maintenance JEEP CJ 1953 Owner's Manual

Page 159 of 376


'Jeep'
UNIVERSAL SERIES SERVICE
MANUAL

F2
F2-35.
EXHAUST EMISSION CONTOL SYSTEM
DISTRIBUTOR SPECIFICATIONS

Distributor:
Make
Delco-Remy Prestolite Prestolite
Model...
1110376
IAT-4501 or IAT-4502 IAT-4502A

Breaker
Point Gap .016"
[0,406
mm.] .016"
[0,406
mm.] .016"
[0,406
mm.]

Breaker
Arm Tension 19 to 23 oz. [538 a 652 gr.] 17 to 22 oz. [482 a 623 gr.] 17 to 22 oz. [482 a 623 gr.]

Cam
Angle. 29° to 31° 29° + 3° 29° ± 3°

Max.
Auto Advance
(Crankshaft
Degrees). 13° to 15° at 1,950 rpm. 16° (& 1800 rpm. 21° @ 1800 rpm.
26°
@
4200
rpm. (Max.) 32° @
4200
rpm. (Max.)

Max.
Vac. Advance
(Distributor
Degrees) 8° 8° 8°
Condenser Capacity. .18 to .23 mfd. .25 to .28 mfd. .25 to .28 mfd.

Timing:
Crankshaft

(BTC)
@ Idle 5°
(BTC)
© Idle 0°
(TDC)
© Idle

Mark
Location Crankshaft Pulley Crankshaft Pulley Crankshaft Pulley

Firing
Order
1-6-5-4-3-2 1-6-5-4-3-2 1-6-5-4-3-2

F2-36.
SPARK PLUG
GAP

Spark
Plug Gap. .035"
[0,889
mm.]

IMPORTANT
NOTICE
The
Exhaust Emission Systems covered in this publication
meet
State and Federal
requirements for hydrocarbon and carbon
monoxide
emissions.

To
assure continued proper operation,
these
systems
must be inspected regularly,
parts must be replaced at factory-recommended intervals and
engine
tune-up services
performed at intervals specified in the Exhaust Emission Control System Maintenance
charts.

For
the
above
reasons,
these
systems
must not, under any circumstances, be altered
to anything other than required specifications provided in this publication.
Further,

the Exhaust Emission Control System, or any of its components, must not be physi­
cally
altered or modified in any respect.

DATA
TAG

For
the serviceman's guidance, each vehicle equipped with exhaust emission control

will
have data tag permanently affixed to the radiator shroud — in example:

VEHICLE EMISSION CONTROL INFORMATION MODEL V6-225 C.I.D.


ENGINE
AT
NORMAL OPERATING TEMPERATURE


LIGHTS
AND ALL
ACCESSORIES
OFF


IDLE MIXTURE
.. .
LEAN BEST IDLE


IGNITION TIMING
0*
(TDC)
*
SPARK PLUG
GAP 035

DWELL
. . . 30* (.016
POINT
GAP) •
IDLE SPEED
. . .
650- 700
RPM
TRANSMISSION
IN
NEUTRAL DURING TUNE
UP

SEE
SERVICE MANUAL FOR ADDITIONAL INFORMATION

THIS VEHICLE CONFORMS
TO U.S. DEPT. OF H.E.W.
REGULATIONS APPLICABLE
TO
1971
MODEL YEAR
NEW
MOTOR VEHICLES
Jeep
CORPORATION
14400
NOTE:
The
above
tag applies to vehicles equipped with Distributor Model
IAT-4502A.

On
vehicles equipped with Distributor Models
1110376,
IAT-4501 and IAT-4502 the tag is the same

except
that Ignition Timing is 5°
T.D.C.

Always
refer to the data tag when checking or re-adjusting ignition timing, idle speed, and idle mixture.
159

Page 164 of 376


G
COOLING SYSTEM
engine
connections. Insert flushing gun and flush
heater core.
Care
must be taken when applying air
pressure to prevent damage to the heater core.

G-2.
Filling
Cooling System
To
fill
the cooling system, remove the
fill
cap and

fill
the tank to the top. Replace the cap and run
the
engine
at medium speed for approximately one
minute. Remove the cap and recheck the coolant level. Add more coolant if necessary to bring the level back to the top of the tank. If the cooling system is filled when the
engine
is cold, recheck the coolant level after the
engine
has warmed up.
This

will
ensure that the thermostat has opened allow­ ing complete cooling system circulation.

Always
correct any cooling system leaks before installing antifreeze. A corrosion inhibitor should be used in the cooling system to prevent the forma­
tion of rust and scale. A quality brand antifreeze containing a corrosion inhibitor should be used.

When
the antifreeze is drained in the spring, a
corrosion inhibitor should be added with the water.

Note:
Cooling system components for both V6 and

F4
engines
are shown in
Figs.
G-2 and G-3.

