ignition DATSUN PICK-UP 1977 Workshop Manual

Page 173 of 537


OPERATION

When
the

ignition
switch
turned

fully
clockwise
to
the
START

posi

tion

battery
current
flows

through

series

and
shunt

coils
of
the

solenoid

magnetizing
the

solenoid

The

plunger
is

pulled
into
the
solenoid

so
that

it

operates
the
shift
lever

to

move
the

drive

pinion
into

the

flywheel
ring
gear
Then
the

solenoid

switch

contacts
close
after
the

drive

pinion
is

partially
engaged
with
the

ring
gear

Closing
of
the

solenoid
switch

contacts
c
uses
the

motor
to
crank
the

engine
and
also
cut
out
the
series

coil
of

the
solenoid
the

magnetic

pull

of
the
shunt

coil

being
sufficient

to

hold
the

pinion
in

mesh
after
the

shifting
has
been

performed

After
the

engine
starts

running
the

driver

releases
the

ignition
key
and
it

automatically
returns
to
the

ON

posi

tion

The
torsion

spring
then

actuates
the

shift
lever

to

pull
the

pinion
which

allows
the

solenoid
swi

tch
contacts
to

open

Consequently
the

starting
mo

tor

stops
Engine
Electrical

System

I

I

Ring
gear

2

Shift
lever

guide

3
Armature

4

Battery

5
Field
coil

6

Stationary
contact

7
Monble

contactor

More

positive

meshing
and

demeshing
of

the

pinion
and
the

ring

gear
teeth
are

secured

by
means

of
the

overrunning
clutch
The

overruIUling

clutch

employs
a
shift

lever
to
slide

the

pinion

along
the

armature
shaft

EE
6
F

l
cp

o

r

1

I
I

W

m

EE274

8
Shunt
coil

9

Plunger

10

Ignition
switch

11

Series
coil

12
Torsion

spring

13

Shift
lever

14

Pinion

Fig
EE

7
Starting
motor
circuit

into
or

out
of

mesh
with
the

ring

gear

teeth
The

overrunning
clutch
is

de

signed
to
transmit

driving

torque
from

the
motor
armature

to
the

ring
gear

but

prevent
the

armature
from
over

running
after
the

engine
has
started

Page 179 of 537


Condition
Engine
Electrical

System

Probable
cause

Starting
motor

cranks

slowly
Dirty
or
worn
commutator

Armature
rubs

field
coil

Damaged
solenoid
switch

Starting
motor

operates
but
does

not
crank

engine
Worn

pinion

Locked

pinion
guide

Worn

ring

gear

Starting
motor
will

not

disengage
even
if

ignition
switch
is

turned
off
Damaged
solenoid
switch

Damaged

gear
teeth

The

charging
circuit
consists

of
the

battery
alternator

regulator
and

necessary

wiring
to
connect
these

parts
The

purpose
of
this

system
is
to

convert
mechanical

energy
from
the

engine
into

electrical

energy
which

is

used
to

operate
all

electrically

operat

ed
units

and
to

keep
the

battery
fully

charged

When
the

ignition
switch
is

set
to

ON
current
flows
from
the

battery

to

ground
through
the

ignition
switch

voltage
regulator
IG
terminal

primary

side
contact

point
PI

movable

contact

point
P2

voltage

regulator

IF

terminal
alternator
IF
terminal

rotor

field
coil
and
alternator

E

terminal

as
shown
in

Figure
EE

23

by

full
line

arrow
marks
Then
the

rotor

in

the

alternator
is
excited

On
the

other
hand

current
flows

from
the

battery
to

ground

through
the

ignition

switch

warning

lamp
voltage
regula

tor
L

terminal

lamp
side
contact

point
P4

movable

contact

point

P5
and

voltage
regulator
E
termi

nal
as
shown

by
dotted

line
arrow
CHARGING
CIRCUIT

marks
Then

the

warning
lamp
lights

When
the
alternator

begins
to

op

erate
three

phase

alternating
current
is

induced
in

the

stator
armature
coil

This

alternating
current
is
rectified

by

the

positive
and

negative
silicon

diodes
The
rectified

direct
current

output
reaches
the
alternator
A

and

E

terminals

On
the
other
hand
the
neutral

point
voltage
reaches
N
and
E

terminals

