transmission oil DATSUN 610 1969 Workshop Manual

Page 6 of 171


EngIne

INTRODUCTION

ENGINE

Removal

ENGINE

DismantUng

ENGINE

Inspection
and
Overhaul

VALVES
VALVE
GUIDES
VALVE
SEAT
INSERTS

CAMSHAFT
AND
CAMSHAFT

BEARINGS

Checking

CYliNDER

BLOCK

PtSTONS

AND
CONNECTING
RODS

INTRODUCTION

The
1400
1600
cc

and
1800
cc

engines
are
four

cylinder

in
line
units
with
a

single
overhead
camshaft

and

fully
balanced

five

bearing
crankshaft

The
valves
are

operated
through
rockers

which
are

directly
activated

by
the

earn
mechanism

The
crankshaft
is
a

special
steel

forging
with
the
centre

main

bearing

equipped
with
thrust
washers

to
take

up
the
end

thrust

of
the
crankshaft
The

special
aluminium

pistons
are
of

the
strut

construction
to

control
thermal

expansion
and

have

two

compression
rings
and
one
combined
oil

ring

The

gudgeon
pins
have

special
hollow
steel
shafts

and
are

a

fully
floating
fit
in

the

pistons
and
a

press
fit

in
the

connecting

rods

The
aluminium

alloy
cylinder
head
contains

wedge
type

combustion
chambers

and
is
fitted
with
aluminium

bronze
valve

seats

for
the
intake
valves

and
heat
resistant
steel
valve
seats

for
the
exhaust

valves

The
cast

iron
camshaft
is
driven

by
a
double
row
roller

chain
from
the
crankshaft

pulley

The

engine
is

pressure
lubricated

by
a
rotor

type
oil

pump

which
draws
oil

through
an

oil
strainer
into
the

pump
housing

and
then
forces

it

through
a
full
flow

oil
filter

into
the
main
oil

gallery

ENGINE
Removal

Place

alignment
marks
on
the
bonnet

and

hinges
remove

the
bonnet
from
the
vehicle

2

Drain
the

cooling
system
and
engine
and
transmission

lubricant
Remove

the
radiator

grille

3
Discon
ect
the

battery
cables

and
lift
out
the

battery

4
Detach
the

upper
and
lower
radiator

hoses
remove

the

radiator

mounting
bolts
and
lift
the
radiator

away
from

the
vehicle

The

torque
converter

c

jng
pipes
must

be

disconnected
from
the
radiator
on
vehicles

fitted
with

automatic
transmission

S
Remove

the

COOling
fan
and

pulley
disconnect

the
fuel

pipe
from
the
fuel

pump
and

the
heater
hoses
from

the

engine
attachments

6
Disconnect

the
accelerator
control

linkage
and
the

choke
CRANKSHAFT
AND
MAIN
BEARINGS

CAMSHAFT
AND
SPROCKET

FLYWHEEL

ENGINE

Assembling

VALVE
CLEARANCES

Adjusting

ENGINE

LUBRICATION
SYSTEM

OIL
PUMP

OIL
FILTER

CHANGING
THE
ENGINE

OIL

cable
from
the

carburettor

7
Disconnect

the

wirings
from

the
starter
alternator

ignition
coil
oil

pressure
switch

and

temperature
sender

unit

8
Remove

the
clutch
slave

cylinder
Fig
A
2

and
its
return

spring

9
Disconnect

the

speedometer
cable
and
withdraw

the

plug

connector
from
the

reversing
light
switch

10
Disconnect

the
shift
rods
and
seJector

rods
and
remove

the
cross
shaft

assembly
as
described

in
the
section
Gear

box

II
Disconnect

the
front
exhaust

pipe
from
the

exhaust

manifold
disconnect
the
centre

pipe
from

the
rear

pipe

and
remove

the
front

pipe
pre
muffler
and
centre

pipe

assembly

12
Disconnect
the

propeUer
shaft

flange
from
the

companion

flange
from
the

gear
carrier

13
Jack

up
the

gearbox
slightly
and
remove
the
rear

engine

mounting
bracket
bolts
remove
the

mounting
cross

member
and
handbrake

cable

c1amp

14
Remove
the
bolts

securing
the
front

engine
mounting

brackets
to
the
crossmember

15

Attach

lifting
cable
or

chains
to
the
hooks
installed
at

the
front
and
rear
of
the

cylinder
head

Lower
the

jack

under

the

gearbox
and

carefully
lift
and
tilt
the

engine
and

gearbox
unit
Withdraw
the

engine
and

gearbox
from
the

compartment

making
sure
that
it
is

guided

past
the

accessories
installed
on
the

body

ENGINE

Dismantling

Remove
the

engine
as

previously
described
and

carefully

clean

the
exterior
surfaces

Cbeck
for

signs
of
fuel
oil
or

water
leaks

past
the

cylinder
head
and
block
Remove
the
air

cleaner
alternator

distributor
and
starter
motor

Plug
the

carburettor
air
horn

and
distributor
hole
to

prevent
the

ingress

of

foreign
matter

Remove
the

gearbox
from

the

engine
drain
the

engine
oil

and
coolant
Mount
the

engine
in
a
suitable

stand
the

special

engine
attachment
ST05260001
and

engine
ST0501SOO0
should

be
used
if
available

Fig
A
3

5

Page 23 of 171


TechnIcal
Data
L
14
16
and
18

Engine

GENERAL
SPECIFICATIONS

Cylinders

Displacement

L14

L16

L18

Bore
and
stroke

L14

L16

Ll8

Compression
ratio

L14

L16

single
carburettor

L16
SU

twin
carburettor

L18

single
carburettor

Ll8

SU
twin
carburettor

Valve

arrangement

Firing
order

e

idling
speed

Engine

idling
speed
with
automatic
transmission

Oil

pressure
Hot
at
2000
r

p
m

Valve

clearance
Hot

Intake

Exhaust
0
25
mm
0
0098

in

0
25
mm
0
0098
in

Valve
clearance

Cold

Intake

Exhaust

Va
head
diameter

L14

Intake

Exhaust

Vahoe
head
diameter
L16

Intake

Exhaust
0
20

mm
0
0079

in

0
20
mm

0
0079

in

38
mm
1
5361
in

33
mm

1
2992

in

42
mm

1
6535

in

33
rom
1
2992
in

Valve
head
diameter

L18

Intake

Exhaust
42
mm

1
6535
in

35
mm
1
3780

in

Valve
stem
diameter

Intake

7
965
7
980
mm
0
3136
0
3142
in

Exhaust

7
945
7
960
mm

0
3128
0
3134
in

Valve

length
L14

Intake

Exhaust
115

6
115
9mm
4
551
4

562in

115
7
116
0
mm

4
555
4
567
in

Valve

length
L16
LIB

Intake

114

9
115
2
mm
4
524
4
535

in

Exhaust

115
7
116
0
mm

4
555
4
567
in

22
4
in
line

1428

cc
87
1
cu
in

1595
cc
97
3
cu
in

1770

cc

108
0
cu
in

83
x
66
mm

3
27
x
2
60
in

83

x
73
7
mm
3
27
x
2
90
in

85
x
7B
mm
3
35
x
3
07
in

9
0

8
5

9
5

8
5

9
5

Overhead
valve

I
3
4

600
r

p
m

single
carburettor
650
r

p
m
twin
carburettor

650

r

p
m

single
