tran DAEWOO LACETTI 2004 Service Service Manual
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: LACETTI, Model: DAEWOO LACETTI 2004Pages: 2643, PDF Size: 80.54 MB
Page 278 of 2643

1F – 32IENGINE CONTROLS
DAEWOO V–121 BL4
ON–BOARD DIAGNOSTIC (EOBD) SYSTEM CHECK
(1.4L/1.6L DOHC)
Circuit Description
The On–Board Diagnostic (EOBD) system check is the
starting point for any driveability complaint diagnosis. Be-
fore using this procedure, perform a careful visual/physi-
cal check of the engine control module (ECM) and the en-
gine grounds for cleanliness and tightness.
The EOBD system check is an organized approach to
identifying a problem created by an electronic engine con-
trol system malfunction.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for poor connections or a damaged har-
ness. Inspect the ECM harness and connections for im-
proper mating, broken locks, improperly formed or dam-
aged terminals, poor terminal–to–wire connection, and
damaged harness.Test Description
Numbers below refer to the step number on the Diagnostic
Chart:
1. The Malfunction Indicator Lamp (MIL) should be
ON steady with the ignition ON and the engine
OFF. If not, go to ”Diagnostic Aids”.
2. Checks the Class 2 data circuit and ensures that
the ECM is able to transmit serial data.
3. This test ensures that the ECM is capable of con-
trolling the MIL and the MIL driver circuit is not
shorted to ground.
4. If the engine will not start, refer to ”Engine Cranks
But Will Not Run” in this section.
7. A scan tool parameter which is not within the typical
range may help to isolate the area which is causing
the problem.
10. This vehicle is equipped with a ECM which utilizes
an Electrically Erasable Programmable Read Only
Memory (EEPROM). The replacement ECM must
be programmed. Refer to the latest Techline proce-
dure for ECM reprogramming.
Page 280 of 2643

1F – 34IENGINE CONTROLS
DAEWOO V–121 BL4
ON–BOARD DIAGNOSTIC (EOBD) SYSTEM CHECK
(1.8L DOHC)
Circuit Description
The On–Board Diagnostic (EOBD) system check is the
starting point for any driveability complaint diagnosis. Be-
fore using this procedure, perform a careful visual/physi-
cal check of the engine control module (ECM) and the en-
gine grounds for cleanliness and tightness.
The EOBD system check is an organized approach to
identifying a problem created by an electronic engine con-
trol system malfunction.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for poor connections or a damaged har-
ness. Inspect the ECM harness and connections for im-
proper mating, broken locks, improperly formed or dam-
aged terminals, poor terminal–to–wire connection, and
damaged harness.Test Description
Numbers below refer to the step number on the Diagnostic
Chart:
1. The Malfunction Indicator Lamp (MIL) should be
ON steady with the ignition ON and the engine
OFF. If not, go to”Diagnostic Aids”.
2. Checks the Class 2 data circuit and ensures that
the ECM is able to transmit serial data.
3. This test ensures that the ECM is capable of con-
trolling the MIL and the MIL driver circuit is not
shorted to ground.
4. If the engine will not start, refer to ”Engine Cranks
But Will Not Run” in this section.
7. A scan tool parameter which is not within the typical
range may help to isolate the area which is causing
the problem.
10. This vehicle is equipped with a ECM which utilizes
an Electrically Erasable Programmable Read Only
Memory (EEPROM). The replacement ECM must
be programmed. Refer to the latest Techline proce-
dure for ECM reprogramming.
Page 282 of 2643