G-3. Draining
Cooling System

To
completely
drain
the cooling system, open the

drain
in the
bottom
of the radiator and also a

drain
on the right side of the cylinder block on the
Hurricane
F4 engine. The Dauntless V-6
engine

has two
drain
plugs, one located on each side of the cylinder block. Both plugs must be removed to
completely
drain
the cooling system.
Remove the radiator cap to break any vacuum
that may have developed.

Should
the cooling solution be lost from the system

and
the
engine
become
overheated do not
refill

the system immediately but allow the
engine
to cool or
refill
slowly while the
engine
is running. If
cold solution is poured into the radiator while the

engine
is overheated there is danger of cracking the

cylinder
block and/or cylinder head.
G-4.
Radiator Pressure
Cap

All
radiators are equipped with pressure caps which
reduce evaporation of cooling solution and make the
engines
more efficient by permitting slightly
higher operating temperatures. When operating
properly,
the pressure cap permits pressure build-up

in
the cooling system during periods of severe heat

load.
This
pressure increases the boiling point of the coolant and thus reduces overflow losses. The

effectiveness
of the cap is limited by its opening
pressure and the boiling point of the coolant (see
note
below). The pressure cap employs a spring-
loaded, rubber-faced pressure seal which presses against a seat in the radiator top tank. Spring pres­

sure
determines the opening pressure of the valve.

A
typical pressure cap is shown in Fig. G-5.

Note:
Refer to cooling system specifications (Par.

G-21)
for opening (relief) pressure when the ve­
hicle is equipped with either the
Hurricane
F4
or
Dauntless V-6 engine. If a new cap is required, always install a cap of the same type and pressure
rating
specified. It should never be altered or re­
placed by a plain cap.

A
vacuum release valve (Fig. G-5) is employed to
prevent undesirable vacuum build-up when the system
cools
down. The vacuum release valve is
held against its seat under light spring pressure.

Vacuum
in the system is relieved by the valve
which
opens
at V2 to 1 psi. [0,035 a 0,07 kg-cm2]

vacuum.
A pressure tester can be used to check and
test
the vacuum pressure rate (see Fig. G-6).
Although the mechanism of the pressure cap re­ quires no maintenance, the cap should be inspected
periodically for cleanliness and freedom of opera­ tion. The pressure cap gasket and radiator filler neck seat should also be inspected to be sure they

are
providing a proper seal. If the rubber face of
the valve is defective, a new cap should be installed.
Filler
neck reseating
tools
are commercially
avail­
able to correct minor
defects
at the surface of the seat. Follow instructions of the reseating tool manu­

facturer.

To
remove the radiator pressure cap when the
engine
coolant temperature is high or boiling, place

a
cloth over the pressure cap and
turn
counter­ clockwise about Vi
turn
until the first (pressure release)
stop
is reached. Keep the cap in this posi­
tion until all pressure is released.
Then
push cap
down and
turn
still
further until cap can be re­ moved. To install the pressure cap, place it in posi­
tion and
turn
it clockwise as far as it
will
go.

Caution:
Use extreme care in removing the radiator
pressure cap. In overheated systems, the sudden release of pressure can cause a steam flash and this

flash,
or the
loosened
cap can cause serious personal

injury.

G-5.
RADIATOR

Maintenance of the radiator consists of keeping
the exterior of the radiator core clean, the interior free from rust and scale, and the radiator free from

leaks.
Check
the cooling system fluid level and for
leaks each
2000
miles
[3.200
km.] or every 30
days, whichever occurs first.
This
exterior of the

radiator
core should be cleaned and the radiator inspected for leaks each
6000
miles
[9.600
km.]
of normal service of the vehicle. Cleaning should be performed by blowing out with air stream or water stream directed from the
rear
of the radiator.

Visual
inspection is not sufficient as the accumula­ tion of small particles of foreign material on core
surfaces can restrict cooling without closing the core openings.

Radiator
leakage occasionally results from cor­
rosion perforation of the metal but most leakage results from mechanical failure of soldered joints
when too much strain has been put on the joint.
Fractures
occur most
often
at the joint where the
radiator
inlet and
outlet
pipes are attached to the

tanks.
When the seams break, the entire soldered

joint
is
exposed
and can corrode, but breakage
rather
than corrosion is the
primary
cause of seam
leakage. Examine the radiator carefully for leaks before and after cleaning. Cleaning may uncover points of leakage already existing but plugged with
rust.
White, rusty, or colored leakage stains indicate 164

Page 169 of 376


'Jeep'
UNIVERSAL
SERIES SERVICE
MANUAL

G
cation period. It is
good
preventive maintenance to
replace a badly frayed, worn or cracked fan belt
before it breaks in operation.

