sensor LAND ROVER DEFENDER 1999 Owner's Guide
[x] Cancel search | Manufacturer: LAND ROVER, Model Year: 1999, Model line: DEFENDER, Model: LAND ROVER DEFENDER 1999Pages: 667, PDF Size: 8.76 MB
Page 241 of 667

18ENGINE MANAGEMENT SYSTEM
18
DESCRIPTION AND OPERATION ELECTRONIC UNIT INJECTOR (EUI)
The EUI’s are located in the top of the engine inside the camshaft cover. There is one EUI per cylinder. They inject
finely atomised fuel directly into the combustion chamber. Each EUI has its own electrical connection, which is
linked to a common harness also located under the camshaft cover. Each of the EUI’s has its own 5 letter grading
code. This code is used so that greater EUI precision is achieved.
Using an injection timing map within its memory and information from the CKP sensor the ECM is able to
determine precise crankshaft angle. When the ECM determines the crankshaft speed and position it closes the
spill valve within the EUI. Fuel pressure rises inside the EUI to a predetermined limit of 1500 bar (22,000 lbf.in
2)on
pre EU3 models, and 1750 bar (25,500 lbf.in2) on EU3 models . At this limit the pintle lifts off its seat allowing the
fuel to inject into the combustion chamber. The ECM de-energises the spill valve to control the quantity of fuel
delivered. This causes a rapid pressure drop within the EUI which allows the EUI return spring to re-seat the
pintle, ending fuel delivery.
The electrical circuit that drives the EUI works in two stages depending on battery voltage. If battery voltage is
between 9 and 16 volts the EUI’s will provide normal engine performance. If however battery voltage falls to
between 6 and 9 volts on pre EU3 models, EUI operation is restricted to a limit of 2100 rev/min. On EU3 models,
EUI operation is restricted to idle. If the vehicle is fitted with a new ECM, the EUI grades for that specific vehicle
must be downloaded to the new ECM using TestBook. In the event of the engine failing to rev above 3000 rev/min
it is probable that the EUI grading has not been completed.
Input / Output
Input to the EUI takes the form of both mechanical and electrical signals. The mechanical input to the EUI is diesel
fuel via the fuel pump operating at approximately 4 to 5 bar (58 to 72 lbf.in
2). Each of the EUI’s is operated
mechanically by an overhead camshaft to enable injection pressures of up to 1500 bar (22,000 lbf.in2) on pre EU3
models, and 1750 bar (25,500 lbf.in2) on EU3 models, to be achieved. The ECM controls the EUI’s to ensure that
fuel delivery is precise and as intended.
The EUI’s earth paths are as follows:
EUI 1 (C0522-1) via the ECM (C0158-25) on a yellow wire.
EUI 2 (C0523-1) via the ECM (C0158-26) on a yellow/brown wire.
EUI 3 (C0524-1) via the ECM (C0158-27) on a yellow/blue wire.
EUI 4 (C0525-1) via the ECM (C0158-24) on a yellow/red wire.
EUI 5 (C0526-1) via the ECM (C0158-1) on a yellow/purple wire.
ProCarManuals.com
Page 243 of 667

18ENGINE MANAGEMENT SYSTEM
20
DESCRIPTION AND OPERATION SENSOR - FUEL TEMPERATURE (FT)
The FT sensor is located at the RH rear of the engine in the connector block, with the tip of the sensor inserted at
least 10mm into the fuel flow. This allows the sensor to respond correctly to changes in fuel density in relation to
fuel temperature.
The FT sensor works as an NTC sensor. As fuel temperature rises the resistance in the sensor decreases. As
temperature decreases the resistance in the sensor increases. The ECM is able to compare the voltage signal to
stored values and compensates fuel delivery as necessary for hot engine start.
The operating range of the sensor is -40 to 130°C (-40 to 266°F).
Input / Output
The ECM (C0158-19) provides the FT sensor (C0184-2) with a 5 volt supply signal on a yellow/white wire. The
sensor is earthed (C0184-1) via the ECM (C0158-5) on a pink/black wire.
The FT sensor can fail or supply an incorrect signal if one or more of the following occurs:
Sensor open circuit.
Short circuit to vehicle supply.
Short circuit to vehicle earth.
Sensor fitted incorrectly.
In the event of an FT sensor signal failure any of the following symptoms may be observed:
Difficult cold start.
Difficult hot start.
Driveability concern.
In the event of a component failure, the ECM reverts to a fixed value of 60°C stored in its memory.
ProCarManuals.com
Page 244 of 667

