battery INFINITI QX56 2009 Factory Service Manual

Page 1345 of 4171


EC-18
< BASIC INSPECTION >[VK56DE]
INSPECTION AND ADJUSTMENT
With CONSULT-III
1. Check the VIN of the vehicle and note it. Refer to
GI-20, "Model Variation".
2. Turn ignition switch ON and engine stopped.
3. Select “VIN REGISTRATION ” in “WORK SUPPORT” mode.
4. Follow the instruction of CONSULT-III display.
Accelerator Pedal Released Position LearningINFOID:0000000003771298
DESCRIPTION
Accelerator Pedal Released Position Learning is an operati on to learn the fully released position of the accel-
erator pedal by monitoring the accelerator pedal positi on sensor output signal. It must be performed each time
harness connector of accelerator pedal pos ition sensor or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON and wait at least 2 seconds.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Turn ignition switch ON and wait at least 2 seconds.
5. Turn ignition switch OFF and wait at least 10 seconds.
Throttle Valve Closed Position LearningINFOID:0000000003771299
DESCRIPTION
Throttle Valve Closed Position Learning is an operation to l earn the fully closed position of the throttle valve by
monitoring the throttle position sensor output signal . It must be performed each time harness connector of
electric throttle control actuator or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON.
3. Turn ignition switch OFF wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.
Idle Air Volume LearningINFOID:0000000003771300
DESCRIPTION
Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific
range. It must be performed under any of the following conditions:
 Each time electric throttle control actuator or ECM is replaced.
 Idle speed or ignition timing is out of specification.
PREPARATION
Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied.
Learning will be cancelled if any of the following conditions are missed for even a moment.
 Battery voltage: More than 12.9V (At idle)
 Engine coolant temperature: 70 - 100 °C (158 - 212 °F)
 Select lever: P or N
 Electric load switch: OFF (Air conditioner, headlamp, rear window defogger)
On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is
start the headlamp will not be illuminated.
 Steering wheel: Neutral (Straight-ahead position)
 Vehicle speed: Stopped
 Transmission: Warmed-up
- With CONSULT-III: Drive vehicle until “ATF TEMP SE 1” in “DATA MONITOR” mode of “A/T” system indi-
cates less than 0.9V.
- Without CONSULT-III: Drive vehicle for 10 minutes.
OPERATION PROCEDURE
Revision: December 20092009 QX56

Page 1349 of 4171


EC-22
< FUNCTION DIAGNOSIS >[VK56DE]
ENGINE CONTROL SYSTEM
Engine Control Comp onent Parts Location
INFOID:0000000003771302
1. ECM 2. Battery current sensor 3. Power steering pressure sensor
4. Ignition coil (with power transistor)
and spark plug (bank 2) 5. Refrigerant pressure sensor 6. Intake valve timing control position
sensor (bank 2)
7. Intake valve timing control solenoid valve (bank 2) 8. Engine coolant temperature sensor 9. Electric throttle control actuator
10. Intake valve timing control position sensor (bank 1) 11. Intake valve timing control solenoid
valve (bank 1) 12. Cooling fan motor
13. Camshaft position sensor (PHASE) 14. I gnition coil (with power transistor)
and spark plug (bank 1) 15. Mass air flow sensor (with intake air
temperature sensor)
16. A/F sensor 1 (bank 1) 17. EVAP service port 18. Fuel injector (bank 1)
19. Knock sensor (bank 1) 20. EVAP canister purge volume control solenoid valve21. Knock sensor (bank 2)
22. Fuel injector (bank 2) 23. A/F sensor 1 (bank 2) 24. IPDM E/R
BBIA0743E
Revision: December 20092009 QX56

Page 1350 of 4171


ENGINE CONTROL SYSTEMEC-23
< FUNCTION DIAGNOSIS > [VK56DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
1. Body ground (view with battery re-
moved) 2. Body ground (view with battery re-
moved) 3. Body ground
4. No. 1 ignition coil 5. Engine ground 6. Mass air flow sensor (with intake air temperature sensor)
7. IPDM E/R 8. Battery 9. Radiator hose
BBIA0778E
Revision: December 20092009 QX56