To
replace the fan belt,
loosen
the attaching
bolts

at each generator or alternator brace-to-engine mounting and pivot the alternator or generator to­

ward
the
engine
to gain slack needed to install the new belt Remove the old belt. Position the new
belt over the fan pulley, over the crankshaft pulley,
then over the generator or alternator pulley.
Pull
the generator or alternator away from the
engine

until
belt tension is
firm.
Then tighten the generator

or
alternator mounting
bolts
and check the tension
as indicated above. Reset the generator or alternator as necessary for correct belt tension.
Finally,
torque
the generator or alternator mounting
bolts
25 to 35 lb-ft. [3,4 a 4,8 kg-m.].

Note:
On the Dauntless V-6
engine
when adjusting
the fan belt tension, the alternator mounting
bolts

should be torqued 30 to 40 lb-ft. [4,14 to 5,53

kg-m.].
If a fan belt tension
gauge
(W-283) is
avail­

able, proper tension should be 80 pounds [36,2 kg.].

G-l
9. Engine Overheating

An
engine
will
not be damaged by high coolant
temperatures unless the coolant boils. The pres­

surized
cooling system on the 'Jeep' vehicles raises the boiling point of the coolant solution. Should
overheating be encountered, and the fault is be­
lieved to be in the cooling system check for the
following:

a.
Proper coolant level. See
Filling
Cooling Sys­
tem Par. G-2.
b. Poor air flow.
Check
for dirty radiator core. (See Radiator Par. G-5).
Check
for faulty belt
pulley operation, worn or
loose
fan belt, or dam­ aged fan.
Clean,
repair, replace or adjust as neces­

sary.

c. Foaming coolant.
Check
for air leaks at water
pump,
hose
connection and filler cap. Tighten, re­

pair
or replace as necessary.

d.
Surging or "after boil".
Check
pressure cap and
replace if valves or gasket are faulty.
e.
External
leaks.
Check
the following for leaks:
Hoses and clamps, water pump, radiator, head gas­
ket, core plugs and drain cocks, as well as the cylin­ der head or block for
cracks.

f.
Internal
leaks.
Check
for faulty head gasket,
cracked
cylinder head or block.
g. Poor coolant flow.
Check
hose
condition, water pump, fan belt, and repair or replace as necessary. Inspect block for rust or scale, and clean and flush
the system, if necessary.

h.
Check
the temperature
gauge.
169

Page 171 of 376


'Jeep'
UNIVERSAL SERIES SERVICE
MANUAL

H
ELECTRICAL
SYSTEM

Contents

SUBJECT
PAR.

GENERAL
. -H-l Alternator Charging System H-6, 63 Battery. . . .H-2

Electrical
Instruments. H-l 11 Ignition System H-3

Lighting
System H-8, 125

Primary
Circuit.
.. H-4 Secondary
Circuit
H-5
SparkPlugs H-33
Starting System H-7, 88

DISTRIBUTOR

HURRICANE
F4
ENGINE
H-9
Coil
H-19 Condenser
.H-l
2
Disassembly.
.........................
.H-16
Distributor Cap H-10 Distributor
Points
H-13
Governor Mechanism H-l4
Inspection H-l
7
Installation and Timing H-18
Removal H-15
Rotor H-ll

DISTRIBUTOR

DAUNTLESS
V-6
ENGINE
H-20

Ballast
Resistor. H-32

Centrifugal
Advance H-25
Cleaning and Inspection H-28
Coil
H-31
Condenser H-23
Disassembly. H-27
Distributor Cap H-21 Distributor
Points
H-24
Installation and Timing. . .H-30
Reassembly. H-29
Removal H-2 6
Rotor H-2
2

GENERATOR CHARGING SYSTEM SERVICE
H-34 Generator Armature H-3
7

Generator Assembly. H-40
Generator
Brush
Holders H-39
Generator Disassembly H-36
Generator
Field
Coils.
H-38
Generator Maintenance H-35 Generator -
Current
-
Voltage
Regulator. . .H-41
Generator Regulator Quick Checks...... .H-48
Generator Regulator Test Procedure H-47

ALTERNATOR PRECAUTIONS.
H-64

ALTERNATOR CHARGING SYSTEM.
. .H-63 Alternator On-Vehicle Tests. .H-67
Alternator Output Test. .H-70 Isolation
Diode
Test H-69
Regulator Test .H-71 Removal and Installation of
Voltage
Regulator. H-72
SUBJECT
PAR.
Service
Diagnosis
H-66 Test Equipment H-68
Alternator
Field
Circuit
Test H-73
Brush
Insulation and Continuity Test H-75
Brush
Removal and Inspection H-74
Rotor In-Vehicle Tests H-76

ALTERNATOR BENCH TESTS.
.H-77

ALTERNATOR REMOVAL
H-78 Alternator Disassembly H-80 Alternator Installation. H-87
Assembling Alternator H-86
General
Inspection H-81
Diode
Test H-85

Out-Of-Circuit
Rotor Test. .H-82

Out-Of-Circuit
Stator Leakage Test.. . H-83 Rotor Tests H-79
Stator
Coil
Leakage and Continuity Test. .H-84

STARTING
MOTOR

PRESTOLITE.
. .H-92
Armature
.H-l
00 Bench Test H-l04
Bendix
Folo-Thru
Drive H-105

