air condition LAND ROVER DISCOVERY 1995 Service Manual

Page 211 of 873

19FUEL SYSTEM
6
DESCRIPTION AND OPERATION DESCRIPTION ELECTRONIC DIESEL CONTROL
The Electronic Diesel Control (EDC) 'drive by wire'
system derives its from the replacement of
conventional mechanical controls by electronic
components.
The EDC system supplies the exact amount of fuel to
the engine according to the prevailing engine
operating conditions. To monitor these conditions,
sensors are fitted to the engine to measure engine
parameters. Data from the sensors is received by the
Engine Control Module (ECM) which determines the
exact amount of fuel, injection timing and Exhaust
Gas Recirculation (EGR) required for any running
condition.
Safety and emergency features are built into the
system which protect the engine against overspeed
and overheating damage. In the event of component
failure the system is designed to compensate and
allow emergency start and limp home facilities to
operate. The ECM does this by substituting a default
value for the failed component which may result in a
noticeable loss in power but keeps the engine
running.FUEL SYSTEM COMPONENT LOCATION EDC
1. Vehicle speed sensor
2. No. 4 injector sensor
3. Coolant temperature sensor
4. Boost pressure sensor
5. Electro-pneumatic modulator
6. Airflow sensor
7. Engine speed sensor
8. Brake/clutch switches
9. Injector pump
10. Throttle position sensor
11. Engine control module

Page 214 of 873

Tdi
9
DESCRIPTION AND OPERATION OPERATION EDC
Under start up conditions, signals from the crank
speed and water temperature sensors are relayed to
the ECM to control starting fuel quantity and injection
timing. Once the engine has started the ECM initiates
a 'closed loop' monitoring system for fuel quantity,
injector timing and EGR relative to the appropriate
engine operating conditions.
As driver demand increases, signals from the throttle
position sensor are received by the ECM together with
crank speed and position pulses. The ECM signals
the injection pump to adjust fuel quantity and timing
relative to driver demand.
As engine coolant, fuel and air temperature changes
the ECM will correct fuel delivery and injection timing
for more efficient and accurate running. The ECM will
also make corrections for atmospheric pressure on
injection timing and EGR.
Electronic Control Unit (ECM)
The EDC system is controlled by the ECM located in
the drivers footwell on the 'A' post beneath the fascia.
The unit consists of a microprocessor with integrated
circuits and components and is connected to the main
harness by a 55 pin plug.
Inputs to the ECM from engine sensors control start of
injection, injected fuel quantity, fuel cut-off and EGR.
The ECM will also make corrections for engine
coolant, fuel and air temperature and atmospheric
pressure.Injection pump
The injection pump incorporates actuator controlled
injected fuel quantity and solenoid operated timing
which operate in response to ECM signals against
driver demand, engine speed, temperature and boost
pressure.
A fuel cut-off facility and fuel temperature sensor is
incorporated in the pump.
Injection timing sensor
An inductive sensor in No 4 injector body monitors
needle movement. This forms part of a 'closed loop'
system to control start of injection.
The system measures timing, relating the needle
movement signal to crank position (determined by
flywheel pulses from the engine speed sensor).
Air flow sensor
The Air Flow Sensor is mounted on a bracket
attached to the wheel arch valance, and connected by
hose to the air cleaner and turbo charger inlet.
The unit consists of a flap valve airflow sensor which
measures the fresh air flow into the engine. The
sensor informs the ECM and, provided that the other
conditions are met, will implement EGR.
Engine speed sensor
The engine speed sensor is an active inductive sensor
mounted on the flywheel housing. Pulses from the
sensor activated by radial slots in the flywheel give
engine speed and position information to the ECM.