nearly
a
half
of

the

output

voltage
and
current
flows
from

voltage
regulator
N
terminal
to
E

terminal
or

ground
through
the
coil

VCI
as
shown
in

Figure
EE
24

by

the
dotted
line
arrow
marks
Then
the

coil
VCI
is
excited
and
the

movable
contact

point
IPS
comes

into
contact
with

voltage
winding
side

contact

point
P6
This
action
causes

to
turn
off

the

warning
lamp
and

complete
the

voltage
winding
circuit

as
shown

by
the
full

line
arrow
marks

When
the
alternator

speed
is
in

creased
or
the

voltage
starts
to
rise

excessively
the
movable
contact

point

EE
12
Corrective
action

Clean
and

repair

Replace
assembly

Repair
or

replace

Replace

Repair

Replace

Repair
or

replace

Replace
damaged

gear

P2
is

separated
from

the

primary

side
contact
PI

by
the

magnetic

force

of
coil
VC2
Therefore

registor
RI
is

applied
into
the
rotor

circuit

and

output
voltage
is
decreased

AJ

the

output
voltage
is
decreased

the

movable
contact

point
P2
and

primary
side
contact
Pin

comes
into

contact
once

again
and

the
alternator

voltage
increases

Thus
the

rapid

vibration
of
the
movable

contact

point

IPl

maintains
an
alternator

output

voltage
constant

When
the
alternator

speed
is

further

increased
or
the

voltage
starts
to
rise

excessively
the

movable
contact

point

P2
comes

into
contact
with

secondllJ
side
contact

point
P3

Then
the
rotor
current
is

shut
off
and

alternator

output
voltage
is

decreased

immediately
This

action
causes

movable
contact
n
to

separate

from

secondary
contact
P3
Thus

the

rapid
vibration
of

the
movable

contact

point
P2

or

breaking
and

completing
the

rotor
circuit
maintains

an
alternator

output
voltage
constant

Page 181 of 537


Engine
Electrical

System

B

v

W

WR

WL

L2
VOLTAGE
REGULATOR

co

LW

I
P
B

r

FUSIBLE
LINK

m
I
WLI

LW

cJ

I

B

t
EARTH
POINT
m
WR
WR

CHARGE

g
00
WARNING
lAMP

00000

Equipped
with

cooler
I
I
I
I

TjT
m

CLB

W

WB
B
YWR

I
I
I
I

1
W

B

rn

ALTERNATOR
I

l
LW
BW

j
J

M
IG
I

W

BwtIl

IGNITION
SWITCH

COLOR
CODE

B
Black

OW
Black
with

white

stripe

W
White

WB
White
with
black

stripe

WR
White
with
red

stripe

WL
White
with
blue

stripe

LO

Blue
with

black

stripe

LW
Blue
with
white

stripe

Y
Yellow
lOA

C
o
0
0
0

o
0
0
FUSE

BLOCK

M
0
0
0

lOA

Ii

California
models

E
E492

Fig
EE
25
Circuit

diagram
of
charging
lfY
t

m

EE
14

Page 193 of 537


NON
CALIFORNIA
MODELS
Engine
Electrical

System

IGNITION
CIRCUIT

CONTENTS

EE
26

CALIFORNIA
MODELS
EE
2B

NON

CALIFORNIA
MODELS

The

ignition
circuit
consists

of
the

ignition
switch
coil

distributor

wiring
spark
plugs
and

battery

The
circuit

is

equipped
with
a

resistor

During
cranking
electrical

current

bypasses
the
resistor

thereby

connecting
the

ignition
coil

directly
to

battery
This

provides
full

battery

voltage
available
at
coil
and

keeps

ignition

voltage
as

high
as

possible

The

low

voltage
current
is

supplied

by
the

battery
or

alternator
and

flows

through
the

primary
circuit

It
consists

of
the

ignition
switch
resistor

primary
winding
of
the

ignition
coil

distributor
contact

points
condenser

and
all

connecting
low
tension

wiring

The

high

voltage
current
is

pro

duced

by
the

ignition
coil

and
flows

through
the

secondary
circuit
result

ing
in

high

voltage
spark
between
the

electrodes
of

the

spark
plugs
in

engine

cylinders
This
circuit
contains

the

0
cl

Battery

Ignition
coil
secondary
winding
of

the

ignition
coil

high
tension

wiring
distributor
rotor

and

cap

When
the

ignition
switch
is

turned

on
and
the

distributor
contact

points

are
closed

the

primary
current

flows

through