Brush
Holder Inspection. .H-102
Brushes H-98
Commutator H-95, 99
Disassembly H-9 7

Field
Coils H-101
Lubrication
of
Folo-Thru
Drive H-l06
Maintenance Procedure H-93
Overhaul
Procedure H-96
Reassembly of Starting Motor. .
H-l
03
Starter
Solenoid
Switch H-10 7 Starter Ignition Switch. .H-89

Wiring.
. . . H-94

STARTING
MOTOR
—DELCO
H-108
Armature
H-101
Brush
Holder Inspection H-l 15 Brushes
H:lll

Commutator H-112

Field
Coils........
H-114
Locked
Armature Test. . . H-l20

Solenoid
Coils H-l 16
Starting Motor Reassembly H-l 17
Starting Motor Cleaning and Inspection.
.H-l
10
Starting Motor Disassembly .H-109 Starting Motor No-Load Test H-119
Starting Motor Test — General H-l 18 Starter Switch —
Solenoid
Type. H-l21
Starter Ignition Switch. .H-89

ELECTRICAL
INSTRUMENTS
H-122 Testing Instrument Gauges H-l24

LIGHTING
SYSTEM
H-l25 Aiming Head Lamps H-132

Backup
Lamps H-135

(continued
on
next
page)
171

Page 188 of 376


H

ELECTRICAL
SYSTEM
colder plug may be desirable. However, under- or
over-heating is usually caused by factors other than the type of
spark
plugs and the cause should be determined before changing plugs. The design of the
engine
calls for plugs equivalent to Champion

J-8
for F4
engines
and
A.C.
44S or
UJ12Y
Champ­

ion for the V6 engines, (as installed in production)
though any factor that consistently affects
engine
operating temperature may cause this requirement
to change. Overheating may be caused by in­ sufficient tightening of the plug in the head, which interferes with the flow of heat away from the firing

tip.
If this is the case, the plug gasket
will
show very
little flattening. Over-tightening, in
turn,
will
pro­ duce too easy a heat flow path and result in cold
plug operation.
This
will
be evident by excessive
flattening
and
deformation of the gasket.
Prevailing
temperatures, condition of the cooling system, and

air-fuel
mixture can affect the
engine
operating temperature and should be taken into consideration.
H-34.
GENERATOR
— F4
ENGINE

The
generator is an air-cooled, two-brush unit

which
cannot be adjusted to increase or decrease output. For replacement,
voltage
regulator and generator must be matched for
voltage
and capa­

city,
polarity, and common source of manufacture.
Otherwise,
either a
loss
of ampere capacity or a

burned
out generator
will
result. Generators for

these
vehicles are 12-volt. Par. H-l explains the 12-volt system. Refer to the specifications at the
end of this section for information on correct generator rating for a specific model series.
The
circuit
breaker,
voltage
regulator, and current-

limiting
regulator are built into one combination

unit.
Because the regulator and battery are part
of the generator
circuit,
the output of the generator
depends upon the
state
of charge and temperature
of the battery.
With
a discharged battery, the
output
will
be high, decreasing proportionally as the battery
becomes
charged. For service informa­
tion covering current regulator see Par. H-41.

H-36.
Generator
Maintenance

A
periodic inspection should be made of the charg­
ing
circuit,
Fig. H-l9. The interval
between
these
checks
will
vary
depending upon type of service.
Dust,
dirt
and high speed operation are factors 10541

FIG.
H-19—CHARGING
CIRCUIT

1—
Battery
4-—Starter Switch

2—
Voltage
Regulator 5-—Charge Indicator

3—
Generator
which
contribute to increased wear of bearings

and
brushes.

Under
normal conditions a check should be made
each 6000 miles
[9.600
km.].

A
visual inspection should be made of all wiring,
to be sure there are no broken or damaged wires.

Check
all connections to be sure they are tight and

clean.

Should
the commutator be rough or worn the
armature
should be removed and the commutator

turned
and undercut. See Par. H-37.
The
brushes should slide freely in their holders.

Should
they be oil soaked or if they are worn to

less
than one-half their original length they should
be replaced. When new brushes are installed they should be sanded to provide
full
contact with the
commutator. Generators should not be checked for
output until the brushes are seated.

Brush
spring tension is important. High tension causes
rapid
brush and commutator wear while
low tension causes arcing and reduced output.
Test
the tension with a spring scale.
Check
the
specifications section at end of this section for

correct
spring tension for generator in question.
H-36.
Generator Disassembly

Refer to Fig. H-20:
Before beginning disassembly of the generator to

correct
electrical system malfunctions proceed with
inspection and
test
procedures as detailed in Par.