Page 215 of 873

19FUEL SYSTEM
10
DESCRIPTION AND OPERATION Vehicle speed sensor
The vehicle speed sensor is located on the transfer
box behind the transmission brake. The unit has a
multirole as the vehicle electronic speedometer
sensor and as a sensor for 'surge damping', (a
function which smooths out engine response to sharp
accelerator movement and reduces vehicle 'bucking').
The sensor is an additional input for engine overheat
protection.
Brake and clutch switches
The brake and clutch switches are located on the
pedal box and serve as safety features to the system.
They return information to the ECM which limits
maximum fuel quantity under braking.
Throttle position sensor
The accelerator pedal is connected directly to a
sensor mounted in the pedal box. Driver demand is
relayed back to the ECM to increase or decrease
injected fuel quantity.
Incorporated in the sensor is a backup idle switch
which the system will default to in the event of sensor
failure.
Boost pressure sensor
The boost pressure sensor is mounted on the
bulkhead. It relays boost pressure information to the
ECM which compensates fuel quantity to reduce
smoke during acceleration.
Electro-pneumatic modulator
The electro-pneumatic modulator is located on the
inner wing just forward of the air cleaner. It regulates
vacuum signals from the source to the EGR valve.
The ECM controls the modulator to open the EGR
valve according to required airflow.Exhaust gas recirculation valve
The EGR valve is located on the engine exhaust
manifold and is controlled by vacuum from the
electro-pneumatic modulator.
Once open the EGR valve directs a quantity of
exhaust gas back into the inlet manifold to be burnt
inside the engine. This reduces NOx (Oxides of
nitrogen) emissions of the engine.
Temperature sensors
Water, Fuel and Air temperature sensors monitor
engine conditions and relay their information back to
the ECM which makes adjustments to injected fuel
quantity, injection timing, EGR and corrections to
measured boost pressure and airflow.

Page 224 of 873

Tdi
7
REPAIR
9.Move intercooler upwards and clear of fan cowl.
Refit
10.Ensure locatiing lug grommets are fitted and in
good condition.
11.Ensure foam pad is in good condition and
attached to intercooler.
12.Move intercooler into position.
13.Reverse removal procedure.GLOW PLUGS
Service repair no - 19.60.31
Remove
1.Disconnect battery negative lead.
No.1 glow plug - air conditioning models
2.Release drive belt from compressor pulley.See
ENGINE, Repair, Drive Belt Renew
3.Remove 4 bolts securing compressor to front
cover, move compressor aside.
No.3 glow plug
4.Remove bolt securing Hummel valve, withdraw
valve, remove and discard 'O' ring.

Page 225 of 873

19FUEL SYSTEM
8
REPAIR
All glow plugs
5.Remove terminal nut from glow plug, disconnect
wire from glow plug terminal.
6.Remove glow plug.
Refit
7.Clean glow plug and seating.
8.Coat threads of glow plug with suitable anti-seize
compound operational to a temperature of
1000°C.
9.Fit glow plug. Tighten to
23 Nm.
10.Connect wire to glow plug terminal and secure
with nut.
NOTE: Feed wire must be connected to
No. 4 glow plug terminal.
11.
No. 3 glow plug:Lubricate new 'O' ring with
engine oil and fit to Hummel valve. Fit valve and
secure with bolt. Tighten to
15 Nm.
No. 1 glow plug - air conditioning models
12.Position compressor to front cover, fit bolts.
Tighten to
25 Nm.
13.Fit drive belt to compressor pulley and adjust
tension.
See ENGINE, Repair, Drive Belt
Renew
All models
14.Reconnect battery negative lead.EGR VALVE
Service repair no - 19.45.01
Remove
1.Disconnect multiplug from EGR valve.
2.Disconnect vacuum pipe from EGR valve.
3.Remove 2 Allen screws securing EGR valve to
exhaust manifold.
4.Remove 2 bolts securing hose to EGR valve.
5.Remove EGR valve and discard gaskets.
Refit
6.Clean mating faces of EGR valve and exhaust
manifold.
7.Reverse removal procedure. Tighten bolts to
25
Nm.

