engine oil capacity DATSUN 610 1969 Workshop Manual

Page 28 of 171


The
thermostat
can
be

tested

by
suspending
it
with
a

thermometer
in
a

container
ftlled
with
water

Heat
the
water

gradually
and
stir
it
to

obtain
a
uniform

temperature
Maintain

a
constant

check
of
the

temperature
and

make
sure

that
neither
the
thermostat

or
thermometer

touch

the
sides
of
the
container
or
false

readings
will
be
obtained

The
thermostat
should

begin
to

open
at
a

temperature
of

820C

1
50C

179
60F
2

70Fj
and
should
be

fully

open

with
a
maximum
valve
lift
of
8
mm

0
315
in
at
a

temperature

of

950C
2030F

When

installing
the
thermostat

apply
adhesive
to

both
sides

of
the

gasket
before

refitting
the
water
outlet
elbow

RADIATOR
Removal

Drain

the

cooling

system
as

previously
described
and
remove

the
front

grille

2
Disconnect

the
radiator

upper
hose
lower

hose
and
hose
to

the
reservoir
tank

3
Remove
the

radiator

securing
bolts

and
lift
out
the

radiator

Fig
B
4
It
should
be
noted
that
cars
fitted

with
automatic
transmission

incorporate
a
transmission
oil
cooler

which
must

be
disconnected

Installation

is
a

reversal
of
the
removal

procedure
refill

the

system
as

previously
described

FLUID
COUPLING

The
water

pump
is

equipped
with

a
fluid

coupling
on

vehicles
fitted
with
an

air
conditioner

The
fluid

coupling

Limits

the
maximum
fan

speed
to

approximately
3000

r

p
ro

and
eliminates
noise

and
loss
of

power
at

high
engine

speeds

A
fault
in
the

coupling
may
be
caused

by
the

entry
of

foreign
matter

If
a
fault

developes
the

oupling
must
be

removed
and
dismantled

and
the
interior
cleaned

by

washing

in
solvent
The
condition
of
the
seal

and

bearing
must
be
care

fully
checked

and
the

coupling
replaced
if
the
latter

items
have

become
blackened
If
oil
leaks
occur

it
will
be

necessary
to

replace
the

water

pump
assembly
with
the

coupling
After

cleaning
the
unit
refill

with
11
5
cc
silicon
oil

using
a

suitable

syringe

TechnIcal

Data

Radiator

Radiator

cap
working
pressure

Radiator
core

heightxwidth

x

thickness

1400

and
1600
cc

engines
510

body

1600
and
1800
cc

engines
610

body
Corrugated
fin

type

0
9

kg

sq
cm

13Ib
sq
in

280x488x38mm

I
LOx
19
2x
1
49

in

360x502x32mm

l4
2x19

8x1
26
in

Thermostat

valve

opening

temperature

Standard

B20C
l
BOOF

Cold
climates
880C

1900F

Tropical
climates

76
50C
l700F

Max
valve
lift

Cooling
system

capacity

With

heater

Without
heater

Cooling
system

capacity

With

heater
Above
8
mm
0
31
in

6
8litres

1
75
US

gall

1
5

Imp
gall

6
4litres

1
75
US

gall

1
375

Imp
gall

1600

and
1800
cc

engines
610

body

6
5litres
l
7

US

gall

1
375

Imp
gall

6
0

Iitres
1
625
US

gall

1
375

Imp

gall
Without
heater

27

Page 33 of 171


TechnIcal
Data

IGNITION
DISTRIBUTOR

Type

L16
ll8
with

single
carbl

L16
L18
with
twin
arb

L14

Firing
order

Rotation

Ignition
timing
BTDC

0411
58K

0409
54K

0411
63

Dwen

angle
Hitachi
D411
58K

Hitachi
D409
54
K

Hitachi
0411
63

I
3
4

2

anticlockwise

100
at
600
r

p
m

140
at
650
c

p
m

80
at
600
r

p
m

49
550

Contact

point

gap
setting

Contact

spring
tension
0
45
0
55
mm
O
OI77
0
0217
in

0
50
0
65

kg
l
l
0
I
43
lb

Condenser

capacity
0
22
0
44
F

IGNITION
COil

Type

Spark
plugs

With

single
carb

With