the

primary
winding
of
the

coil
and

through
the

contact

points
to

ground

When
the

contact

points
are

opened

by
the

revolving
distributor
earn
the

magnetic
field
built

up
in
the

primary

winding
of
the

coil
moves

through
the

secondary
winding
of
the

coil

inducing

high
voltage
The

high

voltage
is

produced

every
time

the

contact

points

open
The

high
voltage
current

flows

through
the

high
tension
wire

to
the
distributor

cap
Then
the
rotor

distributes
the
current
to

one
of
the

spark

plug
terminals
in
the
distributor

Re5istor

To

starter

Secondary

winding

Cap

Breaker

point

f

Distributor

EE
26
cap

Then
the

spark
obtains
while
the

high
voltage
current

jumps
the

gap

between
the

insulated
electrode
and

the

ground
side
electrode
of
the

spark

plug
This

process
is

repeated
for
each

power
stroke
of

the

engine

The
distributor
contact

point
and

spark
plugs
should
be

inspected
clean

ed

and

regapped
at

tune

up
They

should
also
be

replaced
periodically
as

specified
in

the
Maintenance

Sched

ule
In

addition

apply
grease
NLGl

consistency
No
I

containing

MoS2
or

equivalent
to
distributor

shaft
and

grease
MIL
G
l0924B

containing

MoS2
or

equivalent
to
cam
as
reo

quired

The
remainder

of
the

ignition

component

parts
should
be

inspected

for

only
their

operation
tightness
of

electrical
terminals
and

wiring
con

dition

The

ignition
circuit
is
shown
below

IR

IB

I

is
21

J
g

Rotor

head

EE060

Fig
EE

53

Ignition
ydem
circuit

diagram

Page 194 of 537


FUSIBLE
LtNK

m
Engine
Electrical

System

E

CJI2t

Bf
o

00

00

fOl

R

BL
I

ti
L

oj

L
C
J

RESISTOR

IGNITION
COIL

COLOR
CODE

B
Black

OW

Black
with
white

stripe

DR
Black
with

red

stripe

aL
Black
with
blue

stripe

W
White
W

R

Wj
BW

BR

IGNITION
SWtTCH

DISTRtBUTOR

jjj

SPARK
PLUGS

EE493

EE
27
Fig
EE
54
Circuit

diagram
of
ignition
ByJt
m
Non

California
models

Page 195 of 537


Primary
winding

1

Ignition
coo

I

Secondary

winding
CALIFORNIA
MODELS

The

ignition
circuit

consists
of

igni

tion

switch
transistor

ignition
unit

distributor

wiring
spark

plugs
and

battery

The

distributor
is
of
the
contactless

type
and
is

equipped
with
a

pick
up

coil
which

electrically
detects
the

igni

tion

timing

signal
in

place
of
the

circuit

breaker
of
the
conventional

distributor
The
transistor

ignition
unit

is
a
new
addition
which

generates
the

signal
required
for
the
make

and
break

of
the

primary
electric
current
for
the

ignition
coil

The
circuit
is

equipped
with
a

resistor

During
cranking
electrical

current

bypasses
the

secondary
resis

tor

thereby
connecting
the

ignition

coil

through
the

primary
resistor
This

makes

battery
voltage
available
at
ef

ficiently
and

keeps
ignition
voltage
as

high
as

possible

The

primary
resistor

selVeS
to

pro

tect
transistor

ignition
circuit

The
low

voltage
current
is

supplied

by
the

battery
or
alternator
and
flows

through
the

primary
circuit

It
consists
of
the

ignition
switch
Engine
Electrical

System

resistor

primary
winding
of
the

igni

tion

coil
transistor

ignition
unit
and

all

connecting
low
tension

wiring

The

high
voltage
current
is

pro

duced

by
the

ignition
coil
and

flows

through
the

secondary
circuit

result

ing
in

high

voltage
spark
between
the

electrodes
of
the

spark
plugs
in

engine

cylinders

This
circuit
contains
the

secondary

winding
of

the

ignition
coil
distribu

tor

high
tension
wires
to
coil
and

spark
plugs
distributor
rotor
and

cap

When
the

ignition
switch
is
turned

on
and
the

distributor
reluctor
rotates

the

primary
current
flows

through
the

primary
winding