Page 237 of 873

MFI
1
DESCRIPTION AND OPERATION DESCRIPTION
Hot Wire Multiport Fuel Injection
The 'Hot Wire' Multiport fuel injection system derives
its name from the mass air flow sensor which uses
one cold wire and one electrically heated wire to
measure the volume of air entering the engine.
The function of the system is to supply the exact
amount of fuel directly into the intake manifold
according to the prevailing engine operating
conditions.
To monitor these conditions, various sensors are fitted
to the engine to measure engine parameters. Data
from the sensors is received by the Engine control
module (ECM), the ECM will then determine the exact
amount of fuel required at any condition.
The ECM having received data from the sensors
produces pulses, the length of which will determine
the simultaneous open time of each bank of injectors
in turn, which will govern the amount of fuel injected.
Engine control module - ECM
The Multiport fuel injection system is controlled by the
14 CUX Engine Control Module comprising of a
microprocessor with integrated circuits and
components mounted on printed circuit boards. The
ECM is connected to the main harness by a 40 pin
plug.
Injectors
The eight fuel injectors are fitted between the
pressurized fuel rail and inlet manifold. Each injector
comprises a solenoid operated needle valve with a
movable plunger rigidly attached to the nozzle valve.
When the solenoid is energized the plunger is
attracted off its seat and allows pressurized fuel into
the intake manifold.Engine coolant temperature sensor
The engine coolant temperature sensor is located in
the front of the thermostat housing. The sensor
provides engine coolant information to the ECM. The
ECM increases the injector opening time when cold to
provide improved driveability, and reduces the
opening time as the engine reaches normal operating
temperature.
Engine fuel temperature sensor
The engine fuel temperature sensor is located in the
rail on the RH side of the ram housing. The sensor
sends fuel temperature data to the ECM, the ECM on
receiving the data will adjust the injector open time
accordingly to produce good hot starting in high
ambient temperatures.
Idle air control valve
The idle air control valve is screwed into a housing
attached to the rear of the plenum chamber, between
the plenum chamber and bulkhead. The idle air
control valve has two windings which enable the
motor to be energised in both directions thus opening
or closing the air valve as required by the ECM.
The idle air control valve will open and allow extra air
into the plenum chamber to maintain engine idle
speed when the engine is under increased (Electrical
and Mechanical) loads.
The idle air control valve will control engine idle speed
when the vehicle is stationary.
Heated oxygen sensors (0
2sensors) - Catalyst
vehicles
The two heated oxygen sensors are located forward
of the catalysts mounted in the exhaust downpipes.
The sensors monitor the oxygen content of the
exhaust gases and provide feedback information of
the air/fuel ratio to the ECM. Each sensor is heated by
an electrical element to improve its response time
when the ignition is switched on.

Page 245 of 873

19FUEL SYSTEM
2
FAULT DIAGNOSIS BASE IDLE SPEED SETTING
NOTE: Base idle speed is set at factory. It
should not require further adjustment
unless plenum chamber is changed. The
adjustment screw is sealed with a plug to prevent
unauthorised alteration. Check ignition timing
before attempting following procedure, since this
will affect idle speed.
Equipment required
Two blanking hoses.these are manufactured using
a new air by-pass valve hose - Part No.ETC7874. Cut
two equal pieces 90mm long from hose and seal one
end of each, using 13mm diameter bar. Use a suitable
clamp to ensure an air tight seal.
Checking procedure
1.Drive vehicle at least two miles until engine and
transmission are hot. Switch off engine.
2.Check all electrical loads are OFF, including air
conditioning.
3.Remove air by-pass valve hose.
4.Fit blanking hoses to both plenum chamber and
air by-pass valve. Ensure hoses are securely
fitted to prevent air leaks. Note throttle cable and
cruise control actuator have been omitted from
illustration.5.Start engine and check idle speed is within
limits.
See ENGINE TUNING DATA,
Information, Engine 3.9 v8i
Adjusting base idle speed
6.Drill tamper proof plug and insert a self tapping
screw to enable plug to be extracted.
7.Start engine, adjust idle screw clockwise to
decrease or counter-clockwise to increase idle
speed.
8.Stop engine, remove blanking hoses. Reconnect
hose to plenum.
9.Fit new tamper proof plug.

Page 246 of 873

MFI
3
FAULT DIAGNOSIS FUEL PRESSURE CHECK
In order to check the fuel pressure it is necessary to
first depressurise the fuel system as follows:
WARNING: Under normal operating
conditions the multiport fuel injection
system is pressurised by a high pressure
fuel pump, operating at up to 2.3 to 2.5 bar. When
engine is stationary pressure is maintained within
system. To prevent pressurised fuel escaping and
to avoid personal injury it is necessary to
depressurise multiport fuel injection system
before any service operations are carried out.
If vehicle has not been run there will be a small
amount of residual pressure in fuel line. The
depressurising procedure must still be carried out
before disconnecting any component within the
fuel system.
The spilling of fuel is unavoidable during this
operation. Ensure that all necessary precautions
are taken to prevent fire and explosion.
A Pressure gauge 18G1500
B Fuel tank and pump
C Fuel filter
D Fuel injectors x 8
E Regulator1.Remove fuel pump relay module.
See Repair,
Multiport Fuel Injection Relay
2.Start and run engine.
3.When sufficient fuel has been used to cause fuel
line pressure to drop, injectors will become
inoperative, resulting in engine stall. Switch off
ignition.
4.Disconnect battery negative lead. .
NOTE: Fuel at low pressure will remain in
system. To remove low pressure fuel,
place absorbent cloth around fuel pipe at
the filter during disconnection.
5.Connect the pressure gauge on the outlet from
the filter, located on the chassis under the right
rear wheel arch.
6.Reconnect the battery and turn the ignition to
position II while observing the pressure gauge.
Results
Expected reading 2,39-2,672 kgf/cm
2
Pressure drop-max 0.7 kgf/cm2in one minute.
If pressure is low check that filter is not blocked
and pump is operating satisfactorily. Then
recheck pressure. If pressure is still low renew
regulator.
See Repair, Fuel Pressure
Regulator