H-46
thru
H-62. If it is definitely determined that trouble exists within the generator, which ne­cessitates dismantling, proceed as follows. Remove the two frame screws in the commutator
end plate and remove the end plate assembly. Next
pull
the armature and drive head complete

from
the generator housing. Remove the generator pulley from the armature by removing the nut

and
washer. Do not
lose
the Woodruff key when
the pulley is removed. After this, remove the drive
end head assembly which includes the oil seal and
bearing.
To remove the bearing, remove the three
screws and lockwashers in the grease retainer and remove the retainer and felt washer, after which,
remove the bearing, oil guard and felt washer.
H-37.
Armature

If
the commutator is rough or worn,
turn
it down

in
a lathe. After turning, the mica insulation be­ tween the
segments
should be undercut to a depth of 34* [0,8 mm.].
To
test
the armature for a ground, connect one

prod
of a
test
lamp to the core or shaft (not on

bearing
surface) and touch each commutator
seg­
ment with the other prod. If the lamp lights, the

armature
segment
is grounded and the armature must be replaced.

To
test
for short in armature coils, a growler,

Fig.
H-21, is necessary. Place the armature on the growler and lay a thin steel strip on the armature

core.
The armature is then rotated slowly by hand

and
if a coil is shorted, the steel strip
will
vibrate.

Should
a coil be shorted the armature must be
replaced.

If
precision
test
equipment is available, the cus­

tomary
accurate
tests
can be made in accordance 188

Page 203 of 376


'Jeep*
UNIVERSAL
SERIES SERVICE
MANUAL

H
13406

FIG.
H-39—STARTING
CIRCUIT

1—
Ground
Cable
2—
Battery

3—
Positive Cable
4—
Alternator
Wire
5—
Alternator

6— Ignition Switch
Wire

H-93.
Maintenance Procedure

A
periodic inspection should be made of the start­ ing circuit. Since the interval
between
these
checks

will
vary according to the type of service, it should, under normal conditions, be made every 500 hours
of operation. Inspect all starting circuit wiring for damage.
Check
for
loose
or corroded terminals and
for dependable operation of the starting motor.

H-94.
Wiring

Refer
to Fig. H-39. Inspect the starting circuit to make sure that all
connections are clean and tight.
Check
for worn or damaged insulation on the wires. Perform a volt­

age-loss
test
to make sure there is no
loss
of start­ ing motor efficiency resulting from high resistance
connections. Voltage
loss
from the battery ter­
minal
to the starting motor terminal should not
exceed .30 volts for each 100 amperes. Voltage
loss
between
the battery ground
post
and the start­ing motor frame should not exceed .10 volts for
each 100 amperes. If the
voltage
loss
is greater
than
these
limits, measure the
voltage
loss
over
each part of the circuit until the resistance causing the
voltage
loss
is located and corrected.

H-95.
Commutator
Sluggish starting motor operation may be caused by a dirty commutator or worn brushes. The com­mutator cannot be cleaned while the. starting motor is mounted on the
engine
and it
will
be necessary
to remove it and proceed as for an overhaul. Should 7— Ignition Switch
8— Solenoid
Wire

9—
Starter

10— Solenoid
11—
Connector
Strap
the commuator be rough or worn, it should be
removed for cleaning and reconditioning.
H-96.
Overhaul Procedure

At
periodic intervals the starting motor circuit
should be thoroughly checked and the motor re­ moved from the
engine
for cleaning and checking.

H-97.
Removal and Disassembly

Refer
to Fig. H-40 and H-41.
To
remove the starting motor from the engine, dis­
connect the leads and cover the battery lead ter­

minal
with a piece of
hose
or tape to prevent short

circuiting.
Remove the flange
bolts
holding the starting motor to the flywheel housing. Remove
the starting motor from the vehicle.

Each
part of the starting motor should be removed, cleaned, and inspected for evidence of wear or
damage. The Bendix
Folo-Thru
Drive should be
cleaned and inspected for evidence of wear or a distorted spring. Bearings should be checked for
proper clearance and fit. All insulation should be
free of oil and in
good
condition. The armature,
field coils, and brushes should be checked for
good
ground and lack of open circuits.

H-98.
Brushes

a.
The brushes should slide freely in their holders
and
make full contact on the commutator. Worn
brushes should be replaced.
b.
Check
brush spring tension with a spring scale.
Hook the scale under the brush spring near the 203

Page 225 of 376


'Jeep'
UNIVERSAL
SERIES SERVICE
MANUAL

CLUTCH

Contents

SUBJECT
PAR.

GENERAL
.1-1
Clutch
Maintenance 1-2
Clutch
Pedal Linkage and Adjustment.... 1-3
Pilot Bushing Inspection and
Replacement 1-8

CLUTCH
—HURRICANE
F4
ENGINE.
. . .1-4
Clutch
Removal. 1-5
Clutch
Pressure Plate and Disc Inspection.
.
1-6

Clutch
Pressure Plate Adjustment 1-7

Clutch
Installation 1-9

CLUTCH
—DAUNTLESS
V-6
ENGINE,
DIAPHRAGM
SPRING
TYPE
1-10

Clutch
Removal.
........
.1-11
Clutch
Inspection, Diaphragm Spring Type. . 1-12

Clutch
Installation 1-27
SUBJECT
PAR.