Page 1353 of 4171


EC-26
< FUNCTION DIAGNOSIS >[VK56DE]
ENGINE CONTROL SYSTEM
1. Knock sensor (bank 1) (view with en-
gine removed) 2. Knock sensor (bank 2) (view with en-
gine removed) 3. Battery current sensor
4. Power steering pressure sensor 5. Power steering fluid reservoir 6. Intake manifold
7. Engine coolant temperature sensor 8. Ignition coils (with power transistor) 9. Ignition coil (with power transistor)
10. Injector harness connectors (bank 2) 11. Injector harness connectors (bank 1) : Vehicle front
BBIA0384E
Revision: December 20092009 QX56

Page 1355 of 4171


EC-28
< FUNCTION DIAGNOSIS >[VK56DE]
MULTIPORT FUEL INJECTION SYSTEM
MULTIPORT FUEL INJECTION SYSTEM
System DescriptionINFOID:0000000003771303
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is
determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). T he amount of fuel injected is a program value in the
ECM memory. The program value is preset by engi ne operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.
VARIOUS FUEL INJECTION I NCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compens ated to improve engine performance under various operat-
ing conditions as listed below.
<Fuel increase> During warm-up
 When starting the engine
 During acceleration
 Hot-engine operation
 When selector lever is changed from N to D
 High-load, high-speed operation
<Fuel decrease>
 During deceleration
 During high engine speed operation
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed*
3
Piston position
Fuel injection
& mixture ratio
controlFuel injector
Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
TCM Gear position
Knock sensor Engine knocking condition
Battery
Battery voltage*
3
Power steering pressure sensor Power steering operation
Heated oxygen sensor 2*
1Density of oxygen in exhaust gas
ABS actuator and electric unit (control unit) VDC/TCS operation command*
2
Air conditioner switchAir conditioner operation*2
Wheel sensorVehicle speed*2
Revision: December 20092009 QX56

Page 1358 of 4171


ELECTRIC IGNITION SYSTEMEC-31
< FUNCTION DIAGNOSIS > [VK56DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
ELECTRIC IGNITION SYSTEM
System DescriptionINFOID:0000000003771304
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
Firing order: 1 - 8 - 7 - 3 - 6 - 5 - 4 -2
The ignition timing is controlled by the ECM to maintain
the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is revi sed by the ECM according to the other data stored in
the ECM.
 At starting
 During warm-up
At idle
 At low battery voltage
 During acceleration
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed*
2
Piston position
Ignition timing
controlPower transistor
Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
TCM Gear position
Battery
Battery voltage*
2
Wheel sensor
Vehicle speed*1
Revision: December 20092009 QX56

Page 1359 of 4171


EC-32
< FUNCTION DIAGNOSIS >[VK56DE]
AIR CONDITIONING CUT CONTROL
AIR CONDITIONING CUT CONTROL
Input/Output Signal ChartINFOID:0000000003771305
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
System DescriptionINFOID:0000000003771306
This system improves engine operati
on when the air conditioner is used.
Under the following conditions, the air conditioner is turned OFF.
 When the accelerator pedal is fully depressed.
 When cranking the engine.
 At high engine speeds.
 When the engine coolant temperature becomes excessively high.
 When operating power steering during low engine speed or low vehicle speed.
 When engine speed is excessively low.
 When refrigerant pressure is excessively low or high.
Sensor Input Signal to ECM ECM function Actuator
Air conditioner switch Air conditioner ON signal*
1
Air conditioner
cut controlAir conditio
ner relay
Accelerator pedal position sensor Accelerator pedal position
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)
Engine speed*
2
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*
2
Refrigerant pressure sensor Refrigerant pressure
Power steering pressure sensor Power steering operation
Wheel sensor
Vehicle speed*
1
Revision: December 20092009 QX56

Page 1363 of 4171


EC-36
< FUNCTION DIAGNOSIS >[VK56DE]
COOLING FAN CONTROL
COOLING FAN CONTROL
DescriptionINFOID:0000000003771310
SYSTEM DESCRIPTION
Cooling Fan Control
*1: The ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to ECM through CAN communication line.
The ECM controls the cooling fan corresponding to the
vehicle speed, engine coolant temperature, refrigerant
pressure, and air conditioner ON signal. The c ontrol system has 2-step control [HI/OFF].
Cooling Fan Operation
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE) Engine speed*
1
Cooling fan
controlIPDM E/R
(Cooling fan relay)
Battery
Battery voltage*
1
Wheel sensorVehicle speed*2
Engine coolant temperature sensor Engine coolant temperature
Air conditioner switchAir conditioner ON signal*
2
Refrigerant pressure sensor Refrigerant pressure
PBIB2060E
Revision: December 20092009 QX56