carburettor

700
r

p
m
twin

carburettor

3
5
4
0

kg
sq
cm

50
57Ib

sq
in

VALVES

Valve
lift

Single
carburettor

Valve
lift

Twin
carburettor
10
0
mm
0
3946

in

10
5
mm

0
413
in

Valve

spring
free

length
LI4

Ll4
Intake

Ll4

Exhaust
outer

L14
Exhaust
inner

Valve

sprin8
free

length
L16
LIB

Outer

Inner
49
0
mm

1
929
in

49
98
mm
1
968

in

44
85

mm

1
766
in

49
98
mm

1
968

in

44
85
mm
1
766
in

59
0
mm

2
393
in

10
6
mm

0
417
in
Valve

guide
length

Valve

guide
height
from
head
surface

Valve
guide
diameter
inner

Intake
8
018

Exhaust
8
018

Valve

guide
diameter
outer

Intake

12

034

Exhaust

12
034

Valve

guide
to
stem
clearance

Intake

Exhaust

Valve
seat
width
L14

Intake

Exhaust

Valve
seat

width
L16
LIB

Intake

Exhaust
8
000

mm
0
3154

0
3150
in
clia

8
000
mm

0
3154

0
3150
in
clia

12
023
mm
0
4738
0
4733

in
clia

12
023

mm
0
4738
0
4733

in
clia

1
8
mm

1
1024
in

I
7
mm
1
0630
in

I

4
mm

0
0551
in

1
3
mm
0
0512

in

0
020
0
053
mm
0
0008
0
0021
in

0
040
0
073

mm
0
0016
0
0029
in

Page 28 of 171


The
thermostat
can
be

tested

by
suspending
it
with
a

thermometer
in
a

container
ftlled
with
water

Heat
the
water

gradually
and
stir
it
to

obtain
a
uniform

temperature
Maintain

a
constant

check
of
the

temperature
and

make
sure

that
neither
the
thermostat

or
thermometer

touch

the
sides
of
the
container
or
false

readings
will
be
obtained

The
thermostat
should

begin
to

open
at
a

temperature
of

820C

1
50C

179
60F
2

70Fj
and
should
be

fully

open

with
a
maximum
valve
lift
of
8
mm

0
315
in
at
a

temperature

of

950C
2030F

When

installing
the
thermostat

apply
adhesive
to

both
sides

of
the

gasket
before

refitting
the
water
outlet
elbow

RADIATOR
Removal

Drain

the

cooling

system
as

previously
described
and
remove

the
front

grille

2
Disconnect

the
radiator

upper
hose
lower

hose
and
hose
to

the
reservoir
tank

3
Remove
the

radiator

securing
bolts

and
lift
out
the

radiator

Fig
B
4
It
should
be
noted
that
cars
fitted

with
automatic
transmission

incorporate
a
transmission
oil
cooler

which
must

be
disconnected

Installation

is
a

reversal
of
the
removal

procedure
refill

the

system
as

previously
described

FLUID
COUPLING

The
water

pump
is

equipped
with

a
fluid

coupling
on

vehicles
fitted
with
an

air
conditioner

The
fluid

coupling

Limits

the
maximum
fan

speed
to

approximately
3000

r

p
ro

and
eliminates
noise

and
loss
of

power
at

high
engine

speeds

A
fault
in
the

coupling
may
be
caused

by
the

entry
of

foreign
matter

If
a
fault

developes
the

oupling
must
be

removed
and
dismantled

and
the
interior
cleaned

by

washing

in
solvent
The
condition
of
the
seal

and

bearing
must
be
care

fully
checked

and
the

coupling
replaced
if
the
latter

items
have

become
blackened
If
oil
leaks
occur

it
will
be

necessary
to

replace
the

water

pump
assembly
with
the

coupling
After

cleaning
the
unit
refill

with
11
5
cc
silicon
oil

using
a

suitable

syringe

TechnIcal

Data

Radiator

Radiator

cap
working
pressure

Radiator
core

heightxwidth

x

thickness

1400

and
1600
cc

engines
510

body

1600
and
1800
cc

engines
610

body
Corrugated
fin

type

0
9

kg

sq
cm

13Ib
sq
in

280x488x38mm

I
LOx
19
2x
1
49

in

360x502x32mm

l4
2x19

8x1
26
in

Thermostat

valve

opening

temperature

Standard

B20C
l
BOOF

Cold
climates
880C

1900F

Tropical
climates

76
50C
l700F

Max
valve
lift

Cooling
system

capacity

With

heater

Without
heater

Cooling
system

capacity

With

heater
Above
8
mm
0
31
in

6
8litres

1
75
US

gall

1
5

Imp
gall

6
4litres

1
75
US

gall

1
375

Imp
gall

1600

and
1800
cc

engines
610

body

6
5litres
l
7

US

gall

1
375

Imp
gall

6
0

Iitres
1
625
US

gall

1
375

Imp

gall
Without
heater

27

Page 40 of 171


FLOAT
LEVEL

Adjustment

A
constant
fuel

level
in
the
float

chamber
is
maintained

by

the
float
and
ball
valve

Fig
D
12
If
the
fuel
level
is
not

in

accordance
with
the
level

gauge
line
it
will
be

necessary
to
care

fully
bend

the
float
seat
until
the
float

upper
position
is

correctly

set

Fig
D
13

The
clearance
H
between
the
valve
stem

and
float
seat

should
be
1
0
mm
0
039
in
with
the
float

fully
lifted
as
shown

Adjustment
can

be
carried
out

by
carefully
bending
the
float

stopper
Fig
D
14
until
the

required
clearance
is
obtained

SU
TWIN
CARBURETTORS

Adjustments

It
is
essential
that
the
two

carburettors
are

correctly
adjusted

if

peak
m3l1ce
and
economical
fuel

consumption
is
to
be

realized
Incorrect
carburettor

a
ljustment
will
have
an
adverse

affect

during
idling
and
on

acceleration
etc

Carburettor

synchronization
and

idling
adjustment

Run
the

engine
until
it
reaches
its
normal

operating

temperature
remove
the
air
cleaner
and
slacken

the
front

and

rear
throttle

adjusting
screws
the
balance
screw
and
the
fast

idling
setting
screw
Make
sure
that
the
front
and
rear
throttle

shafts
are
not
connected

Fully
tighten
the

idling
adjustment

nuts
of

the
front

and
rear

carburettors

Fig
D
15

the
back

off
each
nut

by
an

equal
amount
and

by
one
and
a
half
to
two

tUrns

Screw
in
the
front
and
rear
throttle

adjusting
screws

by
a

few
turns
and
start
the

engine
Allow
the

engine
to
reach
its

normal

operating
temperature
before

proceding
to

the
next

stage

Adjust
the
front
and
rear
throttle

adjusting
screws
until

the

engine
speed
is
reduced
to

approximately
600
700
r

p
m

The

engine
should
turn
over

smoothly
and

consistently
Apply

a

flow
meter
to
the
front
carburettor
air
cleaner

flange
and
turn

the

adjustment
screw
on
the
flow
meter
so
that
the

upper
end

of
the
float
in
the

glass
tube
is
in

line
with
the
scale
Uft
off
the