SERVICING COIL
SPRING
TYPE CLUTCH
. .1-13 Pressure Plate Adjustment. 1-14
Pressure Plate Disassembly. . . . . 1-15
Inspection of Parts 1-16 thru 1-20 Pressure Plate Reassembly. . . . .1-21 thru 1-23

Clutch
Lever Adjustment 1-24

Clutch
Fitxure . .1-26

CLUTCH
THROWOUT
RELEASE
BEARING
1-25

SERVICE
DIAGNOSIS
1-28

CLUTCH
SPECIFICATIONS
1-29
CLUTCH
ADJUSTING
FIXTURE
DATA
1-30

FIG.
I-1—CLUTCH
LINKAGE AND
ADJUSTMENT,
CROSS

SHAFT
TUBE
AND
LEVER
TYPE

1—
Clutch
Release Bearing
2—
Carrier
Spring
3—
Bracket

4— Dust Seal 5—
Ball
Stud 6—
Pad
7— Retainer
8—
Control
Tube Spring
9—
Control
Lever and Tube
10—
Ball
Stud and Bracket
11—
Frame
Bracket
12—
Ball
Stud Nut 13—
Yoke
Lock
Nut
14— Adjusting Yoke
15— Bolt
16— Pedal Release Rod
17— Pedal Clamp Bolt 18—
Control
Cable
19—
Clutch
Pedal
20— Screw and Lockwasher
21—
Draft
Pad 22— Pedal Pad and Shank
23— Retracting Spring
24— Pedal to Shaft Key 25— Washer
26— Pedal Shaft
27— Master Cylinder Tie Bar
28—
Control
Lever
29— Bearing
Carrier
10734

225

Page 226 of 376


I

CLUTCH 1-1.
GENERAL

The
clutch on current 'Jeep' vehicles is either

Auburn
or Borg and Beck manufactured. Vehicles
equipped with F4-134
engines
have an
Auburn
9.25" [23,4 cm.] single plate dry-disc clutch. The
pressure plate has three coil pressure springs and
three levers or fingers.

The
V6-225
engine
is equipped with a 10.4" [26,4
cm.] Borg and Beck single plate dry-disc clutch.

The
pressure plate utilizes either a finger-type
diaphragm spring, or a coil
type
spring pressure plate for clutch release.

The
driven plates of all
models
are built with
vibra­

tion damper springs and have two flexible facings

which
provide
smooth
engagement
of the
engine
power.
Early
'Jeep' vehicles equipped with a Dauntless
V-6
engine
use a 10.4" [26,4 cm.] single plate, dry-
disc clutch, incorporating a diaphram-type spring assembly.

The
clutch is of the centrifugal single dry disc
type
and
consists of the clutch disc, pressure plate and
the clutch release bearing.

The
clutch is actuated by a clutch pedal and a
series of mechanical linkage.

When
the clutch pedal is in the
engaged
position,
the clutch disc facings are clamped
between
the
friction surface of the
engine
flywheel and the face of the clutch pressure plate, thereby connect­
ing
engine
power to the transmission. Depressing
the clutch pedal actuates the clutch release shaft
fork
which
moves
the clutch release bearing against
the clutch fingers.
This,
in
turn,
moves
the pressure
plate away from the clutch disc. Since the disc is splined to the transmission input shaft, the clutch
disc and transmission input shaft
will
stop
when
the clutch is disengaged, thereby disconnecting
engine
power from the transmission.
1-2.
Clutch
Maintenance

To
obtain normal life and satisfactory performance
from any clutch it must be correctly operated and
properly maintained. Two conditions which shorten
clutch life are continuous operation of the clutch
release bearing and clutch slippage.
The
clutch release bearing is
designed
for inter­
mittent use. If run continuously the bearing
lubri­

cant
will
become
exhausted causing the bearing to
become
dry, noisy, or
will
seize, resulting in clutch
finger or diaphragm wear. The clutch must be properly adjusted so that the release bearing is
free of the clutch fingers or diaphragm at all times,

except
when the clutch pedal is depressed.

Excessive
clutch slippage
often
occurs when the
vehicle is overloaded, the vehicle load is applied
too quickly, or when the pressure of the clutch fingers or diaphragm is only partially applied to the clutch plate.
Friction
between
the clutch facing

and
flywheel produces
excessive
heat causing
burned,
glazed and worn linings, resulting in shortened clutch life. Avoid clutch slippage under
heavy loads by using a lower gear or reducing the load.
1-3.
Clutch
Pedal
Linkage
and Adjustment

Adjust
the clutch pedal free travel whenever the clutch
does
not
disengage
properly, or when new
clutch parts are installed. Improper adjustment of
the clutch pedal free travel is one of the
most
fre­
quent causes of clutch failure and can be a con­ tributing factor in
some
transmission failures.