Page 252 of 873

19FUEL SYSTEM
6
REPAIR ENGINE COOLANT TEMPERATURE SENSOR
Service repair no - 19.22.18
Remove
1.Position drain tray to collect coolant spillage.
2.Disconnect multiplug from coolant sensor.
3.Remove sensor from thermostat housing.
4.Remove and discard copper washer.
Refit
5.Fit a new copper washer.
6.Fit sensor and tigten securely.
7.Top-up cooling system.
8.Run engine, check for water leaks around
sensor.DEPRESSURISING FUEL SYSTEM
WARNING: Under normal operating
conditions the Multiport fuel injection
system is pressurised by a high pressure
fuel pump, operating at up to 2.3 to 2.5 bar When
engine is stationary pressure is maintained within
system. To prevent pressurised fuel escaping and
to avoid personal injury it is necessary to
depressurise multiport fuel injection system
before any service operations are carried out.
If vehicle has not been run there will be a small
amount of residual pressure in fuel line. The
depressurising procedure must still be carried out
before disconnecting any component within the
fuel system.
The spilling of fuel is unavoidable during this
operation. Ensure that all necessary precautions
are taken to prevent fire and explosion.
1.Remove fuel pump relay module.
See
Multiport Fuel Injection Relays
2.Start and run engine.
3.When sufficient fuel has been used to cause fuel
line pressure to drop, injectors will become
inoperative, resulting in engine stall. Switch off
ignition.
4.Disconnect battery negative lead.
NOTE: Fuel at low pressure will remain in
system. To remove low pressure fuel,
place absorbent cloth around fuel feed
hose at fuel rail.
5.Disconnect either:
a) Nut and olive at fuel rail
OR
b) Hose at inlet end of fuel filter.
Refit
6.Refit fuel feed hose.
7.Refit fuel pump relay module, reconnect battery.
8.Crank engine (engine will fire in approximately 6
to 8 seconds).

Page 275 of 873

19FUEL SYSTEM
4
DESCRIPTION AND OPERATION Throttle position sensor (TP Sensor)
The throttle position sensor is mounted on the plenum
chamber and connected directly to the throttle shaft.
The sensor is a variable resistor, the signal from
which (0 - 5V) informs the ECM of the actual position
of the throttle disc. As there is no default strategy,
failure of the sensor will result in poor idle and lack of
throttle response. If failure occurs in the closed
position the engine will only reach 1750 rev/min when
the ECM will initiate overrun fuel cut off. The fault is
indicated by illumination of the malfunction indicator
light (MIL) on North American specification vehicles.
Engine coolant temperature sensor (ECT Sensor)
This sensor consists of a temperature dependant
resistive metal strip. The resistance of the strip varies
considerably with coolant temperature, i.e. from 28K
ohms at - 30°C to 90 ohms at 130°C, and 300 Ohms
at 85°C. The ECT Sensor signal is vital to engine
running, as the correct fuelling is dependant upon
engine temperature i.e. richer mixture at low
temperatures. If the sensor is disconnected or failure
occurs a default value will be supplied to the system.
The initial default value selected will be based on the
value of the air intake temperature. This will increase
to a nominal warmed up value over an individual time,
programmed for each default value. The fault may not
be evident to the driver, there may be a hot restart
problem. The fault is indicated by illumination of the
malfunction indicator light (MIL) on North American
specification vehicles.Intake air temperature sensor (IAT Sensor)
This is another resistive sensor, located in the body of
the air cleaner. The resistance varies with changes in
air temperature. The signal from the IAT Sensor is
used to retard the ignition timing if the air temperature
rises above 55°C. If the sensor is disconnected or
failure occurs a default value will be supplied to the
system. The default value selected will represent
normal operating conditions. The fault may not be
evident to the driver, there may be slight power loss in
high ambient temperatures. The fault is indicated by
illumination of the malfunction indicator light (MIL) on
North American specification vehicles.

Page:   < prev 1-10 ... 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 ... 160 next >