flow
meter

and
apply
it
to

the
rear
carburettor
air
cleaner

flange

without

altering
the

setting
of
the
flow
meter

adjusting
screw

If

the

position
of
the
flow

meter
float
is
not

aligned
with
the

scale

adjust
the
rear
carburettor

throttle
adjusting
screw
to

align
the
float
with
the
mark
on
the
scale

With
the
carburettor
flow

correctly
adjusted
turn
the

idling
adjustment
nuts

of
both
carburettors

approximately
1
8

of

a
turn

either
way
to
obtain

a
fast

and
stable

engine
speed

Both
nuts
must

be
turned

by
an

equal
amount

Back
off
the
front
and
rear
throttle

adjusting
screws
and

adjust
the

engine
speed
to

the

specified
value
of

650
r

p
m

for

the
standard

engine
or
700
r

p
m
with
vehicles
fitted
with

automatic
transmission
Make
sure

that
the
air
flow
of

both

carburettors
remains

unchanged
Screw
in
the
balance
screw

until
the
screw
head
contacts
the

throttle
shafts
without

changing
the

idling

speed
setting

Move
the
throttle

connecting
shaft
and
accelerate
the

engine
a
few
times
then
check
that
the

idling
speed
is

unchanged

Turn
the
fast
idle

setting
screw

to
increase
the

engine
speed

to

approximately
1500

r

p
m
and
recheck
with
the
flow
meter
that
the
air
flow
for
both
carburettors
is

correctly
matched
If

the
air
flow
is
uneven

it
will
be

necessary
to

readjust
the
balance

screw

Finally
back
off

the
fast
idle

setting
screw

Fig
D
16

and
decrease
the

engine
speed
Apply
the
flow
meter
to

the

carburettors
to
confirm
that
the
float

positions
are
even
Re

adjust
if

necessary
by
means
of

the
throttle

adjusting
screws

Stop
the

engine
and
fit
the
air
cleaner

SU
TWIN
CARBURETTOR

Dismantling

Piston
and
suction
chamber

Dismantling

Unscrew
the
plug
and
withdraw
the

piston
damper
Fig
D

17
Remove
the
four
set
screws

and
lift
out

the
suction

chamber
withdraw
the

spring
nylon
washer
and
the

piston

Take
care
not
the

damage
the

jet
needle
and
the
interior
of

the

suction
chamber

Do
not
remove
the

jet
needle
from
the

piston
unless

absolutely
necessary
If
a

replacement
is
to
be
fitted
ensure
that

the
shoulder
of
the
needle
is
flush
with
the
lower
face
of

the

piston
This

operation
can

be
accomplished
by
holding
a
strai

edge
over
the
shoulder
of
the
needle
and
then

tightening
the

set
screw
as
shown
in
Fig
D
18

Wash
the
suction
chamber
and

piston
with
dean
solvent

and

dry
with

compressed
air
Lubricate
the
piston
rod
with
a

light
oil
Do

NOT
lubricate
the

large
end
of
the

piston
or
the

interior
of
the
suction
chamber

NOZZLE

Dismantling

The
nozzle
See
Fig
D
19
can
be
removed

quite
easily

but
should
not
be
dismantled
unless

absolutely
necessary
as

reassembly
of

the
nozzle
sleeve
washer
and
nozzle
sleeve

set
screw
is
an

extremely
intricate

operation

To
remove
the
nozzle
detach
the

connecting
plate
from

the
nozzle
head

pulling
lightly
on

the
starter
lever
to
ease
the

operation
Loosen
the

retaining
clip
take
off
the
fuel
line
and

remove
the
nozzle
Be
careful
not
to

damage
either
the
jet

needle
oc

the
nozzle
Remove
the
idle

adjusting
nut
and

spring

The
nozzle
sleeve
can
be
removed
if

necessary
by
taking
out

the
set
screw
but
as
previously
stated
should
not
be
dismantled

unless

absolutely
necessary

SU
TWIN
CARBUREfTOR

Assembly

Assemble
the

piston
assembly
into

position
but
do
not

fill
with

damper
oil

Assemble
the
nozzle
sleeve
washec
and
set
screw

by

temporarily
tightening
the
set
screw

Set
the
piston
to
its

fully

closed

position
and
insert
the
nozzle
until
it
contacts

the
nozzle

sleeve
When

the
nozzle

jet
contacts
the

jet
needle
the
nozzle

sleeve
must
be

slightly
adjusted
so

that
it
is
at

right
angles
to
the

centre
axis

and
positioned
to
leave
the
nozzle

jet
clear
of

the

jet
needle
Raise
the

piston
without

disturbing
the
setting
and

allow
it
to

drop
The

piston
should

drop
smoothly
until
the

stop
pin
strikes
the
venturi
with
a

liaht
metallic
click
See
below

under

Centering
the

jet
Tighten
the
nozzle
sleeve
set
screw

remove
the

nozzle
install
the
idle

adjustinJ
spring
and

adjusting

nut
on
the
nozzle
sleeve
and
refit
the
nozzle

39

Page 52 of 171


Gearbox

GEARBOX
Removal

GEARBOX

Dismantling

GEARBOX
Inspection
and
Overhaul

GEARBOX

Assembling

THREE
SPEED
GEARBOX
GEARCHANGE
CONTROL
Removal
and

Adjusting

AUTOMATIC
TRANSMISSION

Gearchange
control

linkage

DESCRIPTION

Three

types
of
transmission
are
available
for
the
Datsun

models
covered

by
this
manual
Either
a
three

speed
gearbox

a
four

speed
gearbox
or
three

speed
automatic
transmission

can
be
fitted

The

three
and
four

speed
gearboxes
are

equipped
with

nchromesh
on
all
forward

gears
with
the
three

speed
gearbox

operated
by
a

steering
column

gearchange
system
and
the
four

speed
gearbox
by
a
floor
mounted

gear
lever

Two

types
of

synchromesh
are
used
in
the
four

speed

gearboxes
Either

Borg
Warner
or
Servo

types
may
be
fitted

The

gearboxes
differ

only
in
the

synchromesh
devices

whereby

the
baulk

rings
synchronize
the

coupling
sleeve
with
the
main

shaft

gear
on

the
Warner

gearbox
This
action
is

accomplished

by
a

synchrcrring
on
the
servo

gearbox

THREE
SPEED
GEARBOX
Removal

I
Jack

up
the
vehicle
and

support
it
on
stands

2
Disconnect
the
hand
brake
cable
at
the

equalizer
bracket

Slacken
the
two
exhaust

pipe
centre

clamps
and
turn
the

centre
section
of
the
exhaust
assembly
to
the
left
as
shown

in

Fig
F
2

3
Disconnect
the

propeller
shaft
from
the
rear
axle
drive

flange
by
removing
the
four

securing
bolts
Seal
off

the

gearbox
extension

housing
to

prevent
the
loss
of
oil
and

withdraw
the
shaft
to
the
rear

4
Disconnect
the

speedometer
drive
cable
from

the
adaptor