1F – 36IENGINE CONTROLS
DAEWOO V–121 BL4
MULTIPLE ECM INFORMATION SENSOR DTCS SET
Circuit Description
The Engine Control Module (ECM) monitors various sen-
sors to determine engine operating conditions. The ECM
controls fuel delivery, spark advance, transaxle operation,
and emission control device operation based on the sen-
sor inputs.
The ECM provides a sensor ground to all of the sensors.
The ECM applies 5 volts through a pull–up resistor and
monitors the voltage present between the sensor and the
resistor to determine the status of the Engine Coolant
Temperature (ECT) sensor, the Intake Air Temperature
(IAT) sensor. The ECM provides the Exhaust Gas Recir-
culation (EGR) Pintle Position Sensor, the Throttle Posi-
tion (TP) sensor, the Manifold Absolute Pressure (MAP)
sensor, and the Fuel Tank Pressure Sensor with a 5 volt
reference and a sensor ground signal. The ECM monitors
the separate feedback signals from these sensors to de-
termine their operating status.
Diagnostic Aids
Be sure to inspect the ECM and the engine grounds for be-
ing secure and clean.
A short to voltage in one of the sensor circuits can cause
one or more of the following DTCs to be set: P0108,
P0113, P0118, P0123, P1106, P1111, P1115, P1121,
P0463, P0533.
If a sensor input circuit has been shorted to voltage, en-
sure that the sensor is not damaged. A damaged sensor
will continue to indicate a high or low voltage after the af-
fected circuit has been repaired. If the sensor has been
damaged, replace it.
An open in the sensor ground circuit between the ECM and
the splice will cause one or more of the following DTCs to
be set: P0107, P0108, P0113, P0118, P0122, P0123,
P1106, P1111, P1115, P1121, P0462, P0532.
A short to ground in the 5 volt reference circuit or an open
in the 5 volt reference circuit between the ECM and the
splice will cause one or more of the following DTCs to be
set: P0107, P0112, P0117, P0122, P1107, P1112, P1114,
P1122, P0462, P0532.Check for the following conditions:
S Inspect for a poor connection at the ECM. Inspect
harness connectors for backed–out terminals, im-
proper mating, broken locks, improperly formed or
damaged terminals, and poor terminal–to–wire con-
nection.
S Inspect the wiring harness for damage. If the har-
ness appears to be OK, observe an affected sen-
sor ’s displayed value on the scan tool with the igni-
tion ON and the engine OFF while moving
connectors and wiring harnesses related to the af-
fected sensors. A change in the affected sensor’s
displayed value will indicate the location of the fault.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The Powertrain On–Board Diagnostic (EOBD) Sys-
tem Check prompts the technician to complete
some basic checks and store the freeze frame and
failure records data on the scan tool if applicable.
This creates an electronic copy of the data taken
when the malfunction occurred. The information is
then stored on the scan tool for later reference.
9. A faulty EGR valve can leak a small amount of cur-
rent from the ignition feed circuit to the 5 volt refer-
ence circuit. If the problem does not exist with the
EGR valve disconnected, replace the EGR valve.
0. If a sensor input circuit has been shorted to voltage,
ensure that the sensor has not been damaged. A
damaged IAT or ECT sensor will continue to indi-
cate a high voltage or low temperature after the
affected circuit has been repaired. A damaged ACT,
TP, MAP, Fuel Tank Pressure, or EGR Pintle Posi-
tion sensor will indicate a high or low voltage or
may be stuck at a fixed value after the affected cir-
cuit has been repaired. If the sensor has been dam-
aged, replace it.
21. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
Page 328 of 2643

1F – 82IENGINE CONTROLS
DAEWOO V–121 BL4
IDLE AIR CONTROL SYSTEM CHECK (1.8L DOHC)
Circuit Description
The Engine Control Module (ECM) controls the engine idle
speed with the Idle Air Control (IAC) valve. To increase the
idle speed, the ECM pulls the IAC pintle away from its seat,
allowing more air to pass by the throttle body. To decrease
the idle speed, it extends the IAC valve pintle toward its
seat, reducing bypass air flow. A scan tool will read the
ECM commands to the IAC valve in counts. The higher
counts indicate more air bypass (higher idle). The lower
counts indicate less air is allowed to bypass (lower idle).
Diagnostic Aids
If the idle is too high, stop the engine. Fully extend the Idle
Air Control (IAC) valve with a IAC driver. Start the engine.
If the idle speed is above 800 rpm, locate and repair the
vacuum leak. Also, check for a binding throttle plate or
throttle linkage or an incorrect base idle setting.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
2. The IAC valve is extended and retracted by the IAC
driver. IAC valve movement is verified by an engine
speed change. If no change in engine speed oc-
curs, the valve can be removed from the throttle
body and tested. Connect the IAC driver to the re-
moved IAC valve and turn the ignition ON. Do not
start the engine.5. This step checks the quality of the IAC valve move-
ment in Step 2. Fully extending the IAC valve may
cause an engine stall. This may be normal.
6. Steps 2 and 5 verify proper IAC valve operation.
This step checks the IAC circuit for a wiring or ECM
fault.
Idle Air Control Valve Reset Procedure
Whenever the battery cable or the Engine Control Module
(ECM) connector or the ECM fuse Ef11 is disconnected or
replaced, the following idle learn procedure must be per-
formed:
1. Turn the ignition ON for 5 seconds.
2. Turn the ignition OFF for 10 seconds.
3. Turn the ignition ON for 5 seconds.
4. Start the engine in park/neutral.
5. Allow the engine to run until the engine coolant is
above 185°F (85°C).
6. Turn the A/C ON for 10 seconds, if equipped.
7. Turn the A/C OFF for 10 seconds, if equipped.
8. If the vehicle is equipped with an automatic trans-
axle, apply the parking brake. While pressing the
brake pedal, place the transaxle in D (drive).
9. Turn the A/C ON for 10 seconds, if equipped.
10. Turn the A/C OFF for 10 seconds, if equipped.
11. Turn the ignition OFF. The idle learn procedure is
complete.
Page 352 of 2643

