ECU ISUZU TF SERIES 2004 Repair Manual
[x] Cancel search | Manufacturer: ISUZU, Model Year: 2004, Model line: TF SERIES, Model: ISUZU TF SERIES 2004Pages: 4264, PDF Size: 72.63 MB
Page 1316 of 4264

6C – 16 FUEL SYSTEM
140R100037
2. For removal of the quick connector, hold the quick
connector in one hand, and pull out the connector with the
other hand while pressing the square relieve button of the
connector, as illustrated.
NOTE: Do not use tools of any kind. Only use bare hands
when disconnecting the connector. Use a lubricant (light oil)
and/or push and pull the connector until the pipe is
disconnected.
140R100028
Cover the connectors that was removed with a plastic bag,
to prevent dust or rain water from entering.
140R100036
Reuse of Quick–Connector
Replace the port and connector if scratch, dent or crack is
found.
Remove any dirt build up on the port when installing the
connector. Replace the connector, if there is any forms o
f
rust, dent, scratch.
After cleaning the port, insert it straight into the connector
until it clicks. After it clicks, try pulling at 49N (5kgf) it out to
make sure that it is not drawn and is securely locked.
Assembling Advice
By applying engine oil or light oil to the pipe, port makes pipe
assembly easier. The pipe assembly should take place
immediately after applying oil (to prevent dust from sticking to
the pipe surface – which may decrease sealing ability).
Test/Inspection After Assembling
1. Reconnect the battery negative cable.
2. Start the engine and observe the engine idle speed. The
presence of dirt in the fuel system may affect the fuel
injection system.
3. Check for fuel leakage from the connector.
Page 1332 of 4264

6C – 32 FUEL SYSTEM
4. Install the pin to the dial gauge.
Note:
The lengths of the pins do not include the
threaded portions.
Pin (L=100 mm): 157892-5200 (Bosch AS)
Dial gauge: 157954-3800 (Bosch AS)
185317-0150 (ISUZU)
5. Secure the dial gauge to the nozzle holder using the
nut so that the pin contacts the tip of the first spring
seat.
CAUTION:
Secure the dial gauge so that a stroke of 2 mm can
be measured.
Do not over-tighten the nut as the dial gauge shaft
may jam. (Confirm from the dial gauge that the
shaft moves smoothly.)
6. Set the nozzle holder to the nozzle tester and put
needle to zero on the dial gauge.
7. Operate the nozzle tester to bleed any air from inside
the retaining nut and to confirm that no fuel leaks.
040MV029.tif
040MV009.ti
f
040MV030.ti
f
Page 1377 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–5
DIAGNOSTIC TROUBLE CODE (DTC) P0400
(SYMPTOM CODE 8) (FLASH CODE 32)
EXHAUST GAS RECIRCULATION CIRCUIT
SHORT TO BATTERY ............................ 6E-227
Circuit Description ..................................... 6E-228
Diagnostic Aids .......................................... 6E-228
Diagnostic Trouble Code (DTC) P0400
(Symptom Code 3) (Flash Code 32) Ex haust
Gas Recirculation Flow Ex cessive Detected 6E-228
Diagnostic Trouble Code (DTC) P0400
(Symptom Code 4) (Flash Code 32) Ex haust
Gas Recirculation Circuit Short to Ground or
Open Circuit ............................................. 6E-232
Diagnostic Trouble Code (DTC) P0400
(Symptom Code 5) (Flash Code 32) Ex haust
Gas Recirculation Flow Insufficient Detected 6E-235
Diagnostic Trouble Code (DTC) P0400
(Symptom Code 8) (Flash Code 32) Ex haust
Gas Recirculation Circuit Short to Battery 6E-238
DIAGNOSTIC TROUBLE CODE (DTC) P0500
(SYMPTOM CODE 1) (FLASH CODE 24)
VEHICLE SPEED SENSOR CIRCUIT HIGH
INPUT ...................................................... 6E-240
DIAGNOSTIC TROUBLE CODE (DTC) P0500
(SYMPTOM CODE A) (FLASH CODE 24)
VEHICLE SPEED SENSOR INPUT SIGNAL
FREQUENCY TOO HIGH ....................... 6E-240
DIAGNOSTIC TROUBLE CODE (DTC) P0500
(SYMPTOM CODE B) (FLASH CODE 24)
VEHICLE SPEED SENSOR INCORRECT
SIGNAL ................................................... 6E-240
Circuit Description ..................................... 6E-241
Diagnostic Aids .......................................... 6E-241