in
the

gearbox
extension

housing
Fig
F3

S
Disconnect
the
lower
shift
rods
from
the
shift
levers

Fig
F
4
and
remove
the
cross
shaft

assembly
from
the

gearbox
casing
Remove
the
clutch
slave

cylinder
from
the

clutch

housing
Fig
F
5

6

Support
the

engine
with

ajack
positioned
underneath
the

oil

sump
making
sure

that
the

jack
does
not
foul
the
drain

plug
A
block
of
wood
should
be

placed
between
the

sump

and

jack
to

avoid

damaging
the

sump

7
Remove
the
bolts

securing
the
rear

engine
mounting
to

the
crossmember
Position

ajack
under
the

gearbox
and

remove
the
bolts

attaching
the
crossmember
to
the

body

Lower
the

jack
under
the

engine
so
that
the

engine
is

tilted
to
the
rear
Remove
the
starter

motor
and
the
bolts

securing
the

clutch

housing
to
the

engine
Lower
the

jack

slowly
and
withdraw
the

gearbox
towards
the
rear
of
the

vehicle
THREE
SPEED
GEARBOX

Dismantling

Drain
the

gearbox
oil
Remove
the
dust
cover
release

the
retainer

spring
and
remove

the
withdrawal
lever

complete

with
release

bearing
from
the
clutch

housing
See
section

CLUTCH

Remove
the

gearbox
bottom
cover
the

speedometer
drive

pinion
assembly
and
the
rear
extension

housing
Take
out

the

cross
shaft

retaining
rings
and
unscrew
the
nuts

securing
the

operating
lever
lock

pins
Use
a
hammer
and

punch
to
drive

out
the

pins
and
withdraw
both
cross
shafts

Fig
F
6

Remove
the
fr
mt
cover

and
withdraw
the
counter
shaft

Lift
out

the
countersbaft

gear
cluster

together
with
the
needle

roller

bearings
and

spacers
Fig
F
7
Remove
the
reverse
idler

gear
shaft
lock
bolt
and
remove
the
shaft
and
the
idler

gear

Fig
F
B
Drive
out
the

pins
securing
the
selector
forks
to
the

selector
rods

Unscrew
the
interlock

plug
and
remove
the
detent
ball

and

spring
Fig
F
9
Remove
the
first
reverse

speed
and
second

third

speed
selector
rods
and
lift
out

the
selector
forks

Withdraw
the
main
shaft
assembly
and
the
drive
shaft

assembly
from
the

gearbox
See

Fig
F
1O
and
F
11

To
dismantle
the
mainshaft
release
the

circlip
from
the

front
of
the
mainshaft
as
shown
in

Fig
F
12
and
remove
the

second
and
third

speed
synchronizer
hub
and
second

speed

gearwheel
Fig
F
13
Remove
the

circlip
securing
the
speedo

meter
drive

gear
and
withdraw
the

gear
together
with
the
ball

and

spacer
Fig
F
14
Remove
the
mainshaft

bearing
using
a

press
Hold
the
rnainshaft
reverse

gear
and

tap
the
shaft
on
a

piece
of
wood
to
release
the
reverse

gear
assembly
together

with
the
first

speed
gearwheel

GEARBOX

Inspection
and
Overhaul

Oean
all

parts
thoroughly
and
examine
the

gearbox
case

and
extension
housing
for
cracks

If
the

joint
faces
are
burred
or

pitted
it

may
be

necessary

to

replace
the
units
if

repair
cannot
be
carried
out
satisfactorily

Remove
any
adhesive
which
remains
on

the
faces

The
rear
extension

housing
bush
should
be
renewed
if

worn

unevenly
Clean
the

bearings
and

dry
with
compressed
air

taking
care
that
the
bearings
do
not

spin
Turn
the
ball

bearings

to
make
sure

that
they
run

smoothly
and
without
play
Replace

the
needle

bearings
if
worn
or

damaged
in
any

way

It
is
advisable
to
renew

the
needle
roller

bearings
after

they

have
been
installed
for
a
considerable

period
as
it
is
difficult

51

Page 64 of 171


Propeller
Shaft
and

DIfferentIaJ

DESCRIPTION

PROPELLER
SHAFT

DIFFERENTIAL

Removal
and

Dismantling

DIFFERENTIAL

Assembly
and

Adj
Jstment

DIFFERENTIAL

Installation

DIFFERENTIAL
Estate
car
and
van

TOOTH
CONTACT

PATTERN

Checking

DESCRIPTION

The
tubular
steel

propeller
shafts
are
shown

in
Fig
G
1

The
shaft
is
connected
to
the
drive

pinion

flange
by
a

yoke

flange
at
the
rear
and
to

the
transmission

output
shaft

by
a

splined
yoke
sleeve

at
the
front
The
Datsum

I800ce
station

wagon
and
van
has
a
three

section
shaft

in
contrast
to
the
two

piece
shaft

used
on

the
other
models
covered

by
this
manual

The
differential

carrier
houses
a

hypoid
bevel

gear
assembly

Although
this
manual
contains

dismantling
and

adjustment

procedures
for

the
differential

assembly
it
must

be

pointed
out

that

only
workshops
with

specialized
tools
and

equipment
will

be
able
to

carry
out
the
work

involved

PROPELLER

SHAFT
Removal

1
Release

the
hand
brake

jack

up
the
vehicle
at
the
fear

and

support
it
on
stands

2

Loosen
the

clamps
and
turn
the

pre
silencer
to
the
left

saloon

only

3
Remove
the

adjuster
nut
from

the
handbrake
cable
rear

adjuster
and
disconnect
the
left
hand
cable
Saloon

only

Remove
the
bolts

securing
the
centre

bearing
bracket

1800
cc

stati
n

wagon

4
Disconnect

the
fear

flange
from
the
rear

axle

flange
With

draw

the

propeller
shaft
to
the
rear

away
from
the

gear

box
mainshaft
Take
care

that
the
shaft
is
not

dropped

during
removal
or

the
balance
of
the
shaft

may
be
altered

5

Plug
the

gearbox
rear

extension
to

prevent
the
loss
of
oil

PROPELLER
SHAFT

Dismantling
and

Inspection

Oean

all

components
and
mark
them
before

dismantling

so
that

they
can
be

reassembled
in
their

original
positions

Correct

reassembly
is
most

important
otherwise

the
balance

of
the
shaft

may
be
affected

Remove

the
four

snap
rings
from
the

journal
assembly
and

withdraw

the
needle

bearing

cap
by
tapping
the

yoke
with
a

wooden
mallet

The
wear
on

the

spider
journal
diameter
must
not
exceed

0
15mm
0
006
in
the

standard
size
of

a
new

journal
is
14
7mm

0
579

in
Check
the

spider
seal

rings
and

replace
them
if

necessary
The
radial

backlash
of
the
sleeve

yoke
splines
to

gearbox
splines
should
not

exceed
0
5mm

0
002
in
Renew

the
sleeve

yoke
if
the

figures
are
in
excess
of
the

specified
value