twin
carb

Plug

gap

Tightening
torque
Hitachi
6
R
200

NGK
BP
5ES

NGK
BP
6ES

0
8
0
9
mm
0
031
0
035
in

1
5
2
5

kgm
II
15Ib
ft

1300cc

engine
IGNITION
TIMING

Adjustment

100
B
T
D
C
600
r

p
m

32

Page 36 of 171


and
seats
or
a
weak

diaphragm
return

spring

A

pressure
above
the

specified
figure
may
be
due
to

an

excessively
strong
and
tight
diaphragm

Capacity
test

The

capacity
test
can
be

carried
out
when
the
static

pressure
has
been
tested
and
conforms
with
the

specified
figure

of
0
18

kg
sq
cm
2
6Ib

sq
inJ

Disconnect
the
fuel
line
at

the
carburettor

and

place
a

container
under
the
end
of
the

pipe
to
act
as
a
fuel

sump

Start
the

engine
and
run
it
at
a

speed
of
1000

Lp
m
The

amount

of
fuel
delivered
from
the

pump
in
one
minutc
should

be

1000
cc
2
1
US

pt

If

petrol
does
not
flow
from
the

opcned
end
of

the
pipe

at
the
correct
rate
then
either
the
fuel

pipe
is

clogged
or

the

pump
is
not

operating
correctly

If
the
latter
cause
is

suspected
the

pump
must
be
removed

and

inspected
as
described
below

FUEL
PUMP

Removing
and

Dismantling

Before

removing
the
pump
take
off
the

petrol
tank

cap

and
disconnect
the

pump
inlet
and
outlet

pipes
Blow

through

the

pipes
with

compressed
air
to

make
sure

that

they
are
not

clogged

Remove
the

pump
retaining
nuts

withdraw
the

pump
and

dismantle
it
in
the

following
order

Referring
to

Fig
D
l

Take
out
the
screws

holding
the
two

body
halves

together

and

scparate
the

upper
body
from

the
lower

body

2
Remove
the

cap
and

cap
gasket

3
Unscrew
the
eI
bow
and
connector

4
Take
off

the
valve
retainer
and
remove
the
two
valves

5
To
remove
the

diaphragm
diaphragm
spring
and
lower

body
sealing
washer

press
the

diaphragm
down

against

the
force
of
the

spring
and
tilt
the

diaphragm
at
the
same

time
so
that
the

pull
rod
can
be
unhooked
from
the
rocker

arm

link

Fig
D
7

The
rocker
arm

pin
can

be
driven
out
with
a
suitable

drift

FUEL
PUMP

Inspection
and

Assembly

Check
the

uppcr
and

lower

body
halves
for
cracks

Inspect

the
valve
and
valve

spring
assembly
for

signs
of
wear
and
make

sure
that
the

diaphragm
is
not

holed
or

cracked
also
make
sure

that
the
rocker
arm
is
not
worn
at
the

point
of
contact
with

the

camshaft

The
rocker
arm

pin
may
cause

oil

leakage
if
worn

and

should
be
renewed
Assembly
is
a
reversal
of
the
dismantling
procedure

noting
the

following
points

Fit
new

gaskets
and
lubricate
the
rocker
arm
link
and
the

rocker
arm

pin
before

installing

The

pump
can
be
tested

by
holding
it
approximately
I

metre
3

feet
above

the
level
of
fuel

and
with
a

pipe
connected

between
the
pump
and
fuel
strainer

Operate
the
rocker
ann

by
hand
the

pump
is

operating

correctly
if
fuel
is
drawn

up
soon
after

the
rocker
ann
is

released

CARBURETTOR
IDLING
ADJUSTMENT

The

idling
speed
cannot
be

adjusted
satisfactorily
if
the

ignition
timing
is
incorrect

if
the
spark
plugs
are

dirty
or
if

the
valve
clearances
are
not

correctly
adjusted

Before

adjusting
the

idling
speed
set
the
hot
valve

clearances

t
o
0
25
mm
0
0098
in
for
the
intake
valves

and

0
30
mm
0
0118
in
for
the
exhaust
valves
as
described
in

the
ENGINE

section

Idling
adjustment
is
carried
out

with
the
throttle

stop

screw
in

conjunction
with
the

idling
adjustment
screw