Page 1382 of 4171


ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-55
< FUNCTION DIAGNOSIS > [VK56DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
1. If the ignition switch stays ON after repair work, be su
re to turn ignition switch OFF once. Wait at least 10
seconds and then turn it ON (engine stopped) again.
2. Perform TM-30, "OBD-II Diagnostic Trouble Code (DTC)"
. (The DTC in TCM will be erased)
3. Select Service $04 with GST (Generic Scan Tool).
No Tools
NOTE:
If the DTC is not for AT related items (see EC-456, "DTC Index"
), skip step 2.
1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once.
Wait at least 10 seconds and then turn it ON (engine stopped) again.
2. Perform TM-30, "OBD-II Diagnostic Trouble Code (DTC)"
. (The DTC in the TCM will be erased.)
3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to
EC-55, "Malfunction Indicator Lamp (MIL)"
.
 If the battery is disconnected, the emission-relate d diagnostic information will be lost within 24
hours.
 The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
Actual work procedures are explained using a DTC as an ex ample. Be careful so that not only the DTC, but all
of the data listed above, are cleared from the ECM memory during work procedures.
Malfunction Indicator Lamp (MIL)INFOID:0000000003771316
DESCRIPTION
The MIL is located on the instrument panel.
1. The MIL will light up when the ignition switch is turned ON with-
out the engine running. This is a bulb check.
If the MIL does not light up, refer to MWI-18
or see EC-41.
2. When the engine is start ed, the MIL should go off.
If the MIL remains on, the on board diagnostic system has
detected an engine system malfunction.
ON BOARD DIAGNOSTIC SYSTEM FUNCTION
The on board diagnostic system has the following three functions.
SEF217U
Revision: December 20092009 QX56

Page 1385 of 4171


EC-58
< FUNCTION DIAGNOSIS >[VK56DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
tified codes can be identified by using the CONSULT-II
I or GST. A DTC will be used as an example for how to
read a code.
A particular trouble code can be identified by the number of four-digit numeral flashes. The “zero” is indicated
by the number of ten flashes. The “A” is indicated by the number of eleven flash.The length of time the
1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second)
cycle.
The 100th-digit numeral and lower digit numerals cons ist of a 0.3-second ON and 0.3-second OFF cycle.
A change from one digit numeral to another occurs at an inte rval of 1.0-second OFF. In other words, the later
numeral appears on the display 1.3 seconds after the former numeral has disappeared.
A change from one trouble code to another occu rs at an interval of 1.8-second OFF.
In this way, all the detected malfunctions are classi fied by their DTC numbers. The DTC 0000 refers to no mal-
function. (See EC-456, "DTC Index"
)
How to Erase Diagnostic Test Mode II (Self-diagnostic Results)
The DTC can be erased from the back up memory in t he ECM by depressing accelerator pedal. Refer to "How
to Erase Diagnostic Test Mode II (Self-diagnostic Results)".
 If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
 Be careful not to erase the stored memo ry before starting trouble diagnoses.
OBD System Operation ChartINFOID:0000000003771317
RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS
 When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are
stored in the ECM memory.
 When the same malfunction is detected in two consec utive trips, the DTC and the freeze frame data are
stored in the ECM memory, and the MIL will come on. For details, refer to EC-41, "Two Trip Detection Logic"
.
 The MIL will go off after the vehicle is driven 3 time s (driving pattern B) with no malfunction. The drive is
counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs
while counting, the counter will reset.
 The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) with-
out the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injec-
tion System, the DTC and freez e frame data will be stored until the vehicle is driven 80 times (driving pattern
JMBIA1140GB
Revision: December 20092009 QX56

Page:   < prev 1-10 ... 221-230 231-240 241-250 251-260 261-270 271-280 281-290 291-300 301-310 ... 840 next >