E
Mount
the
shaft
between
the
centres
of
a
suitable
fixture

and
use
a
dial

gauge
to

check
that
the
run
out
of

the
shaft

does

not

exceed
0
6mm
0
024
in
at
the
centre
of
the
tubular

portion

The
shaft
can

only
be

straightened
with
a

hydraulic

press
it
is

advisable
however
to
renew

the
shaft
if

the
run
out

is
excessive

Check
that
the

dynamic
balance
of

the
shaft

does
not

exceed
15

grm
cm
0
208
oz
in
at
4000
r

p
m

PROPELLER
SHAFT

Assembly
and
11Istallation
r

Assembly
and

installation
is
a

reversal
of

the
removal
and

dismantling
procedures
not
the

following
points

Grease
the
needle
rollers
with
wheel

bearing

grease
before

placing
them
into
the

bearing
race

Lubricate
all

splines
with

gear
oil

Adjust
the

journal
radial
end
float
to
within
0
02mm

0
0008
in

using
a
suitable

snap
ring
Snap
rings
are
available

in

eight
thicknesses
from

2
00mm
0
079
in
to

2
14mm

0
084
in
and
are
colour
coded
as
detailed
in
Technical
Data

at
the

end
of

this
section

DIFFERENTIAL
Removal

Saloons
with

independent
rear

suspension

Remove
the
hand

brake
rear

cable
remove

the

propeller

shaft

and
drive
shafts
as
described
in
their
relevant
sections

2

Support
the
differential

with

ajack
and
remove

the
nuts

securing
the
differential

mounting
crossmemb
er

Fig
G
3

3
Remove
the
bolts

holding
the
differential
to
the

suspension

member
Withdraw
the
differential

and
jack
to

the
rear

4

Support
the

suspension
member
with

a
stand
to

prevent

the

mountings
from

becoming
twisted
or

damaged

DIFFERENTIAL

Dismantling

Before

dismantling
place
the
carrier

assembly
in
a
suitable

mounting
stand
or

special
stand
ST

06270001
and

carry
out

preliminary
checks
as
follows

Check
the
tooth
contact

pattern
of
the
crownwheel
and

pinion
by
applying
lead

oxide
to
three
or
four

teeth
of

the

crownwheel
Turn
the
crownwheel
several
times
to
obtain
an

impression
of

the
tooth
contact

pattern
Check
the
backlash

between
the
teeth
of
the
crownwheel
and

pinion
using
a
dial

gauge
The
backlash
should
be
within
0
10
0
20mm
0
004

0
008
in

63

Page 134 of 171


GIS

DESCRIYfION

ENGINE
Removal
and
Installation

ENGINE
MOUNTING

INSULATORS

ENGINE

Dismantling
Inspection
and
Overhaul

CHAMSHAFT

AND
CAMSHAFT
BEARINGS

CYLINDER
BLOCK

PISTONS

CONNECTING

RODS

CRANKSHAFT

ENGINE

Assembling

VALVE
CLEARANCE

Adjusting

DESCRIYfION

The
G
18

engine
is
a
short

stroke
unit
with
a

displacement

of
1
815
ce
The
aluminium

alloy
cylinder
head
has
cross
flow

ports
and
a
V

shaped
valve

layout
The

single
overhead
camshaft

is
driven
from
the
crankshaft

by
a
double
row
roller
chain
at
a

reduction

ratio
of
2
I

The
crankshaft
is
a

carbon
steel

forging
and
is

provided

with
five
main

bearings
and
four

balancing
weights
Aluminium

thrust

bearings
are
located
at

the
No
2

journal

The
cast
aluminium

alloy
pistons
have
two

comp
ression

rings
and
one
oil

ring
Gudgeon

pins
are

fully
floating
in
the

piston
bores
and
are

equipped
with

circlips
at

each
end
to
limit

the
amount

of
their
travel
The

forged
steel

connecting
rods

have
weight
adjusting
bosses
at
both

large
and
small
ends
to

insure
that
the
rods
are

correctly
balanced

during
operation

The

lubricating
system
is
of

the

pressure
feed

type
with

the
oil

pump
driven

by
a

gear
on
the
crankshaft
Oil
is
delivered

to
the
main

gallery
via
a
full
flow
ftlter

ENGINE
Removal
and
Installation

Although
the

engine
can
be
removed
as
a

single
unit
it

will

prove
an
easier

operation
to
remove

the

engine
with
the

transmission
Proceed
as
follows

Fit
the
engine
slingers
ST49760000
to
the

engine

Disconnect
the
battery
cables
and
lift
out

the

battery

Drain
the
coolant
and

engine
oil

2
Place

alignment
marks
on
the
bonnet
and

hinges
remove

the
bonnet
from
the
vehicle

3
Remove
the
blow

by
hose
from
the
rocker
cover
and
take

off
the
air
cleaner

4
Disconnect
the
accelerator

linkage
and
choke
cable
from

the
carburettor

S
Detach
the

upper
and
lower

radiator
hoses
remove
the

two
brackets
from
the
core

support
and
lift
the
radia
tor

away
from
the
vehicle
The

torque
convertor

oil

pipes
must

be
disconnected
from
the
oil
cooler
if
the
vehicle
is

equip

ped
with
automatic
transmission
Detach
the
fuel

pipe
if

fitted
from
the
engine
and

heater
hose

6
Disconnect
the
electrical

wires
from
the
alternator
thennal
EngIne

OIL
PUMP

OIL
PRESSURE
RELIEF
VALVE

OIL
FILTER

EMISSION
CONTROL
SYSTEM

IGNITION

TIMING
AND
IDLING
SPEED

Emission

control

system

EMISSION
CONTROL
SYSTEM
Maintenance

IGNITION
SYSTEM

IGNITION
TIMING

IGNITION
DISTRIBUTOR
Maintenance

SPARKING
PLUGS

transmitter
the

primary
side
of
the
distributor
oil

pressure

switch
starter

motor
and
reverse

light
switch

7

Remove
the
clutch
slave

cylinder
and
its
return

spring
from

the
transmission
as
described
in
the
section
CLUTCH

8
Disconnect
the
shift
rods
and
selector
rods
then
remove

the
cross
shaft

assembly
by
detaching
the
bracket
from

the
side
member
See
GEARBOX
section

9
Disconnect
the

speedometer
cable
and
detach
the
front

exhaust

pipe
from
the
exhaust
manifold

10
Disconnect
the

propeller
shaft
and

plug
the

gearbox
rear

extension
to

prevent
the
loss
of
oil

11
Jack

up
the

gearbox
slightly
and
remove
the
rear

engine

mounting
support
Take
out

the
bolts
which
secure
the

front

mounting
insulators
to
the
cross
member

12
Attach
chains
or
wire

rope
to
the

engine
Gradually
lower

the

jack
under
the

gearbox
and
carefully
lift
and
tilt
the

engine
and
gear
box
to
clear
the

compartment
Withdraw

the
unit

making
sure

that
it
does
not
foul
the
accessories

Installation
is
a
reversal
of
the
removal

procedure
RefIll

with