Diagnostic Trouble Code (DTC) P0500
(Symptom Code 1) (Flash Code 24) Vehicle
Speed Sensor Circuit High Input ............. 6E-241
Diagnostic Trouble Code (DTC) P0500
(Symptom Code A) (Flash Code 24)
Vehicle Speed Sensor Input Signal
Frequency Too High ................................ 6E-245
Diagnostic Trouble Code (DTC) P0500
(Symptom Code B) (Flash Code 24)
VehicleSpeed Sensor Incorrect Signal .... 6E-248
DIAGNOSTIC TROUBLE CODE (DTC) P0560
(SYMPTOM CODE 1) (FLASH CODE 35)
SYSTEM VOLTAGE TOO HIGH ............. 6E-253
DIAGNOSTIC TROUBLE CODE (DTC) P0560
(SYMPTOM CODE 2) (FLASH CODE 35)
SYSTEM VOLTAGE TOO LOW .............. 6E-253
DIAGNOSTIC TROUBLE CODE (DTC) P0560
(SYMPTOM CODE A) (FLASH CODE 35)
SYSTEM VOLTAGE MALFUNCTION ..... 6E-253
Circuit Description ..................................... 6E-253Diagnostic Aids .......................................... 6E-254
Diagnostic Trouble Code (DTC) P0560
(Symptom Code 1) (Flash Code 35)
System Voltage Too High ........................ 6E-254
Diagnostic Trouble Code (DTC) P0560
(Symptom Code 2) (Flash Code 35)
System Voltage Too Low ......................... 6E-256
Diagnostic Trouble Code (DTC) P0560
(Symptom Code A) (Flash Code 35)
System Voltage Malfunction .................... 6E-258
DIAGNOSTIC TROUBLE CODE (DTC) P0561
(SYMPTOM CODE A) (FLASH CODE 18)
IGNITION SWITCH CIRCUIT
MALFUNCTION ....................................... 6E-260
DIAGNOSTIC TROUBLE CODE (DTC) P0561
(SYMPTOM CODE B) (FLASH CODE 18)
IGNITION SWITCH CIRCUIT
MALFUNCTION ....................................... 6E-260
Circuit Description ...................................... 6E-261
Diagnostic Aids .......................................... 6E-261
Diagnostic Trouble Code (DTC) P0561
(Symptom Code A) (Flash Code 18)
Ignition Switch Circuit Malfunction ........... 6E-261
Diagnostic Trouble Code (DTC) P0561
(Symptom Code B) (Flash Code 18)
Ignition Switch Circuit Malfunction ........... 6E-261
DIAGNOSTIC TROUBLE CODE (DTC) P0602
CONTROL MODULE PROGRAMMING
ERROR .................................................... 6E-264
Circuit Description & Diagnostic Aids ........ 6E-264
Diagnostic Trouble Code (DTC) P0602
Control Module Programming Error ......... 6E-264
DIAGNOSTIC TROUBLE CODE (DTC) P0606
(SYMPTOM CODE A) (FLASH CODE 28)
ECU MALFUNCTION .............................. 6E-265
DIAGNOSTIC TROUBLE CODE (DTC) P0606
(SYMPTOM CODE B) (FLASH CODE 28)
ECU MALFUNCTION .............................. 6E-265
Circuit Description & Diagnostic Aids ........ 6E-265
Diagnostic Trouble Code (DTC) P0606
(Symptom Code A) (Flash Code 28)
ECU Malfunction ...................................... 6E-265
Diagnostic Trouble Code (DTC) P0606
(Symptom Code B) (Flash Code 28)
ECU Malfunction ...................................... 6E-267
DIAGNOSTIC TROUBLE CODE (DTC) P0645
(SYMPTOM CODE 4) (FLASH CODE 46)
A/C COMPRESSOR RELAY CIRCUIT
VOLTAGE LOW ...................................... 6E-268
DIAGNOSTIC TROUBLE CODE (DTC) P0645
(SYMPTOM CODE 8) (FLASH CODE 46)
A/C COMPRESSOR RELAY CIRCUIT
VOLTAGE HIGH ...................................... 6E-268
Page 1379 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–7
Temperature ............................................ 6E-302
Diagnostic Trouble Code (DTC) P1173
(Symptom Code 7) (Flash Code 22) Fuel
Reduction Caused By High Fuel
Temperature ............................................ 6E-305
Diagnostic Trouble Code (DTC) P1173
(Symptom Code A) (Flash Code 22) Fuel
Reduction Caused By Low Fuel
Temperature ............................................ 6E-305
DIAGNOSTIC TROUBLE CODE (DTC) P1335
(SYMPTOM CODE A)
(FLASH CODE 43) ENGINE SPEED OUTPUT
CIRCUIT MALFUNCTION ....................... 6E-306
Circuit Description ..................................... 6E-306
Diagnostic Aids .......................................... 6E-306
Diagnostic Trouble Code (DTC) P1335
(Symptom Code A) (Flash Code 43)
Engine Speed Output Circuit Malfunction 6E-307
DIAGNOSTIC TROUBLE CODE (DTC) P1345
(SYMPTOM CODE A) (FLASH CODE 45)