As
the clutch facings wear the free travel of the clutch pedal diminishes. When sufficient wear oc­

curs
the pedal clearance must be adjusted.

Two
types
of clutch linkage have
been
used on Jeep vehicles, a cross shaft
tube
and lever
type

shown in Fig. 1-1, and a clutch control cable
type

shown in Fig. 1-2. The clutch pedal adjustment
procedures for both
type
linkages are as follows.

Cross
Shaft
Lever
and Tube Type

Refer
to Fig. 1-1.

Note:
Two different
Clutch
Control
Lever
and

Tube
Assemblies have
been
installed on 'Jeep*

Universal
vehicles equipped with a V-6
engine
and

T14A
transmission.
Should difficulty in shifting the transmission be
noted, check the length of the clutch release pedal
rod,
item (16) in Fig. 1-1. Measure the distance

between
the centerlines of the cotter key holes.

FIG.
1-2—CLUTCH
LINKAGE AND
ADJUSTMENT,

CONTROL
CABLE TYPE

A—Top
View,
Cable
to
Clutch
Fork
1—
Retracting
Spring
(Clutch
Fork)

2—
Clutch
Fork

3—
Ball
Adjusting Nut
4—
Lock
Nut 5—
Clutch
Cable

B—Side
View,
Cable
to
Clutch
Pedal 6—
Clutch
Cable
Support
Bracket
7—
Clutch
Cable
Housing
8—
Anchor
Bracket-to-Frame Side
Rail

9—
Retracting
Spring
(Clutch
Pedal)

10—Clutch
Pedal Assembly
*
© © ©
1437S
226

Page 277 of 376


'Jeep*
UNIVERSAL SERIES SERVICE
MANUAL

m
FRONT fiXLE

Contents

SUBJECT
PAR.

GENERAL.
M-l

4-WHEEL DRIVE FRONT
AXLE.
M-2
Maintenance
Requirements M-3

FRONT AXLE REMOVAL
.M-4

AXLE
SHAFT REMOVAL
M-5

REMOVING
AND
OVERHAULING
DIFFERENTIAL
.M-6

AXLE
SHAFT UNIVERSAL JOINT SERVICE
M-7

STEERING
KNUCKLE SERVICE
M-8
Replacing
Steering
Knuckle
Oil Seal M-10

M-1. GENERAL
The
front axle for all 'Jeep* Universal models,

which
have 4-wheel drive, is described in
Par.
M-2.
The
front axle for all DJ-5, DJ-6 models, which
have 2-wheel drive, is described in
Par.
M-l5.

M-2. 4-WHEEL-DRIVE FRONT AXLE
The
front axle is a live driving unit with hypoid

type
driving gears and spherical steering knuckles mounted m pivot pins which ride on tapered roller bearings for
ease
of steering. The drive is of the
full
floating
type
through axle shafts built integrally

with
cardan cross universal joints which revolve in the steering knuckles. The steering knuckle tie rod

arm
is made integrally with the knuckle. The
knuckles
are connected by a divided tie rod to a steering bell
crank.
A steering connecting rod con­

nects
the bell
crank
to the steering gear arm. The

divided
tie rod is adjustable and the
toe-in
of each
front wheel is adjusted independently.
Camber
and
SUBJECT
PAR.

REASSEMBLY
AND
BEARING PRELOAD
M-9

AXLE
SHAFT INSTALLATION
M-ll
FRONT AXLE INSTALLATION........
.M-l2
Turning
Angle Adjustment . .M-14

Steering
Tie Rod and
Beilcrank
M-l3

2-WHEEL DRIVE FRONT AXLE
M-15
Removal
of Solid
Front
Axle M-l6

Steering
Knuckle
Service M-l7

Steering
Knuckle
Pin Replacement. ......M-l8

SERVICE
DIAGNOSIS
M-19

AXLE
SPECIFICATIONS.
M-20

caster
of the front
wheels
is preset.
Camber
cannot
be altered but caster can be adjusted by installing

caster
shims
between
the axle pad and the springs.

For
information on the steering
geometry
see
"Steering
Section."

Service
procedures given in this section include
the removal, installation, disassembly and assembly
of the Model
27AF
front axle assembly, the axle
shafts, steering knuckles, and
universal
joints.

Note:
All service replacement axle assemblies are
shipped from the factory without lubricant in the
differential.
Lubricant
must be added; use grade

and
quantity as specified in the lubrication chart (Section B).