See

Fig
D
8

Run
the

engine
until
it
attains
its
normal

operating

temperature
and
then
switch
off

Starting
from
the
fully
closed

position
unscrew
the

idling
adjustment
screw

by
approximately
three
turns

Screw
the
throttle

stop
screw
in

by
two
or
tftr
e
turns
and

start

th
engine

Unscrew
the
throttle

stop
screw
until
the

engine
commences

to
run

unevenly
then
screw
in
the

idling
adjustment
screw
so

that
the
engine
runs

smoothly
at
the

highest
speed

Readjust
the
throttle

stop
screw
to

drop
the

engine
speed

of

approximately
600
r

p
m
is
obtained

WARNING
Do
not

attempt
to
screw

the

idling
adjustment

screw

down
completely
or
the

tip
of
the
screw

may
be

damaged

FAST
IDLE
OPENING
ADJUSTMENT

The
choke
valve
is

synchronized
with
the
throttle
valve

and
connected
to
it

by
levers
as
shown
in

Fig
D
9
The
fast

idle
opening
can
be
check

by
fully
closing
the
choke
valve
and

measuring
the
clearance
between
the

primary
throttle
valve
and

the
wall
of

the
throttle
chamber
This
clearance

being
shown

as
A

in
the
illustration
The
clearance
for

the
carburettor

types
is
as
follows

Carburettor

type
Throttle

opening

angle

180

180

190
Dimension
A

213304
361

13304
4
I

13282
331
1
55mm
0
06lin

1
55mm
0
06Iin

1
3
mm
0
051
in

35

Page 148 of 171


Fan

coupling

Pulley
ratio
fan
and
water

pump

Tuning
data

Basic

timing

Idling
speed

Distributor
dwell

angle

Spark
plug
gap

Choke

setting

CO

percent
setting
Fan

rpm
water

pump
rpm
3
300

4
000

120
103
Ll71

50
A
T
D
C

700

rpm
650

rpm
automatic

490
550
at
0
02
in
breaker

gap

0
8IJ
0
90
mm

0
03

I
5
0
0355

in

Manual

6
0
I
0
5
air

supply
hose

disconnected

Air

pump
drive
belt

tensioning

Permissible
slackness
of
8
0
12
0

mm
0
3

15
0
4
72
in
under
a

load
of7
1O

kg
1
54
2
20
lb

IGNITION
SYSTEM

DISTRIBUTOR

Type

Firing
order

Rotation

Igntion

timing

Without
emission
control

With
emission
control

Dwell

angle

Condenser

capacity

Advance
characteristics

D416
57
distributor
Hitachi
D416
57

Hitachi
D423
53
with
emission

control

system

134
2

Anti
clockwise

80
B
T
D
C
at
600

rpm

50
A

T
D
C
at
600
r

p
m

49
to
55

degreos

0
20
0

24
1
F
Centrifugal

Start

Maximum

degree
r

p
m

Vacuum

Start

Maximum
degree
r

p
m

Advance
characteristics

D423
53
distributor

Centrifugal

Start

Maximum
degree
r

p
m

Vacuum

Start

Maximum

degree
r

p
m

IGNITION
COIL

Type

Primary
voltage

Spark
gap

Primary
resistance

Secondary
resistance

SPARKING
PLUGS

Type

Gap

Fuel

Systenl

DESCRIPTION

FUEL
PUMP

Testing

FUEL
PUMP

Removing
and

Dismantling

CARBURETTOR

Idling
adjustment

FUEL
LEVEL

Adjusting

STARTING
INTERLOCK
VALVE
OPENING

THROTTLE
VALVE
INTERLOCK
OPENING

CARBURETIOR

Removing
and

Dismantling

DESCRIPTION

A
dual
barrel
down

draught
type
carburettor
is
fitted
to

vehicles
with
the
G
18

engine
A
Stromberg

type
D3034C

carburet

tor
is
installed
on

engines
with
exhaust
emission
controL
and
a

Solex

type
DAK340
carburettor
on

engines
not

equipped
with

this

type
of

system
Both

types
of
carburettors

incorporate
a
550
r

p
m

01
50
at
I
400
16
50
at
2
800

80

mmHg

6
50
at
200

r
p
m

475
r

p
m

01
50
at
1
000
23
50
at
2
600

80
mm

Hg

30
at
120
r

p
m
go
at
400
r

p
m

Hanshin
HM
12F
or

HP5
I
OE

with
emission
control

system

12
volts

more
than
6
mm