the
correct

quantities
of
oil
and
coolant
when
the

engine
is
installed

ENGINE
MOUNTING
INSULATORS

Replacing

The

front
and
rear

mounting
insulators
should
be
checked

with
the

engine
installed
to
make
sure
that
the
dimensions

conform
with
those

given
in

Figs
A
I
and
A
2

To
remove
the
front
insulator

proceed
as
follows

Position
a

jack
under
the
oil

sump
Make
sure
that
the

jack
is
clear
of
the
drain

plug
and
insert
a
wooden
block
between

the
jack
and

sump
to

prevent
the

sump
from

being
damaged

Remove
the
bolts

securing
the
insulator
to
the
front

suspension

member
and
the
nut

attaching
the
insulator
to
the

engine

mounting
bracket
Raise
the

jack
slightly
and
remove
the

insulator
To
remove
the
rear

mounting
insulator

proceed
as

follows

Position
a

jack
to
take
the

weight
of
the

gearbox
and
take

out

the
bolts

connecting
the
insulator
to

the
transmission
rear

extension

housing
Remove
the
bolts

attaching
the
cross
member

to

the
underside
of
the

body
and
withdraw
the
insulator

Installation

of
both
insulators

is
a
reversal
of
the

removal

procedures

S3

Page 136 of 171


ENGINE

Dismantling

Remove

the

engine
from
the
vehicle
as

previously
described

and

carefully
clean
the
exterior

surfaces
The
alternator

distribu

tor

and
starter
motor
should
be
removed
before

washing
Plug

the
carhurettor

air
horn
to

prevent
the

ingress
of

foreign
matter

Place
the

engine
and
transmission
on

the
engine
carrier
ST4797

0000
if

available
and
dismantle
as
follows

Remove
the

gearbox
from
the

engine
Disconnect
the
intake

manifold

water
hose
the
vacuum

hose
and
the
intake
manifold

to
oil

separator
hose
Remove
the
intake
manifold
with
the

carburettor
Fit
the

engine
attachment
ST3720OG18
to
the

cylin

der
block
and

place
tre

engine
on
the
stand
ST371
00000

Remove
the
clutch

@
Ssembly
as
described
in
the
section

CLUTCH
Remove
the
exhaust
manifold
and
heat
baffle

plate

Take
off
the
fan
blades
and
remove
the
water

pump
pulley
and

fan
belt
Remove
the
rocker
cover
hose
manifold
heat
hose
and

by
pass
hoses

Remove
the

generator
bracket
and
the
oil
fIlter
Extract
the

engine
breather

assembly
from
above
Note
that
the
breather

is
fitted
to
the

guide
and
is
installed
with
a
O

ring
which
is

pressed
into
the

cylinder
block

Flatten
the
10ckwasher
and
unscrew
the
crankshaft
pulley

nut
Withdraw
the

pulley
with
the

puller
ST44820000
if
available

but
do
not
hook
it
in
the
V

groove
of
the

pulley

Remove
the
rocker
cover
and
take
off
the
rubber

plug

located
on
the
front
of
the
cylinder
head

Straighten
the
lock

ing
washer
and
remove
the
bolt

securing
the

distributor
drive

gear
and
camshaft

sprocket
to
the
camshaft
Remove
the
drive

gear
and
take
off
the

sprocket
See

Fig
A
3

Remove
the

cylinder
head
bolts
in
reverse

order
to
the

tightening

sequence
sOOwn
in

Fig
A
18
and
lift
off
the

cylinder

head
as
an

assembly
See

Fig
A
4
Note

that
in
addition
to
the

ten

cylinder
head
bolts
there
are
also
two
bolts

securing
the

chain
cover
to

the
head
Invert
the

engine
and
remove
the
oil

sump
Remove
the
chain
cover
and
oil

flinger
Take
off
the
nut

securing
the
oil

pump
sprocket
and
withdraw
the

sprocket
with

the
chain
in

position
as
shown
in

Fig
A5
Remove
the
oil

pump

and
stramer
Note

that
two
of
the

pump
mounting
bolts
are

pipe
guides

Remove
the

timing
chain
crankshaft

sprocket
chain
ten

sioner
and
chain

stop

Remove
the

connecting
rod

caps
and

push
the

piston
and

connecting
rod
assemblies

through
the
tops
of
the
bores

Keep

all

parts
in
order
so

they
can
be
assembled
in
their

original
posi

tions

Take

out
the

flywheel
retaining
bolts
and
withdraw
the

flywheel
Remove
the
main

bearing

caps
but
take
care
not
to

damage
the

pipe
guides
Lift
out

the
crankshaft
and
main
bear

ings
noting
that
the

bearings
must
be
reassembled
in
their

original

positions
Remove
the

piston
rings
with
a
suitable

expander
and

take
off
the

gudgeon
pin
clips
The

piston
should
be
heated
to

a

temperature
of
50
to
600
122
to
1400F
before

extracting

the

gudgeon
pin
Keep
the
dismantled

parts
in
order
so

they

can
be
reassembled
in
their

original
positions

Remove
the
camshaft
rocker
ann
shaft
and
rocker
ann

assemblies
from
the

head

by
taking
off
the
cam

bracket

clamp

ing
nuts
It
is
advisable
to
insert
disused
bolts
in
the
No
1

and

No
5
bracket
holes
as
the
cam
bracket
will
fall
from
the
rocker

ann
shaft
when

it
is
removed
Remove

the
valve

cotters

using

the

special
tool
ST47450000

and
dismantle
the
valve
assemblies
Keep
the

parts
together
so

they
can
be
installed
in
their

original

order

ENGINE

Inspection
and
Overhaul

Cylinder
head
and
valves

Inspection
and
overhaul

procedures
can

be
carried
out

by

following
the
instructions

previously
given
for
the
L14
LI6

and
LIB

engines
noting
the

following
points

Measure
the

joint
face
of
the

cylinder
head

using
a

straight

edge
and
feeler

gauge
The

permissible
amount
of
distortion
is

0
03
mm
0
0012
in
or
less
The
surface
of
the
head
must
be

reground
if
the
maximum
limit
of
0

1
mm

0
0039
in
is

exceeded

Oean
each
valve

by
washing
in
petrol
then

carefully
examine

the
stems
and
heads
Discard

any
valves
with
worn

or

damaged

stems
Use
a

micrometer
to
check
the
diameter
of
the
stems

which
should
be
8
0
mm
0
315
in
for
both
intake
and
exhaust

valves
If

the
seating
face
of
the
valve
is

excessively
burned

damaged
or
distorted
the
valve
must
be
discarded
The
valve

seating
face
and
valve

tip
can
be
refaced
if

necessary
but

only

the
minimum
amount
of
metal
should
be
removed
Check
the

free

length
and
tension
of
each
valve

spring
and

compare
the

figures
obtained