CAMSHAFT SPEED MALFUNCTION ..... 6E-311
Circuit Description ..................................... 6E-311
Diagnostic Aids .......................................... 6E-311
Diagnostic Trouble Code (DTC) P1345
(Symptom Code A) (Flash Code 45)
Camshaft Speed Malfunction .................. 6E-312
DIAGNOSTIC TROUBLE CODE (DTC) P1520
(SYMPTOM CODE A) (FLASH CODE 47)
NEUTRAL SWITCH ON ERROR ............ 6E-313
DIAGNOSTIC TROUBLE CODE (DTC) P1520
(SYMPTOM CODE B) (FLASH CODE 47)
NEUTRAL SWITCH OFF ERROR .......... 6E-313
Circuit Description ..................................... 6E-313
Diagnostic Aids .......................................... 6E-313
Diagnostic Trouble Code (DTC) P1520
(Symptom Code A) (Flash Code 47)
Neutral Switch ON Error .......................... 6E-314
Diagnostic Trouble Code (DTC) P1520
(Symptom Code B) (Flash Code 47)
Neutral Switch OFF Error ........................ 6E-314
DIAGNOSTIC TROUBLE CODE (DTC) P1605
(SYMPTOM CODE C) (FLASH CODE 55)
SEED AND KEY FILE DESTROYED ...... 6E-318
DIAGNOSTIC TROUBLE CODE (DTC) P1605
(SYMPTOM CODE D) (FLASH CODE 55)
EEPROM DEFECT .................................. 6E-318
DIAGNOSTIC TROUBLE CODE (DTC) P1605
(SYMPTOM CODE E) (FLASH CODE 55)
EEPROM DEFECT .................................. 6E-318
Circuit Description & Diagnostic Aids ........ 6E-318
Diagnostic Trouble Code (DTC) P1605
(Symptom Code C) (Flash Code 55)
Seed and Key File Destroyed .................. 6E-318Diagnostic Trouble Code (DTC) P1605
(Symptom Code D) (Flash Code 55)
EEPROM Defect ...................................... 6E-318
Diagnostic Trouble Code (DTC) P1605
(Symptom Code E) (Flash Code 55)
EEPROM Defect ...................................... 6E-318
DIAGNOSTIC TROUBLE CODE (DTC) P1610
(SYMPTOM CODE A) (FLASH CODE 56)
SECURITY KEY AND SECURITY CODE NOT
PROGRAMMED ...................................... 6E-320
Circuit Description ...................................... 6E-320
Diagnostic Aids .......................................... 6E-320
Diagnostic Trouble Code (DTC) P1610
(Symptom Code A) (Flash Code 56) Security
Key and Security Code Not Programmed 6E-320
DIAGNOSTIC TROUBLE CODE (DTC) P1611
(SYMPTOM CODE A) (FLASH CODE 56)
WRONG SECURITY CODE ENTERED .. 6E-322
Circuit Description ...................................... 6E-322
Diagnostic Aids .......................................... 6E-322
Diagnostic Trouble Code (DTC) P1611
(Symptom Code A) (Flash Code 56)
Wrong Security Code Entered ................. 6E-323
DIAGNOSTIC TROUBLE CODE (DTC) P1612
(SYMPTOM CODE A) (FLASH CODE 56)
IMMOBILIZER NO OR WRONG SIGNAL 6E-324
Circuit Description ...................................... 6E-324
Diagnostic Aids .......................................... 6E-324
Diagnostic Trouble Code (DTC) P1612
(Symptom Code A) (Flash Code 56)
Immobilizer No or Wrong Signal .............. 6E-325
DIAGNOSTIC TROUBLE CODE (DTC) P1613
(SYMPTOM CODE A) (FLASH CODE 56)
IMMOBILIZER NO OR WRONG SIGNAL 6E-330
Circuit Description ...................................... 6E-330
Diagnostic Aids .......................................... 6E-330
Diagnostic Trouble Code (DTC) P1613
(Symptom Code A) (Flash Code 56)
Immobilizer No or Wrong Signal .............. 6E-331
DIAGNOSTIC TROUBLE CODE (DTC) P1614
(SYMPTOM CODE A) (FLASH CODE 56)
WRONG TRANSPONDER KEY .............. 6E-335
Circuit Description ...................................... 6E-335
Diagnostic Aids .......................................... 6E-335
Diagnostic Trouble Code (DTC) P1614
(Symptom Code A) (Flash Code 56)
Wrong Transponder Key .......................... 6E-336
DIAGNOSTIC TROUBLE CODE (DTC) P1625
(SYMPTOM CODE A) (FLASH CODE 76) ECM
MAIN RELAY SWITCHED OFF
TOO EARLY ............................................ 6E-337
DIAGNOSTIC TROUBLE CODE (DTC) P1625
Page 1436 of 4264

6E–64 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
GENERAL DESCRIPTION FOR ECM AND
SENSORS
Engine Control Module (ECM)
The engine control module (ECM) is located flower
panel just under the passenger's seat.