1F – 106IENGINE CONTROLS
DAEWOO V–121 BL4
DATA LINK CONNECTOR DIAGNOSIS (1.4L/1.6L DOHC)
Circuit Description
The provision for communicating with the Engine Control
Module (ECM) is the Data Link Connector (DLC). It is lo-
cated under the instrument panel. The DLC is used to con-
nect the scan tool. Battery power and ground is supplied
for the scan tool through the DLC. The Keyword 2000 seri-
al data circuit to the DLC allows the ECM to communicate
with the scan tool. A Universal Asynchronous Receiver
Transmitter (UART) serial data line is used to communi-
cate with the other modules such as the Electronic Brake
Control Module (EBCM), the Supplemental Inflatable Re-
straint (SIR) system. and the Instrument Panel Cluster.
Diagnostic Aids
Ensure that the correct application (model line, car year,
etc.) has been selected on the scan tool. If communication
still cannot be established, try the scan tool on another ve-
hicle to ensure that the scan tool or cables are not the
cause of the condition.
An intermittent may be caused by a poor connection,
rubbed through wire insulation, or a broken wire inside the
insulation.
Any circuitry that is suspected of causing an intermittent
complaint should be thoroughly checked for the following
conditions:
S Backed–out terminals.S Improper mating of terminals.
S Broken locks.
S Improperly formed or damaged terminals.
S Poor terminal–to–wiring connection.
S Physical damage to the wiring harness.
S Corrosion.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Unlike the UART serial data circuit, the only time a
Class II serial data circuit has any voltage on it is
when a scan tool asks the ECM for information and
sends the information out.
5. Locate and repair any shorts that may have caused
the fuse to open before replacement, if the no volt-
age condition was due to an open fuse.
10. The scan tool or associated cables could be mal-
functioning. Refer to the scan tool’s manual for re-
pair information.
Page 354 of 2643

1F – 108IENGINE CONTROLS
DAEWOO V–121 BL4
DATA LINK CONNECTOR DIAGNOSIS (1.8L DOHC)
Circuit Description
The provision for communicating with the Engine Control
Module (ECM) is the Data Link Connector (DLC). It is lo-
cated under the instrument panel. The DLC is used to con-
nect the scan tool. Battery power and ground is supplied
for the scan tool through the DLC. The Keyword 2000 seri-
al data circuit to the DLC allows the ECM to communicate
with the scan tool. A Universal Asynchronous Receiver
Transmitter (UART) serial data line is used to communi-
cate with the other modules such as the Electronic Brake
Control Module (EBCM), the Supplemental Inflatable Re-
straint (SIR) system. and the Instrument Panel Cluster.
Diagnostic Aids
Ensure that the correct application (model line, car year,
etc.) has been selected on the scan tool. If communication
still cannot be established, try the scan tool on another ve-
hicle to ensure that the scan tool or cables are not the
cause of the condition.
An intermittent may be caused by a poor connection,
rubbed through wire insulation, or a broken wire inside the
insulation.
Any circuitry that is suspected of causing an intermittent
complaint should be thoroughly checked for the following
conditions:
S Backed–out terminals.S Improper mating of terminals.
S Broken locks.
S Improperly formed or damaged terminals.
S Poor terminal–to–wiring connection.
S Physical damage to the wiring harness.
S Corrosion.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Unlike the UART serial data circuit, the only time a
Class II serial data circuit has any voltage on it is
when a scan tool asks the ECM for information and
sends the information out.
5. Locate and repair any shorts that may have caused
the fuse to open before replacement, if the no volt-
age condition was due to an open fuse.
10. The scan tool or associated cables could be mal-
functioning. Refer to the scan tool’s manual for re-
pair information.
Page 399 of 2643