with
those

given
in
Technical
Data
at
the
end

of
this
section
Use
a

square
to
check
the

springs
for
deformation

and

replace
any
spring
with
a
deflection
of
1
6
mm
0
0630
in

or
more

Valve

guides

Measure
the
clearance
between
the
valve

guide
and
valve

stern
The
stem
to

guide
clearance
should

be
0
025
0
055
mm

0
0010
0
0022
in
for
the
intake
valves
and
0
04
0
077
mm

0
0016
0
0030
in
for
the
exhaust
valves
The
maximum
clear

ance

limit
is
0
1
mm
0
0039
in
The
valve

guides
are
held
in

position
with
an
interference
fit
of
0
040
0
069
mm
0
0016

0
0027
in
and
can
be
removed

using
a

press
and
valve

guide

replacer
set
ST49730000
under
2
ton

pressure
This

operation

can

be
carried
out
at
room

temperature
but
will
be
more
effec

tively

performed
at
a

higher
temperature
Valve

guides
are

available
with
oversize
diameters
of
0
2
mm
0
0079
in
The

cylinder
head
guide
bore
must
be
reamed
out
at

normal
room

temperature
and
the
new

guides
pressed
in
after

heating
the

cylinder
head
to
a

temperature
of

approximately
800
C
1760F

The
standard
valve

guide
requires
a
bore
of
14
0
14
018
mm

0
551
0
552

in
and
the
oversize
valve

guide
a
bore
of
14
2

14
218
mm
0
559
0
560
in
Ream
out
the
bore
of
the

guides

to
obtain
the
desired
finish
and
clearance
Use
the
reamer
set

ST49710000
to

ream
the
bore
to
8
000
8
015
mm
0
3150

0
3156
in
The
valve
seat

surface
must

be
concentric
with
the

guide
bore
and
must
be
corrected
if

necessary
using
the
new

valve

guide
as
axis

Valve
seat
inserts

Check
the
valve
seat

inserts
for

signs
of

pitting
The

inserts

cannot
be

replaced
but

may
be
corrected
if

necessary
using
a

valve
seat
cutter

ST49720000

Scrape
the
seat

with
the
450

cutter
then

reduce
the
width
of
the

contacting
faces

using
the

150
and
600
cutters
for
the
intake
valve
inserts
and
150
cutter

for
the
exhaust
valve
inserts
Seat
correction
dimensions
are

shown
in
millimeters
in

Fig
A
6

Lap
each
valve
into
its
seat
after

correcting
the
seat
inserts

Place
a
small

quantity
of
fme

grinding
paste
on

the

seating
face

of
the
valve

and
lap
in
as

previously
described
for
the
Ll4
LI6

and
L
18

engines

S5

Page 144 of 171


carrying
out

extensive
tests

with
the

necessary
equipment
The

hoses
and
connectors
can
of
course
be
checked
for

signs
of

leakage
and
corrected
as

necessary
Also
the
tension
of
the
air

pump
belt

IGNITION
TIMING
AND
IDLING
SPEED

Emission
control

system

The

ignition
timing
should

be
set
and
the

idling
speed

mixture

adjusted
in
the

folloWing
manner

Run
the

engine
until
it
reaches
its
normal

operating
tem

perature
Connect
an

ignition
tachometer
and

timing
light
observ

ing
the
manufacturers
instructions

NOTE
If
the
vehicle
is

equipped
with
automatic
transmission

make
sure
that
the

dashpot
does
not

prevent
the
throttle
from

closing
Turn

the
throttle
shaft
arm

adjusting
screw
anti
clock

wise
so
that
the

tip
of
the
screw

is
clear
of
the
throttle
shaft

arm
see

Fig
A

26

Turn
the
throttle

adjusting
screw
to
set
the

idling
speed
to

700
r

p
m
650

rpm
for

automatic
transmission

Adjust
the

ignition
timing
to
5
A

T
D
C
Refererence
should
be
made
to

the
instructions

given
in
the
section
IGNITION
SYSTEM
for

the
L14
L16
and
LI8

engines
for

ignition
timing
details

Turn
the

idling
adjustment
screw
and

throttle
adjusting
screw

until
the

engine
runs

smoothly
a
t
the
correct

idling
speed
Turn

the

idling
adjustment
screw
clockwise
until
the

engine
speed

starts
to

drop
as
a
weaker
mix
ture
is

obtained
Now
turn

the

idling
adjustment
screw
anti
clockwise

by
one
turn
one
and
a

half
turns
for
automatic

transmission
to
obtain
a
richer
mix

ture

Adjust
the

idling
speed
to
700

rpm
650

rpm
for

automatic

transmission

by
turning
the
throttle

adjusting
screw
Make
sure

that
the
ignition
timing
remains
at
50
A
T
D

C

Turn
the
throttle
shaft
ann

adjusting
screw
clockwise
until

the

tip
of
the
screw

just
contacts

the
throttle
shaft
ann
The

screw
must
not
exert

pressure
on
the
throttle
shaft
arm

EMISSION
CONTROL
SYSTEM
Maintenance

The

system
should
be

inspected
and
serviced

every
I
2

months
or
20
000
km

12
000
miles
whichever
comes
fIrst
to

make
sure
that
the
exhaust
emissions
are
maintained
at
the

minimum
level

Check
the
carburettor
choke

setting
and

adjust
as
described

in
the
section
FUEL

SYSTEM

Check
the
carburettor

idling
speed
mixture

and

adjust
if
necessary
as
described
under
the

heading
IGNITION

TIMING
AND
IDLING
SPEED

in
this
section

2
Check

the
distributor
earn

dwell

angle
and
also
the
condi

tion
of
the
contact
breaker

points
Check
the

ignition

timing
and

adjust
if

necessary
The

distributor
dwell

angle

should
be

adjusted
to
49
55

degrees
and
the

points
gap
to

0
45

0
55
mm
0
0177
0
0217
in

3
Remove

and
clean
the

sparking
plugs
Renew

any
plug
with

badly
worn
electrodes
Set
the

plug

gaps
to
0

80
0
90
mm

0
0315
0
0355
in

by
adjusting
the
earth
electrode

IGNITION
SYSTEM

The

maintenance
and

servicing
procedures
for

the

compo

nents
of
the

ignition
system
on

vehicles
fitted

with
the
GIS

engine
are

basically
similar
to

the
instructions

previously
given

for
the
Ll4
LI6
and
LIS

engines
The
distributor
is
however

of

a
different

type
Either
an
Hitachi
0416
57
distributor

being

fitted
or
an

Hitachi
0423
53
if

the
vehicle
is

equipped
with
an

emission

control

system
The
distributors
have
different

advance

curve
characteristics
as
shown

in
Technical
Data

IGNITION
TIMING

Check
the

ignition

timing
with
a

timing
light
as

previously

described

for
the
LI4
L16
and
L

8

engines
Disconnect

the

distributor
vacuum
line

and
run

engine
at

idling
speed