ENGINE MANAGEMENT SYSTEM
21
DESCRIPTION AND OPERATION RELAY - FUEL PUMP
The fuel pump relay is located in the engine compartment fuse box. It switches on the fuel pump to draw fuel from
the tank to the electronic unit injectors (EUI).
Input / Output
The fuel pump relay is a 4 pin normally open relay. The fuel pump relay (C0730-4) is provided with a feed by the
main relay (C0063-78) via header 291 on a brown/orange wire. An earth path is provided for the fuel pump relay
(C0730-6) via the ECM (C658-5) on a blue/purple wire. This energises the fuel pump relay and allows a feed to be
provided to the fuel pump. When the ECM interrupts the earth, the relay is de-energised and the fuel pump stops
operating.
The fuel pump relay can fail in one or more of the following ways:
Relay open circuit.
Short circuit to vehicle supply.
Short circuit to vehicle earth.
Broken relay return spring.
In the event of a fuel pump relay failure any of the following symptoms may be observed:
Engine will crank but not start.
If the engine is running, it will stop.
RELAY - MAIN
The main relay is located in the engine compartment fuse box and supplies battery voltage to the following:
The ECM.
The MAF sensor.
Fuel pump relay.
Input / Output
The main relay is a 4 pin normally open relay, which must be energised to provide a voltage to the ECM. The main
relay (C0063-86) is provided with an earth path via a transistor within the ECM (C0658-21) on a blue/red wire.
When the earth path is completed, the relay is energised and supplies the ECM (C0658-3, C0658-22 & C0658-27)
with a feed on brown/orange wires via header 291.
The main relay can fail in the following ways:
Relay open circuit.
Short circuit to vehicle supply.
Short circuit to vehicle earth.
Broken relay return spring.
In the event of a main relay failure any of the following symptoms may be observed:
Engine will crank but not start.
If the engine is running, it will stop.
For the ECM start up to take place the ignition feed when the switch is in position’II’must be greater than 6.0
volts.
ProCarManuals.com
Page 246 of 667

ENGINE MANAGEMENT SYSTEM
23
DESCRIPTION AND OPERATION MODULATOR - EXHAUST GAS REGULATOR (EGR)
The EGR modulator is located on the RH side inner front wing. It regulates the vacuum source to the EGR valve
allowing it to open or close. The ECM utilises the EGR modulator to control the amount of exhaust gas being
recirculated in order to reduce exhaust emissions and combustion noise. Optimum EGR is usually obtained when
the vehicle is operating at light throttle openings, and the vehicle is cruising at approximately 2000 to 3000
rev/min.
Input / Output
The EGR modulator (C0191-1) receives a feed from the main relay (C0063-87) on a brown/orange wire via header
294. The earth path for the modulator (C0191-2) is controlled by the ECM (C0158-3) on a blue wire. The length of
time the ECM supplies an earth is how long the exhaust gases are allowed to recirculate. The ECM decides how
long to supply the earth by looking at engine temperature and engine load.
The EGR modulator can fail in one or more of the following ways:
Solenoid open circuit.
Short circuit to vehicle supply.
Short circuit to earth.
In the event of an EGR modulator failure, the EGR system will become inoperative.
WARNING LAMP - GLOW PLUG
The glow plug warning lamp is located in the instrument pack. It illuminates to alert the driver that the glow plugs
are being heated prior to the engine being started. The length of time that the lamp illuminates and the glow plugs
are operating prior to cranking is the pre-heat period. The length of time of this period is determined by the ECT
sensor signal, controlled by the ECM.
ProCarManuals.com
Page 251 of 667