0
2362

in

3
8
ohms
at
200C

I
1
2

I
6
8
ohms
at
200
C

NGK
BP

6E

0
7
0
8
mm
0
028
0
031
in
or

0
80
9
mm
0
031
0
035
in

with
emission
control

system

primary
system
for
normal

running
and
a

secondary

system

for
full
load

running
a
float

assembly
which

supplies
fuel
to

both

primary
and
secondary
systems
a
starting
mechanism
and

accelerator

pump
which

provides
a
richer
mixture
on
accelera

tion

SI7

Page 150 of 171


The

type
D3034C
carburettor
has
certain
additional

features

These
include
a

power
valve
mechanism
to

improve
the

performance

at

high
speed
a
fuel
cut
off
valve
which
cuts
the
fuel

supply

when
the

ignition
key
is
turned
to
the
off
position
and
an

idling

limiter
to

maintain
the

emissions
below
a

certain
level

Sectional
views
of
the
two

types
of

pumps
are
shown
in

Figs
8
1
and
B
2
An
EP
3
electrical
fuel

pump
is

located
in
the

centre

of
the
spare
wheel

housing
in
the
boot

Fig
B
3
shows
a

sectional
view
of
the

pump
with
its
contact

the
pump
mechanisms

solenoid

relay
and
built
in
filter

The
air
cleaner
uses
a

viscous

paper
type
element
which

should
be

replaced
every
40
000
km
24
000
miles

Cleaning

is
not

required
and
should
not
be

attempted

The

cartridge
type
fuel
strainer

incorporates
a
fibre
clement

which
should
be
renewed
at
inervals
not

exceeding
40
000
km

24
000
miles
Fit
B
4
shows
a
sectional
view
of

the
assembly

The
fuel
lines
should
not
be
disconnected
from
the
strainer
when

the
fuel
tank
is
full

unless
absolutely
necessary
as
the
strainer

is
below
the
fuel
level

FUEL
PUMP

Testing

Disconnect
the
fuel
hose
from
the

pump
outlet
Connect

a
hose
with

an
inner
diameter
of
approximately
6
mm
0
024

in
to

the

pump
outlet
and

place
a

container
under
the
end
of

the

pipe
Note
that
the
inner

diameter
of
the

pipe
must
not
be

too

small
or

the
pipe
will
be

incapable
of

delivering
the
correct

quantity
of
fuel
when

testing
Hold
the
end
of
the
hose
above
the

level
of
the

pump
and

operate
the

pump
for
more
than
IS

seconds
to
check
the

delivery
capacity
The

capacity
should
be

I
400
cc

3
24
U
S

pts
in
one
minute
or
less
The

pump
must

be
removed
from
the
vehicle
if
it
does
not

operate
or
if
a

reduced

quantity
of
fuel
flows
from
the
end
of
the
hose
Remove

the
pump
from
the
vehicle
and
test
as
follows

Connect
the

pump
to
a

fully
charged
battery
If
the

pump

now

operates
and

discharges
fuel

correctly
the
fault
does
not

lie
in
the

pump
but

may
be
attributed
to

any
of
the

following

causes

Battery
voltage
drop

poor
battery
earth
loose

wiring

loose
connections
blocked
hoses
or
a

faulty
carburettor

If
the

pump
does
not

operate
and

discharge
fuel
when

connected
to
the

battery
then
the

pump
itself
is

faulty
and

must
be
checked
as
follows

First
make
sure
that
current
is

flowing
This
will
be
indica

ted

by
sparking
at

the
tenninals
If
current
flows
the
trouble
is

caused

by
a

sticking

pump
plunger
or

piston
The

pump
must

be
dismantled
in

this
case
and
the

parts
thoroughly
cleaned
in

petrol

If

the
current
does
not
flow
a
coil
or
lead
wire
is
broken

and
the

pump
must

be
renewed
A

reduced
fuel
flow
is
caused

by
a

faulty
pump
inlet
or

discharged
valve
or
blocked
filter

mesh
The

pump
must

of
course

be
dismantled
and
serviced
as

necessary

FUEL
PUMP

Removing