The fuel quantity and injection timing related functions
are controlled by the pump control unit (PSG).
The engine control module (ECM) performs the
following functions.
Control of the ex haust gas re-circulation (EGR)
Control of the quick on start (QOS) glow control
system
Control of the A/C compressor
Ex ecution of the immobilizer function
Pump Control Unit (PSG) & Data Exchange
Between Control Module
The radial plunger distributor type injection pump uses
two control modules to ex ecute full control of the enginemanagement system.
Engine Control Module (ECM)
Pump Control Unit (PSG) = Pumpen Steuer Great
(German)
The pump control unit (PSG) receives signals from the
sensors inside the pump to determine the cam ring
rotation angle, the pump speed and the fuel
temperature .
These values are then compared to the desired values
sent by the engine control module (ECM) such as the
desired injection timing and the desired fuel injection
quantity.
The engine control module (ECM) processes all engine
data and data regarding the surrounding environment
received from ex ternal sensors to perform any engine
side adjustments.
Maps for both are encoded in both control units. The
control units input circuit process sensor data.
A Microprocessor then determines the operating
conditions and calculates set values for optimum
running.
The interchange of data between the engine control
module (ECM) and the pump control unit (PSG) is
perfumed via a CAN-bus system. The abbreviation CAN
stands for Controller Area Network. By having two
separate control modules, the high pressure solenoid
valve. This prevents the discharge of any disturbing
signals.
The information ex change between the two control
modules takes place via two means.
Via analogue signal leads
Via the CAN-bus
The analogue signal leads are used to ex change the
following information.
Engine speed signal (ECM terminal 91)
Pump Speed (ECM terminal 105)
Fuel Cutoff solenoid valve signal (MAB signal) (ECM
terminal 105)
The engine speed signal is sent from the ECM to PSG
based on the input from the crank shaft position (CKP)
sensor.
The analogue CKP sensor signal is converted by the
ECM into a square wave signal.
The fuel cutoff solenoid valve signal is also referred to
as MAB signal.
MAB in this case, refers to the German abbreviation
Magnet ventil ABschaltung that stands for high pressure
solenoid v alv e cut off.
The MAB signal wire is used for two purposes.
-As a reference for the engine control module (ECM) for
the pump speed (back up for the CKP sensor).
-To turn Off the engine.
Sel f Dia gn osis / Interfa ce / Si gn al
To High Pressure Solenoid
Engine Speed
Injection Timing
Accelerator Pedal
Injection Quantity
In ta ke Air Temperat ure
Response Signal
Ma ss Air Flow
Additional Signal
Others
Additional Operations To Timing Control Valve (TCV)
Engin e
Con trol
Modu le
(ECM) Cam Rin g Rota tiona l Angle
Fuel Temper atu re
High Pressure
Solenoid Valve
Pump
Con tr ol Fuel Inject ion
Unit (Mechanical)
(PSG)
Ti m i n
g Devi ce
Page 1453 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–81
Vehicle service information (service manual, etc.)
ISUZU field support
Ex perience
Identical vehicle or system for comparison
6. Re-examine the complaint
When you do not successfully find/isolate the problem
after ex ecuting a diagnostic path, you should re-
ex amine the complaint.