18ENGINE MANAGEMENT SYSTEM
28
DESCRIPTION AND OPERATION OPERATION
Engine Management
The ECM controls the operation of the engine using stored information within its memory. This guarantees
optimum performance from the engine in terms of torque delivery, fuel consumption and exhaust emissions in all
operating conditions, while still giving optimum driveability.
The ECM will receive information from its sensors under all operating conditions, especially during:
Cold starting.
Hot starting.
Idle.
Wide open throttle.
Acceleration.
Adaptive strategy.
Backup strategy for sensor failures.
The ECM receives information from various sensors to determine the current operating state of the engine. The
ECM then refers this information to stored values in its memory and makes any necessary changes to optimise
air/fuel mixture and fuel injection timing. The ECM controls the air/fuel mixture and fuel injection timing via the
Electronic Unit Injectors (EUI), by the length of time the EUI’s are to inject fuel into the cylinder. This is a rolling
process and is called adaptive strategy. By using this adaptive strategy the ECM is able to control the engine to
give optimum driveability under all operating conditions.
During cold start conditions the ECM uses ECT information to allow more fuel to be injected into the cylinders.
This, combined with the glow plug timing strategy supplied by the ECM, facilitates good cold starting.
During hot start conditions, the ECM uses ECT and FT information to implement the optimum fuelling strategy to
facilitate good hot starting.
During idle and wide open throttle conditions, the ECM uses mapped information within its memory to respond to
input information from the TP sensor to implement the optimum fuelling strategy to facilitate idle and wide open
throttle.
To achieve an adaptive strategy for acceleration, the ECM uses input information from the CKP sensor, the TP
sensor, the ECT sensor, the MAP/IAT sensor, and the FT sensor. This is compared to mapped information within
its memory to implement the optimum fuelling strategy to facilitate acceleration.
Fuel Delivery / Injection Control
The fuel delivery/injection control delivers a precise amount of finely atomised fuel to mix with the air in the
combustion chamber to create a controlled explosion. To precisely control fuel delivery and control fuel injection,
the following input conditions must be met:
CKP information.
Injection timing map information.
FT information.
ECT information.
The ECM monitors the conditions required for optimum combustion of fuel in the cylinder from the various sensors
around the engine and then compares it against stored information. From this calculation, the ECM can adjust the
quantity and timing of the fuel being delivered into the cylinder. The ECM uses CKP information as follows:
To calculate engine speed.
To determine engine crankshaft position.
Engine speed and crankshaft position allows the ECM to determine fuel injection timing.
The ECM also uses ECT and FT information to allow optimum fuel delivery and injection control for all engine
coolant and fuel temperatures.
ProCarManuals.com
Page 252 of 667

ENGINE MANAGEMENT SYSTEM
1
REPAIR ENGINE CONTROL MODULE (ECM)
Service repair no - 18.30.03
Remove
1.Release fixings and remove battery cover.
2.Disconnect battery negative lead.
3.Remove RH seat cushion, release clip and
remove ECM access panel.
4.Remove 3 bolts, release ECM and disconnect 2
multiplugs. Remove ECM.
Refit
5.Position new ECM and connect multiplugs.
6.Fit ECM and tighten bolts.
7.Fit access panel and RH seat cushion.
8.Reconnect battery negative lead.
9.Fit battery cover and secure with fixings.SENSOR - ENGINE COOLANT TEMPERATURE
(ECT)
Service repair no - 18.30.10
Remove
1.Disconnect battery negative lead.
2.Remove spring clip and disconnect ECT sensor
multiplug.
3.Position cloth around ECT sensor to absorb
coolant spillage.
4.Remove ECT sensor.
5.Remove sealing washer and discard.
Refit
6.Clean sealing washer, sensor threads and
sensor location.
7.Coat sensor threads with Loctite 577 and fit new
sealing washer.
8.Fit ECT sensor and tighten to20 Nm (14 lbf.ft).
9.Fit spring clip to multiplug and connect multiplug
to ECT sensor.
10.Top up cooling system.
11.Run engine to normal operating temperature.
Check for leaks around ECT sensor.
12.Reconnect battery negative lead.
ProCarManuals.com
Page 253 of 667

18ENGINE MANAGEMENT SYSTEM
2
REPAIR SENSOR - CRANKSHAFT SPEED AND POSITION
(CKP)
Service repair no - 18.30.12
Remove
1.Disconnect CKP sensor multiplug.
2.Remove bolt, remove CKP sensor from gearbox
housing and discard’O’ring.
3.If fitted, collect spacer.
Refit
4.Clean gearbox housing and CKP sensor.
5.If fitted, refit spacer.
6.Fit new’O’ring, position CKP sensor to gearbox
housing and tighten bolt to10 Nm (7 lbf.ft).
7.Connect sensor multiplug.
ProCarManuals.com
Page 254 of 667