and

Dismantling

Remove
the
bolts

attaching
the
fuel

pump
cover
to

the

floor

panel
see

Fig
B
S
Remove
the
bolts

attaching
the

pump
to
the
cover

2
Disconnect
the
cable
and
fuel
hoses
Withdraw

the

pump
Dismantle
as
follows

Slacken
the

locking
band
screws
and

remove
the
strainer

strainer

spring
filter
strainer
seal
and

locking
band

Remove
the

snap
ring
Withdraw
the
four
screws
from
the

yoke
and
remove

the
electromagnetic
ulJ
it
Press
the

plunger
down
and
withdraw
the
inlet
vaive

the

packing

and
the
cylinder
and

plunger
assembly

A
defective
eledrical
unit

cannot
be
dismantled
as

it
is

sealed
and
must

be
renewed
as
a

complete
unit

FUEL
PUMP

Inspection
and

Assembly

Wash
the
strainer
filter
and

gasket
in

petrol
and

dry
using

compressed
air
Renew
the
filter
and

gasket
if

necessary
Note

that
the
filter
should
be
cleaned
every
40
000

km
24
000

miles
Wash
the

plunger
piston
and
inlet
valve
in

petrol
and

make
sure
the

piston
moves

smoothly
in
the

cylinder
Replace

the

parts
if
found
to
be
defective

Insert
the

plunger
assembly
into
the

cylinder
of
the
electri

cal
unit
and
move

the

assembly
up
and
down
to

make
sure
tha
t

the
contacts
are

operated
If
the
contacts
do
not

operate
the

electrical
unit
is

faulty
and
must

be
renewed

Assembly
is
a
reversal
of

the
dismantling
procedures
tak

ing
care
to
renew
the

gaskets
as

necessary

CARBURETIOR

Idling
Adjustment

The
D3034C
carburettor
fitted
to

engines
equipped
with

an
emission
control

system
must
be

adjusted
as
described
under

the

heading
IGNITION
TIMING
AND
IDLING
SPEED
in
the

section
EMISSION
CONTROL
SYSTEM

Reference
should
be
made
to
carburettor

idling
adjustment

procedures
for
the
L14
L16

and
LI8

engines
when

adjusting

the
type
DAK
340
carburettor
fitted
to
the
G
18

engine
A
smooth

engine
speed
of

approximately
550

rpm
should
be
attained
in

this
case

FUEL
lEVEL

Adjustment
DAK
340earburettor

A
constant
fuellevcl
in
the
float
chamber
is
maintained

by

the
float
and
needle
valve
See

Fig
8
6
If

the
fuel
level
does
not

correspond
with
the
level

gauge
line
it
will
be

necessary
to

care

fully
bend
the
float
seat
until
the
float

upper
position
is

correctly

set

The
clearance
H
between
valve
stem
and
float
seat

should

be
I
5
mm
0
0059
in
with
the
float

fully
lifted

Adjustment

can
be
carried
out

by
carefully
bending
the
float
stopper
3

FUEL
lEVEL

Adjustment
D3034Ccarburettnr

The
fuel
level
should

correspond
with
the
level

gauge
line

Adjustment
can

be
carried
out
if

necessary
by
changing
the

gaskets
between
the
float
chamber

body
and
needle
valve
seat

The
gaskets
are
shown
as
item
4
in

Fig
B
7
When

correctly

adjusted
there
should
be
a

clearance
of

approximately
7
mm

0
027
in
between
float
and
chamber
as
indicated

STARTING

INTERLOCK
VALVE
OPENING

The

choke
valve
at
its

fully
closed
position
automatically

opens
the
throttle
valve
to
an

optimum
angle
of
14

degrees
on

the

type
DAK
340
carburettor
and
13
5

degrees
on
the
D3034C

carburettor
With
the
choke
valve

fully
closed
the
clearance

G

I
in

Fig
8
should
be
1

I
mm
0
0433

in
This
clearance

S19

Page 154 of 171


Accelerator

pump

Piston
diameter

Pump
discharge

Outer
hole

position

Middle
hole

position

Inner
hole

position

Pump
nozzle
diameter

Main
nozzle

diameter

