) - The shaft speed signal is derived from the speedo sensor located on the transfer case. This signal
is transmitted directly to the TCU.
4WD (Gasoline) - The speedo sensor sends the shaft speed signal to the engine control module (ECM). The
information is then transferred to the TCU via the CAN.
lTransmission Sump Temperature
The transmission sump temperature sensor is a thermistor located in the solenoid wiring loom within the transmission.
This sensor is a typical NTC resistor with low temperatures producing a high resistance and high temperatures
Page 1003 of 1463

5A-26 AUTOMATIC TRANSMISSION
Inhibitor
Switch Throttle Position Sensor
The throttle position sensor(TPS) is a resistance potentiometer
mounted on the throttle body of the engine.
It transmits a signal to the TCU proportional to the throttle plate
opening.
The potentiometer is connected to the TCU by three wires:
5 volts positive supply, earth and variable wiper voltage.
Throttle voltage adjustments are as follows:
lClosed throttle voltage is 0.2V to 1.0V.
lWide open throttle voltage is 3V -4.7V.
These measurements are taken between pins 29 and 27 of
the TCU.
Maintaining good shift feel through the transmission life span
is dependant on having an accurate measure of
the engine throttle position. To achieve this the TCU
continuously monitors the maximum and minimum throttle
potentiometer voltages and, if a change occurs, stores the new
voltage values.
However these limits will be lost and will require relearning
should a new TCU be installed, or the throttle calibration data
is cleared by the execution of a particular sequence, This last
instance depends on the installation, and reference should be
made to the Diagnostics Section of this manual. The relearning
will happen automaticallyNotice
Above figure of T.P.S. is for the diesel engine
which is installed on the injection pump.
Gear Position Sensor
The gear position sensor is incorporated in the inhibitor switch
mounted on the side of the transmission case.
(Refer to figure 3.5.) The gear position sensor is a multi-function
switch providing three functions:
lInhibit starting of the vehicle when the shift lever is in a
position other than Park or Neutral
lIlluminate the reversing lamps when Reverse is
selected indicate to the TCU which lever position has
been selected by way of a varying resistance (Refer to
table 3.3.)
Figure 3.5 - Inhibitor Switch