What you should do
In this case, you will need to backtrack and review
information accumulated from step 1 through 4 of
Strategy Based Diagnostics. You also should repeat any
procedures that require additional attention.
A previous path may be eliminated from consideration
only if you are certain that all steps were ex ecuted as
directed. You must then select another diagnostic path
(step 5a, 5b, 5c or 5d). If all possible options have been
ex plored, you may call or seek ISUZU field support.
What resources you should use
Whenever possible, you should use the following
resources to facilitate the diagnostic process:
Service manual
Accumulated information form a previous diagnostic
path
Service information and publications
ISUZU field support
7. Repair and Verify Fix
What you should do
After you have located the cause of the problem, you
must ex ecute a repair by following recommended
service manual procedures.
When the repair is completed, you should verify the fix
by performing the system checks under the conditions
listed in the customer complaint.
If applicable, you should carry out preventive measures
to avoid a repeat complaint.
What resources you should use
Whenever possible, you should use the following
resources to facilitate the repair process:
Electrical repair procedures
Service manual information and publications
Page 1454 of 4264

6E–82 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
GENERAL SERVICE INFORMATION
Serviceability Issues
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts. Accordingly, if commercially sold
sensor or switch is installed, it makes a wrong diagnosis
and turns on the check engine lamp.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the check
engine lamp.
Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the check
engine lamp to turn on if the vehicle is not maintained
properly. Restricted oil filters, fuel filters, and crankcase
deposits due to lack of oil changes or improper oil
viscosity can trigger actual vehicle faults that were not
previously monitored prior to OBD. Poor vehicle
maintenance can not be classified as a “non-vehicle
fault”, but with the sensitivity of OBD diagnostics,
vehicle maintenance schedules must be more closely
followed.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical
inspection:
Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
Inspect hoses that are difficult to see behind other
components.
Inspect all wires in the engine compartment for
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with hot
exhaust manifolds or pipes.
Basic Knowledge of Tools Required
NOTE: Lack of basic knowledge of this powertrain
when performing diagnostic procedures could result in
an incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
ON-BOARD DIAGNOSTIC (OBD)
On-Board Diagnostic (Self Diagnosis
System) Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic ex ecutive.
When a diagnostic test reports a pass result, the
diagnostic ex ecutive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not
currently active.
When a diagnostic test reports a fail result, the
diagnostic ex ecutive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
The Diagnostic Executive
The Diagnostic Executive is a unique segment of
software which is designed to coordinate and prioritize
the diagnostic procedures as well as define the protocol
for recording and displaying their results. The main
responsibilities of the Diagnostic Ex ecutive are listed as
follow s:
Commanding the check engine lamp on and off
DTC logging and clearing
Current status information on each diagnostic
Diagnostic Information
The diagnostic charts and functional checks are
designed to locate a faulty circuit or component through
a process of logical decisions. The charts are prepared
with the requirement that the vehicle functioned
correctly at the time of assembly and that there are not
multiple faults present.
There is a continuous self-diagnosis on certain control
functions. This diagnostic capability is complemented
by the diagnostic procedures contained in this manual.
The language of communicating the source of the
malfunction is a system of diagnostic trouble codes.
When a malfunction is detected by the control module, a
diagnostic trouble code is set and the check engine
lamp is illuminated.
Check Engine Lamp
The check engine lamp looks the same as the check
engine lamp you are already familiar with, the “Check
Engine” lamp.
Basically, the check engine lamp is turned on when the
Page 1459 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–87
F0: Diagnostic Trouble Code
The purpose of the “Diagnostic Trouble Codes” mod e i s
to display stored trouble code in the ECM.
When “Clear DTC Information” is selected, a “Clear
DTC Information”, warning screen appears.
This screen informs you that by cleaning DTC's “all
stored DTC information in the ECM will be erased”.
After clearing codes, confirm system operation by test
driving the vehicle.
Symptom Code:
This number or alphabet means identification of the
malfunction. Each DTC includes plural symptoms, such
as DTC P0100 has four kinds of symptom code (7), (9),
(B) and (C). DTC chart (check procedure) is separated
depending on the symptom code.F1: Data Display
The purpose of the “Data Display” mode is to
continuously monitor data parameters.
The current actual values of all important sensors and
signals in the system are display through F1 mode.
See the “Typical Scan Data” section.
F2: Snapshot
“Snapshot” allows you to focus on making the condition
occur, rather than trying to view all of the data in
anticipation of the fault.
The snapshot will collect parameter information around
a trigger point that you select.