of
the

coil
and

through
transistor

ignition
unit
to

ground

When
the

prim

ary
circuit
is

opened

by
circuit

of
transistor

ignition
unit

the

magnetic
field

built

up
in
the

primary
winding
of
the
coil
moves

through
the

secondary

winding
of
the

coil

inducing
high
voltage
This

high

Battery
Primary
Secondary

I

Resistor

To

starter

r
Transis
tor

ignition

unit
I

I

Pick
up

rcoil

r
Rotor
head

nl

J
R5

U1f

1

Retuctor
r
oi

l
f
S

park

plugs
voltage
is

produced

every
time
the

primary
circuit

opens

The

high

voltage
current
flows

through
the

high
tension
wire
to

the

distributor

cap
then
the
rotor

distri

butor

cap
then
the

rotor
distributes

the

current
to

one
of

the

spark
plug

terminals
in

the
distributor

cap

Then
the

spark
occurs
while
the

high

voltage
current

jumps
the

gap

between
the
insulated
electrode

and

the

ground
side
electrode
of
the

spark

plug
This

process
is

repeated
for

each

power
stroke
of

the

engine

The

spark

plug
should
be

inspected

cleaned
and

regapped
at
tune

up

Spark
plugs
should
also
be

replaced

periodically
as

specified
in
the
Main

tenance
Schedule

The

remainder
of
the

ignition
com

ponent
parts
should

be

inspected
for

only
their

operation
air

gap
of

distri

butor

tightness
of
electrical
terminals

and

wiring
condition

Apply
grease

NLGI
consistency

No
I

containing
MoS
or

equivalent

to
distributor
rotor
shaft
as

required

EE287

EE
28
Fig
EE
55

Ignition

8Y3tem
circuit

diagram

Page 196 of 537


EARTH
POINT

r

W

b

FUSIBLE

LINK

BATTERY

L
d

l

ilR
j

i

BW
@
c

RESISTOR

COLOR
CODE

8

Black

OW
Black

with
white

stripe

DR

Black
with
red

stripe

W
White

L
Blue

R

Red

G
Green
Engine
Electrical

System

TRANSISTOR
IGNITION

UNIT

IHIIl
II
II

BW

BBV
RG

111
I

I

TERMINAL
BLOCK

r
c

IGNITION
COIL
BW

B

ml
BR

lliJ

LldJ0

IGNITION
SWITCH

EE

29
Fig
EE
56
Circuit

diagram
of
ignition
system
California
models
EE494
a
B

lof1
@

00

00

00

SR

00

00

Et
liiI

in

D1STRliUTOR

10
0

i9

J

SPARK
PLUGS

Page 199 of 537


DISASSEMBLY

To
disassemble
follow
the
below

proccd
ure

I
Take

off

cap
and
disconnect
rotor

head

2
Remove
vacuum
controller

EE291

Fig
EE
60
Removing
vacuum

controller

3
Remove
contact
set

Refer
to

Page
EE
31
when
contact

set
i
removed

EE323

Fig
EE
61

Removing
contact
tel

EE324

Fig
EE
62

Removing
breaker

plate
Engine
Electrical

System

4
When
breaker

plate
is
removed

be
careful
not
to
lose
steel

balls

between
breaker

spring
and
breaker

plate

5

Pul
roll

pin
out
and
siconnect

collar
to
remove
the
entire

rotating

parts

EE325

Fig
EE
63
Removing
roll

pin

EE326

Fig
EE

64
Removil1l
rotation
paTta

6
Remove

packing
from
the

top
of

cam

assembly
and
unscrew
earn
astern

bly
setscrew
Put
match
mark
across

earn
and
shaft
so
that
original
combi

nation
can
be
restored
at
assembly

EE
32
EE075

Fig
EE

65
Removing
cam

7

When

governor
weight
and

spring

are
disconnected
be
careful
not
to

stretch
or
deform

governor
spring

After

disassembling
apply
grease
to

governor
weights

ASSEMBLY

To
assemble
reverse
the
order

of

disassembly
Carefully
observe
the

fol

lowing
instructions

Align
match
marl

s
so
that

parts

are
assembled

to
their

original
posi

tions

2

Apply

grease
to
the

top
of
cam

assembly
as

required

3
Check
the

operation
of

governor

before

installing
distributor
on

engine

4

Adjust
ignition
timing
afteT
dis

tributor
is
installed
on

engine

Page 200 of 537


Engine
Electrical

System

SERVICE
DATA
AND
SPECIFICATIONS

D4A4

06
D4A4
07

Type
D4A6
07
D4A6
08

Firing
order
1
3
4
2
13
4
2

Rotating
direction
Counterclockwise
Counterclockwise