Primary

Secondary
14
0
mm
0
551
in

0
2
cc

per
stroke

0

4
cc

per
stroke

0
6
cc

per
stroke

0

5
mm
0
020

in

2
3
mm
0
0906
in

2
8
mm
0
110
in

Throttle

valve

fully
closed

angle

Primary
10

degrees

Secondary
20

degrees

Idling
opening
5

degrees
approx

Choke
valve

fully
closed

angle
10

degrees

Throttle

opening
at
full
choke
13
5

degrees

FUEL
PUMP

Type

Delivery
Electric

1400
cc
in
one
minute
Emission

control

system

Air

pump
bracket
to

cylinder

head
nut

Adjusting
bar
to
bracket
bolt

Air

pump
to

bracket
bolt

Air

pump
to

adjusting
bar

nut

Anti
backfrre
bracket
to

rocker

cover
0
4Q
0
65

kgm
2
94
7
lb
ft

Anti
backfire
valve
to

bracket
0
4Q
O
65

kgm
2
94

7
lb
ft

Sensing
hose

clamp
to
rocker

cover
0
4Q
0
65

kgm
2
M
7
Ib
ft

Air

gallery
to
exhaust
manifold

plug
5
Q
6

0

kgm
36
243
4lb
ft

Check

valve
to
air

gallery
9

0
10
5

kgm
65

1
75
9Ib
ft
1
6
2
4

kgm
I
1
6
17
4Ib
ft

1
6
2
4

kgm
I
1
6
17
4Ib
ft

1
6
2
4

kgm
I
1
6
17
4
lb
ft

1
6

2
4

kgm
11
6
17
4Ib
ft

Front

SuspensIon
SteerIng

Description

Steering
Maintenance

Wheel
hub
and

bearing

Stabilizer

Spring
and
strut

assembly

Transverse
link
and
lower
ball

joint

Suspension
member

Front
wheel

alignment

Steering
wheel
and
column

Rack
and

pinion
and
tie
rod

Collapsible
steering

DESCRIPTION

The
front

suspension
is
of
the
strut

type
with

the
coil

spring
and

hydraulic

damper
units
mounted
on
the
crossmember

and
transverse
link

assembly
See

Fig
C
I
Vertical
movement

of
the

suspension
is
controlled

by
the
strut

assembly
Forward

and
rearward
movement
is
absorbed

by
compression
rods
6

and
side
movement
controlled

by
the
transverse
links
Front

suspension
servicing
procedures
are
similar
to
those

given
for

vehicle
fitted
with
L14
Ll6
and
LIB

engines
and
can

be
carried

out

by
reference
to

the
instructions

given
in
the

appropriate

section
Camber
and
castor

angles
are

preset
and
cannot

be

adjusted
and
a

check
must

be
made
for

signs
of

damage
to

the

suspension
system
if
the

angles
do
not
confonn
to
the

figures

given
in
Technical
Data

The

steering
is
of
the
direct

acting
rack
and

pinion

type

See

Fig
C
2
A
rubber

coupling
which
absorbs
vibration
and

two
universal

join
ts
are

incorpora
ted
between
the

steering
wheel

and

gear
assembly
The

collapsible
type
of

steering
column

assembly

Fig
C3
is
an

optional
fitting
A
full

description
of
this

type
of

assembly
i

given
in
the

Steering
section
for
L14

L16
and
L18

engines

STEERING
Maintenance

The

steering
system
should
be
lubricated

every
two

years

or
50
000
km
30
000
miles
whichever
comes

fIrst

A
lithium
base

multipurpose
grease
must
be
used
for
the

rack
and

pinion
and
rack
and
tie
rod

joints
The

plug
on
the

steering
gear
housing
should
be
removed
and
a

grease
nipple

fitted
so
that
the
recommended

quantity
of
10
to

15

gram

0
35
to

0
53
oz
of

grease
can
be

injected
Remove
the

grease

nipple
and

replace
the
plug
when
lubrication
is

completed

The

grease
reservoir
on
the
tube
side
should
be

replenished
when

the
level
of

grease
falls
to

approximately
one
third
ofits

capacity

WHEEL
HUB
AND
BEARING
Removal
and
Installation

Wheel
hub
and

bearing
servicing
procedures
are
similar
to

those

previously
given
for
vehicles
fitted
with
L14
LI6
and
LIB

engines

S23