or

slightly
below
The

timing
should

be
set
at
8

BTDCj600

rpm

for
the
D416

57
distributor
or
at
5

ATDCj600

rpm
for

the

D423
53
distributor
fItted
to

engines
with
emission
control

systems

IGNITION
DISTRIBUTOR

Maintenance

Maintenance
instructions
are

similar
to
those

given
for

the
L14
LI6
and
L18

engines
Set
the
contact
breaker

points

gap
to
0
45
0
55
mm
0
0177

0
0217
in
as

previously

described

SPARKING
PLUGS

The

sparking
plugs
should
be

inspected
and
cleaned
at

regular
intervals
and
renewed
at

approximately
20
000
kIn

12
000
miles
Clean
the

plugs
thoroughly
and
make
sure

they

are
of

the
same

type
and
heat

range
File

the
centre

electrode

nat
before

adjusting
the

gap
Set
the

gap
to

0
8
0
9mm
0
031

0
035
in
if
the

engine
is
fItted
with
emission
control

system

or
to

0
7
0
8
mm
0
028

0
031
in
if
emission
control
is
not

fitted

Adjustment
must

always
be
made

by
bending
the
earth

electrode

TechnIcal

Data

GENERAL
SPECIFICATION
GI8

Engine

Cylinders

Bore
and
stroke

Displacemen
t

Valve

arrangemen
t

Firing
order

Engine
idler

speed

Compression
ratio

Oil

pressure
at

3000
r

p
m
4
in
line

85x80
mm

3
346x3
150

in

1
815
cc

110
8
cu
in

OHC

134
2

600

r

p
m
STD

8
3
I

4
7
to
5
5

kgjsq
cm
66
8

to
78
2

Ibjsq
in
LIQUID
PACKING

APPLICATION

Cylinder
block

2

Cylinder
head

Oil

gallery
blind

plug

Expansion

plug

Gas
breather

guide

Rear

bearing

cap
fitting

surface

Rear

bearing

cap
side
seal

both
ends
Expansion
plug

Rubber

plug
Rea

Manifold
heat

pipe

3
Chain
cover

gasket
both
sides

S13

Page 160 of 171


Tighten
the
inner

socket
until
the
ball
seat
is
at

the
rack

end
then
back

off
the
socket

by
30
to

40

degrees
and

tighten

the

stop
nut

to
a

torque

reading
of
8
0
to
10
0

kgm
57
8
to

72
3
Ib
ft
as

shown
in

Fig
C
25

With
the

tie
rod
assembled
measure
the
force

required
to

swing
the
tie
rod
Hook
a

spring
balance
at
the
end
of

the
rod

as
shown
in

Fig
C

26
and
check
that
the
force
is
from
3
0
to

6

0

kgm
6
6
to
13
2
lb
Measure

the
stroke
of
the

rack
which

should
be
73
0
mm

2
874
in
Fit

grease
nipples
at
both

ends
of
the
rack
and

pinion
housing
Apply
multipurpose
ase

to
each

joint
until

a
small

quantity
of

grease
appears
at

the
out

let

hole
in
the
boot
Do
not
use
an
excessive

amount
of

grease

The

pinion
housing
should

be
lubricated
until
a
small

quantity

of

grease

appears
between

rack
and

housing

Remove

the

grease
nipple
and
fit
the

plug
Fit
the
boot

Fill

the
grease
reseIVoir
with

grease
and
attach
it
to

the
rack

housing
Adjust
the

length
of

the
tie
rods
at
both

sides
as

des
ribed
under
FRONT
WHEEL

ALIGNMENT

Assemble
the

steering
lower

joint
to
the

rack
and

pinion

and

tighten
the
lower

joint
bolt
to

a

torque
reading
of
4
0
to

5
0

kgm
29
0
to

36
0
Ib
ft
Installation
of

the
rack
and

pinion
assembly
is
a
reversal

of

the
removal

procedure

COLLAPSIBLE

STEERING

Removi
8
and

Dismantti
8

The

steering
coluJllfl
See

Fig
C
3
can
be
removed

in
a

similar
manner
to
the
standard

type
of
column

Take
care
not

to

drop
the
column

when
it
is
removed
from
the

vehicle
or
the

shaft

may
collapse
Do
not
exert

any
pressure
on

the
column
or

the
bellows
may
be
defonned
To
dismantle

proceed
as
follows

Remove
the

retaining
wire
and

pull
out

the
lower
shaft

Disconnect
the
control

linkage
if
the
vehicle
is
fitted
with
auto

matic
transmission
Slide
the

steering
shaft
bracket

away
With

draw
the

screws
and

separate
the

upper
and
lower
tubes

Assembly
is
a
reversal
of

the

dismantling
procedure
Note

that
the
slot
in
the
universal

joint
must
be

aligned
with
the

punch

mark
at
the

top
of
the

upper

steering
shaft
as
shown
in

Fig
C
28

When

installing
the
column
make
sure
that

the
bellows
do
not

become
bent
of
twisted

as
the

clamp
and
bottom

plate
bolts

are

tightened

TechnICal
Data

TYP

Gear
I1ltio
Rack
and

pinion

17
8
I

Steerin
column
shaft

spring
Wire
diameter

Freelenath

CoiltW
llJ

Load

length

Retainer

sprinJ
dimension
Wire
diameter

F

CoilturnJ

l
oadxlensth

Side
rod

SPrina
dimeruion
Wire
diameter

Fn
elenath

Coil
turns

Load
x

lensth

Side
rod
inner
ball

joint
ax
ia
I

play

Side
rod

outer
ball

joint
uiaJ

play

Pinion

thrultplay

Retainer
float

play

Rack
moke

Side
rod
inner
ball

joint

swinsinl
torque

Side
rod
uter
ball

joint

swingina
torque

Pinion
oration

torque

Rack

pre1
d

Wheel

alipment
1IIl1a
a
ondition

Cut

c
m

Kinl
pin
inclination

Toe
in

S
In

teerinlan

eOut
10
40

8005

12

15
mm
0
47
0

59
in

38024

35036
2
9

mm
0
11
2
in

36
5
mm

1
4370
in

3

25q
551
18mm
0
7087

2

6
mm
1
102in

26
3
mm
1
035
in

5
5

20

kl
lbs

16
3

mm
0
642
in

26
mm

0
102

in

19
0
mm
0
748

in

6
3

40

q
88Ibs
17
0

mm
0
669
in

0
06
mm
0
002
m

0
1
0
5
mm

0
0039
0

0197
in

less
than
0
3
mm
0

0118
in

0
09
mm
0
0035
in

73
mm
t

2
87
in

0
8
1

5

q
m

5
8
10

8Ib
n

0
8
J
S

kg
m
5
8
JO
8Ib
ft

8

20q
7
17
lb

in

8
18

q
l7
6
39

7Ibs

Strut

DlelDbly

Strut
outer
Ilia

50
8
mm

2
0
in

Piston
rod
di
a

20
mm

0
787
in

Cylinder
inner
dia
30mm
I
181
in

Dampinl
force
at

pistonlpeed

0
3
m
I

1
08
ft
I

Expansion
67

IOq
I47
7
221bs

Compression
25

4kl
55
1

8
81bs

Shock
absorber
inner

cylinderlcngth
IOmm
16
1

in

R
IlD
vchicle

LH
D

ehide

CoiIsprina

LIi
IlIi
OOIh

Wire
diameter
mm

in
12
0
472
12
0
472
12
0
472

Coil
diameter
mm
in

130
5
12
130
5

12
130
5
12

Coil
Ium
S

Coil

effective
turnl

6
5
6
5
6
5

Free

lenJth
mm
in
371
5
14
6
386
5
15

2
371
5
14
6

Installed
hei
ht
load

mmq
180
270
200

270
180
270

in
lb
7
1
594
7

9
594
7
1
594

SpriDgCOfl
ltant

ka
mm

1
45
US
1
45

529

1

Page:   1-10 11-20 next >