M-3.
Maintenance Requirements

A
spring-loaded breather is located on the top of
the differential housing.
Each
time the differential
lubricant
is checked, the breather should be

Page 315 of 376


'Jeep'
UNIVERSAL
SERIES SERVICE
MANUAL

O Note:
If the steering-gear-to-frame
bolts
are not

properly
torqued, they
will
eventually
loosen
dur­

ing operation of the vehicle. Loose
bolts
will
result
in
elongated
bolt
holes
making maintenance of bolt torque difficult, and may allow position of the
steering columns to be misaligned. Therefore,
proper
torquing is extremely important.
Do not tighten the steering gear to dampen out
steering trouble. Adjust the steering gear only to
remove lost motion or play within the unit.
0-5. Steering
Gear
Adjustment
The
cam and lever steering gear is illustrated in

Fig.
0-2. It consists of a
spiral
cam, and a cross shaft and lever assembly with two lever studs.
When
the steering wheel is turned, the cam
moves

the studs, causing rotary movement of the cross
shaft, which in
turn
causes angular movement of
the*steering arm.

Two
adjustments of the steering gear are necessary:
up and down play of the steering shaft, and adjust­ment of the lever studs (tapered pins) in the

cam
groove.

Adjustment
of the
ball
thrust bearings to eliminate up and down play of the steering shaft is ac­
complished by removing shims which are installed
between
the steering gear housing and the upper
cover. Before making this adjustment
loosen
the
housing side cover adjusting screw to free the pins
in
the cam groove. Loosen the housing cover to
cut and remove a shim or more as required.
Install
the screws and tighten. Adjustment should be
made to have a slight drag but allow the steering
wheel to
turn
freely with thumb and forefinger
lightly gripping the rim.

Shims
installed for adjustment are .002*, .003", and .010"
[.0508,
.0762
and .254 mm.] in thickness.

Adjustment
of the tapered pins in the cam
groove

is accomplished by adjusting screw. Unlock the

adjusting
screw and
turn
it in until a very slight
drag
is felt through the mid-position when turning
the steering wheel slowly from one extreme position
to the other.

Backlash
of the pins in the
groove
shows up as
end play of lever shaft, also as backlash of steer­ ing arm.

The
cam
groove
is purposely cut shallow in the

straight
ahead driving position for each pin.
This

feature permits a
close
adjustment for normal

straight
ahead driving and provides precision steer­ ing and permits take up of backlash at this point
after the wear occurs without causing a bind else­

where.
Always
adjust within the high range through
the mid-position of pin travel. Do not adjust off
"straight
ahead" position.
Backlash
in turned posi­
tions is not objectionable.
0-6.
Front
Wheel Alignment Adjustments
To
ensure correct alignment, a definite procedure
for inspection of the steering system is recom­ mended. It is
suggested
that the following sequence
be used:

a.
Equalize
tire pressures and level vehicle.
b.
Check
steering gear to steering column align­
ment.

c.
Inspect steering knuckle pivots, spindle, and
wheel bearing
looseness.

d.
Check
wheel runout.

e.
Test wheel balance and bearing adjustment.
f.
Check
for spring sag.
g.
Inspect brakes and shock absorbers.

h.
Check
steering gear assembly adjustment and
steering connecting rod.

i.
Check
caster,

j.
Check
toe-in.
k.
Check
toe-out
on turns.

I.
Check
camber.

m.
Check
tracking of front and
rear
wheels,

n.
Check
frame alignment.

The
factors of alignment, caster, camber, and toe-
in,
are all interrelated and if one adjustment is
made, another adjustment may be affected.
There­

fore, after an alignment job is completed, make a
complete recheck of all the adjustments to be sure
the
settings
are within the limit. Be sure all front
suspension and steering system nuts and
bolts
are

all
properly torqued before taking wheel alignment readings.

Proper
alignment of front wheels must be main­
tained in order to ensure
ease
of steering and satis­factory tire life.

The
most important factors of front wheel align­ment are wheel camber, axle caster and wheel
toe-in.

Wheel
toe-in is the distance the wheels are closer

together
at the front than at the
rear.
Wheel
camber is the amount the wheels incline out­

ward
at the top from a vertical position.
Front
axle caster is the amount in
degrees
that the
steering pivot pins are tilted towards the front or

rear
of the vehicle. Positive caster is inclination of
the top of the pivot pin towards the
rear
of the ve­

hicle.
Zero caster is the vertical position of the
pivot pin. Negative or reverse caster is the in­
clination
of the top of the pin towards the front
of the vehicle.

These
points should be checked at regular inter­
vals,
particularly when the front axle has been
subjected to a heavy impact. When checking wheel alignment, it is important that wheel bearings and

knuckle
bearings be in proper adjustment. Loose bearings
will
affect instrument readings when

checking
the camber, pivot pin inclination and
toe-in.
To
accurately check camber and caster, use a wheel
aligning fixture.
Camber
and caster of the front
wheels are both preset.
Camber
cannot be altered
but caster can be adjusted by installing caster shims
between
the axle pad and the springs. Wheel toe-in
may
be adjusted. To measure wheel toe-in, use a
wheel aligning fixture or follow the procedure given
in Par.
0-8.
0-7.
Front Wheel Toe-in
Toe-in
as illustrated in
Fig.
0-3, is necessary to
off­

set the
effect
of camber as shown in Fig. Q-4. 315

Page:   < prev 1-10 11-20 21-30 31-40 next >