Owen

angle
degree
490
to
550
490

to
550

Point

gap
mm
in
0

45
to
0

55
0
45
to
0
55

0
018
to

0
022
0
018
to
0

022

Point

pressure
kg
lb
0
40

to
0
55
0
40
to
0
55

0

88
to
1

21
0
88
to
1
21

Condenser

capacity
JlF
0
20

to
0
24
0
20

to
0
24

Condenser
isolate
resistance
Mrl
5
5

Cap
isolate
resistance
Mrl
50
50

Rotor
head
isolate
resistance
Mrl
50
50

Cap
carbon

point
length
mm
in
10

0
39
10
0
39

For
Canada

DISTRIBUTOR
California
models

CONSTRUCTION

CHECKING
AND
ADJUSTMENT

CAP
AND

ROTOR
HEAD

AIR

GAP

CONSTRUCTION

In
the
conventional
distributor
the

ignition
liming
is

detected

by
the
cam

and
breaker
arm
while
in
this
transis

tor

ignition
unit
it
is

detected

by
the

reluctor
on
the
shaft
and
the

pick
up

coil

provided
in

place
of
the
breaker

The

pick
up
coil
consists
of
a

magnet

coil
etc
The
amount
of

magnetic
flux

passing
through
the

pole
piece
in
the

coil
is

changed
at
the

moment
the

pole
CONTENTS

EE
33

EE
33

EE
33

EE
33
ADVANCE
MECHANISMS

DISASSEMBLY

ASSEMBLY

SERVICE
DATA
AND
SPECIFICATIONS
EE
33

EE
35

EE
35

EE
36

piece
faces
the

protrusion
of
the

re

luctor

and
then
the
electrical

signal
is

genera
ted
in
the

pick
up
coil

This
electric
signal
is

conducted

into

the
transistor

ignition
unit
which

in

turn
breaks
tI
e

primary
coil
current

running
through
the

ignition
coil
and

generates

high
voltage
in
the

secondary

winding
Also
this
transistor

ignition

EE
33
unit

utilizes
this
electric

signal
to

restore
the

primary
coil
to
the

original

state
after

cutting
off
the

primary

current
for
a
fIXed
time

The

centrifugal
and
vacuum
ad

vance
mechanisms

employ
the
con

ventional
mechanical

type
The
con

tactor
is
used
to
eliminate
vacuum

and

centrifugal
advance

hysteresis

I

Page 203 of 537


EE299

Fig
EE
74

Driving
in
roll

pin
Engine
Electrical

System

4

Apply
grease
to
the

top
of
rotor

shaft
as

required

5

Check
the

operation
of

governor

before

installing
distributor
on

engine

6

Adjust
ignition
timing
after

distri

butor
is
installed

on

engine

SERVICE

DATA
AND
SPECIFICATIONS

Type

Firing
order

Rotating
direction

Duty

Air

gap
mm
in

MU

Cap
insulation
resistance

Rotor
head

insulation
resistance
MU

Cap
carbon

point
length
mm
in
D4F4
03
D4F4
04

1
3
4

2

Counterclockwise

70
20
to
40
at

idling

0
2
to
0
4
O

OOS
to
0

016

More
than
50

More
than
50

10
0
39

TRANSISTOR

IGNITION
UNIT

California
models

DESCRIPTION

TRANSISTOR
IGNITION
UNIT

REMOVAL
AND

INSTALLATION

INSPECTION

1
POWER

SUPPLY
WI

RING
AND

BATTERY

CHECK

DESCRIPTION

TRANSISTOR

IGNITION

UNIT

The
transistor

ignition
unit

provides

the

following
functions

L
It

makes
and
breaks
the
electric

current
in

the

primacy
circuit

of
the

ignition
coil
2

CONTINUITY
CHECK

OF
PRIMARY

CIRCUIT

3

PICK
UP

COIL
CONTINUITY
CHECK

4
PICK
UP
COIL
POWER

SIGNAL

PULSE

CHECK

5
TRANSISTOR

IGNITION
UNIT
CHECK
CONTENTS

EE

36

EE

36

EE
37

EE
37

EE
37

2

The

duty
control

circuit
sets
the

rate
of
make

and
break
within

one

cycle
i
e

this

maintains

good

ignition

characteristics
of

engine
from
low

speed
to

high
speed
and
is

equal
to

the

dweU

angle
in

the

conventional

breaker

type
distributor

3

A

preventive
circuit

against
lock

EE
36
EE
36

EE
38

EE
38

EE
39

ing
is

provided
This

cuts
off
the

prilnaCY
electric
current
in

the

ignition

coil
when
the

ignition
switch
is

turned

on
with
the

engine
not

running

Each

component
part
of
this
unit

is

highly
reliable
however

should

any

part
be
found

faulty
the
entire
assem

bly
must
be

replaced

Page:   < prev 1-10 ... 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 ... 90 next >