F3: Miscellaneous Test:
The purpose of “Miscellaneous Test” mode is to check
for correct operation of electronic system actuators.
F4: Programming (Factory Use Only)
The purpose of “Programming” is to program VIN in the
ECM and lock the programmed data. F0: Diagnostic Trouble Codes
F0: Read DTC Infor As Stored By ECU
F1: Clear DTC Information
F1: Data Display
F2: Snapshot
F3: Miscellaneous Test
F0: Lamps
F0: Glow Time Telltale Test
F1: Relays
F0: Glow Time Relay Test
F2: Solenoids
F0: EGR Solenoid Test
F3: Engine Speed (RPM) Control
F4: Programming
F0: Program VIN
F1: Lock ECU
Read DTC Infor A s Stored By ECU
P0100 Present
(7) Mass Air Flow (MAF) Sensor
Voltage Supply Circuit High Input
DTC No.
Symptom Code
Page 1468 of 4264
![ISUZU TF SERIES 2004 Repair Manual 6E–96 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
SNAPSHOT DISPLAY WITH TIS2000
Procedures for transferring and displaying Tech2
snapshot data by using TIS2000 [Snapshot Upload]
function is describe ISUZU TF SERIES 2004 Repair Manual 6E–96 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
SNAPSHOT DISPLAY WITH TIS2000
Procedures for transferring and displaying Tech2
snapshot data by using TIS2000 [Snapshot Upload]
function is describe](/img/61/57180/w960_57180-1467.png)
6E–96 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
SNAPSHOT DISPLAY WITH TIS2000
Procedures for transferring and displaying Tech2
snapshot data by using TIS2000 [Snapshot Upload]
function is described below.
Snapshot data can be displayed with [Snapshot Upload]
function included in TIS2000.
1. Record the snapshot data, in Tech2.
2. Transfer the snapshot data to PC.By analyzing these data in various methods, trouble
conditions can be checked.
Snapshot data is displayed by ex ecuting the three steps
below shown:
Page 1469 of 4264
![ISUZU TF SERIES 2004 Repair Manual 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–97
After recording the snapshot in Tech2, transfer the data
from Tech2 to PC by the below procedures.
1. Start TIS2000.
2. Select [Snapshot Upload] on ISUZU TF SERIES 2004 Repair Manual 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–97
After recording the snapshot in Tech2, transfer the data
from Tech2 to PC by the below procedures.
1. Start TIS2000.
2. Select [Snapshot Upload] on](/img/61/57180/w960_57180-1468.png)
4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–97
After recording the snapshot in Tech2, transfer the data
from Tech2 to PC by the below procedures.
1. Start TIS2000.
2. Select [Snapshot Upload] on the TIS2000 start
screen.
3. Select [Upload from trouble diagnosis tool (transfer
from diagnosis tester)] or click the corresponding
icon of the tool bar.
4. Select Tech2, and transfer the recorded snapshot
information.
5. Select the transferred snapshot.
6. After ending transfer of the snapshot, data
parameter list is displayed on the screen.3. Snapshot data is displayed with TIS2000
[Snapshot Upload] function.
Snapshot is stored in the PC hard disk or floppy disk,
and can be displayed any time.
Stored snapshot can be displayed by the below
procedures.
1. Start TIS2000.
2. Select [Snapshot Upload] on the TIS2000 start
screen.
3. Select [Open the existing files] or click the
corresponding icon of the tool bar.
4. Select the transferred snapshot.
5. Open the snapshot, to display the data parameter
list on the screen.
Graph display Values and graphs (Max. 3 graphs):
1. Click the icon for graph display. [Graph Parameter]
window opens.
2. Click the first graph icon of the window upper part,
and select one parameter from the list of the window
lower part. Selected parameter is displayed nest to
the graph icon. Graph division can be selected in
the field on the parameter right side.
3. Repeat the same procedures with the 2nd and 3rd
icons.
4. After selecting all parameters to be displayed (Max .
3 parameters), click [OK] button.
5. Parameter selected is displayed in graph form on
the right of the data parameter on the screen.
6. Graph display can be moved with the navigation
icon.
7. For displaying another parameter by graph, click the
parameter of the list, drug the mouse to the display
screen while pressing the mouse button and release
the mouse button. New parameter is displayed at
the position of the previous parameter. For
displaying the graph display screen in full size,
move the cursor upward on the screen. When thecursor is changed to the magnifying glass form, click
the screen. Graph screen is displayed on the whole
screen.