19 - FUEL SYSTEM
CONTENTS
Page
DESCRIPTION AND OPERATION
COMPONENT LOCATION 1...................................................................................
DESCRIPTION 2.....................................................................................................
FUEL PUMP AND FUEL GAUGE SENDER 3........................................................
FUEL PRESSURE REGULATOR 5........................................................................
INJECTORS 7.........................................................................................................
FUEL FILTER 9.......................................................................................................
WATER SENSOR 10..............................................................................................
OPERATION 11......................................................................................................
ADJUSTMENT
HEATER PLUG TEST 1..........................................................................................
FUEL SYSTEM - BLEED 1.....................................................................................
FUEL TANK - DRAIN 2...........................................................................................
REPAIR
ELEMENT - AIR FILTER 1......................................................................................
SENSOR - FUEL TEMPERATURE 1......................................................................
SWITCH - INERTIA - FUEL CUT OFF 2.................................................................
SENSOR - MASS AIR FLOW (MAF) 2....................................................................
SENSOR - COMBINED MAP AND IAT 3................................................................
SENSOR - AMBIENT AIR PRESSURE (AAP) 3.....................................................
ELEMENT - FUEL FILTER 4...................................................................................
COOLER - FUEL 4..................................................................................................
TURBOCHARGER 5...............................................................................................
FILTER ASSEMBLY - AIR 6...................................................................................
INJECTOR - SET 7.................................................................................................
HEATER PLUGS - SET 9.......................................................................................
INTERCOOLER 9...................................................................................................
POTENTIOMETER - THROTTLE 10......................................................................
PUMP - FUEL 10.....................................................................................................
REGULATOR - FUEL PRESSURE 11....................................................................
FUEL TANK 12.......................................................................................................
NECK - FUEL TANK FILLER 14.............................................................................
ProCarManuals.com
Page 256 of 667

FUEL SYSTEM
1
DESCRIPTION AND OPERATION COMPONENT LOCATION
1.HP stage
2.LP stage
3.Filters
4.Jet pump
5.Fuel pump and fuel gauge sender unit
6.LP return connection
7.LP feed connection8.HP feed connection
9.Air bleed connection
10.Fuel filter
11.Water sensor
12.Fuel cooler
13.Fuel pressure regulator
14.Electronic Unit Injectors
ProCarManuals.com
Page 257 of 667

19FUEL SYSTEM
2
DESCRIPTION AND OPERATION DESCRIPTION
General
The fuel delivery system comprises a fuel tank, fuel pump, fuel pressure regulator, five injectors and a fuel filter.
The system is controlled by the ECM, which energises the fuel pump relay and controls the operation and timing
of each injector solenoid.
Unlike other Diesel engines, the Td5 has no injection pump. The diesel direct injection system receives fuel at
pressure from a two stage fuel pump located in the fuel tank. The system incorporates a fuel return to the fuel
pump, via a fuel cooler attached to the inlet manifold, and a fuel filter. A fuel pressure regulator is located in a
housing on the rear of the cylinder head. The regulator maintains the fuel delivered to the injectors at a constant
pressure and returns excess fuel back to the fuel filter and pump via the fuel cooler.
A fuel filter is positioned on the chassis longitudinal, below the RH rear wheel arch. The fuel feed and return to and
from the engine passes through the filter. The filter also incorporates a water sensor, which illuminates a warning
lamp in the instrument pack.
A moulded fuel tank is located at the rear underside of the vehicle between the chassis longitudinals. The tank
provides the attachment for the fuel pump and the fuel gauge sender unit, which is located inside the tank.
Fuel Tank and Breather
The fuel tank and breather system is a major part of the fuel delivery system. The fuel tank and breathers are
located at the rear of the vehicle between the chassis longitudinals.
Fuel Tank
The moulded fuel tank is made from High Molecular Weight (HMW) High Density Polyethylene (HDPE), and is
manufactured using a proportion of recycled plastic.
The tank is held in position by a metal cradle which is secured to the chassis cross members by four bolts, two
holding the front of the cradle in position, two holding the rear. The fuel tank has a useable capacity of 75 litres
(16.5 gallons).
An aperture in the top surface of the tank allows for the fitment of the fuel pump and fuel gauge sender unit, which
is retained with a locking ring. A reflective metallic covering is attached to the tank with three scrivets to shield the
tank from heat generated by the exhaust system.
Fuel Tank Breather System
The fuel tank filler tube incorporates a tank vent which allows air and fuel vapour displaced from the tank when
filling to vent to atmosphere via the filler neck.
A breather spout within the tank controls the tank’Full’height. When fuel covers the spout it prevents fuel vapour
and air from escaping from the tank. This causes the fuel to’back-up’in the filler tube and shuts off the filler gun.
The position of the spout ensures that when the filler gun shuts off, a vapour space of approximately 10% of the
tanks total capacity remains. The vapour space ensures that the Roll Over Value (ROV) is always above the fuel
level and vapour can escape and allow the tank to breathe.
The ROV is welded to the top surface of the tank. It is connected by a tube to the filler tube, which in turn is
connected to the atmospheric vent pipe. The ROV allows fuel vapour to pass through it during normal vehicle
operation. In the event of the vehicle being overturned the valve shuts off, sealing the tank and preventing fuel
from spilling from the atmospheric vent pipe.
ProCarManuals.com