ENGINE CONTROLS 1F – 153
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0140
REAR HEATED OXYGEN SENSOR NO ACTIVITY
Circuit Description
The engine control module (ECM) supplies a voltage of
about 450mm volts between the ECM terminals 64 and 16.
The oxygen (O2) sensor varies the voltage within a range
of about 1volt if the exhaust is rich, down to about 100mm
volts if the exhaust is lean. The O2 sensor is like an open
circuit and produces no voltage when it is below
360°C(600°F). An open O2 sensor circuit or a cold O2
sensor causes ”open loop” operation.
Conditions for Setting the DTC
S The engine controls system is in closed loop.
S Engine Coolant Temperature is higher than 75°C
(167°F). (1.4L DOHC)
S Engine Coolant Temperature is higher than 70°C
(158°F). (1.6L DOHC)
S The engine speed is between 1,760 rpm and 2,368
rpm. (1.4L DOHC)
S The engine speed is between 1,300 rpm and 3,000
rpm. (1.6L DOHC)
S The vehicle speed is between 47 km/h (29.2 mph)
and 80 km/h (49.7 mph). (1.4L DOHC)
S The vehicle speed is between 26 km/h (16.2 mph)
and 54 km/h (33.6 mph). (1.6L DOHC)
S The manifold air pressure is higher than 700hPa.S No transition from rich side to lean side or lean side
to rich side during 7.8 seconds even with a forcing
of O2 sensor controller.
S DTCs P0107, P0108, P0112, P0113, P0117,
P0118, P0122, P0123, P0137, P0138, P1671,
P0300, P0335, P0336, P0341, P0400, P0404,
P0405, P0644, P0645 are NOT SET.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The vehicle will operate in Open Loop.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Page 417 of 2643

ENGINE CONTROLS 1F – 171
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0261
INJECTOR 1 LOW VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 1 circuit is an open or a short to ground
condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0261 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 419 of 2643

ENGINE CONTROLS 1F – 173
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0262
INJECTOR 1 HIGH VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 1 circuit is a short to battery condition
exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0262 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.
Page 421 of 2643

ENGINE CONTROLS 1F – 175
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0264
INJECTOR 2 LOW VOLTAGE
Circuit Description
The transaxle control module(TCM)/engine control mod-
ule (ECM) has four individual injector driver circuits, each
of which controls an injector. When a driver circuit is
grounded by the ECM, the injector is activated. The ECM
monitors the current in each driver circuit. The ECM mea-
sures a voltage drop through a fixed resistor and controls
it. The voltage on each driver is monitored to detect a fault.
If the voltage is not what the ECM expects to monitor on
the circuit, a Diagnostic Trouble Code (DTC) is set. This
DTC detects a low voltage and/or an open circuit and high
voltage conditions for low–side drive injector outputs.
Conditions for Setting the DTC
S The injector 2 circuit is an open or a short to ground
condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Records buffers.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for 10 sec-
onds.
Diagnostic Aids
An injector driver circuit that is open or shorted to voltage
will causes a DTC P0264 to set. It will also cause a misfire
due to an inoperative injector. A misfire DTC should also
be set indicating which injector is inoperative.
Long–term and short–terms fuel trims that are excessively
high or low are a good indication that an injector is mal-
functioning. Refer to ”Fuel Injector Balance Test” in this
section to check for malfunctioning injectors.
The injector resistance tested at the ECM connection is
slightly more than it tested directly at the injector because
it includes resistance of the harness wires. The normal val-
ue is about 13.5W.