lock DATSUN 610 1969 Workshop Manual
[x] Cancel search | Manufacturer: DATSUN, Model Year: 1969, Model line: 610, Model: DATSUN 610 1969Pages: 171, PDF Size: 10.63 MB
Page 6 of 171

EngIne
INTRODUCTION
ENGINE
Removal
ENGINE
DismantUng
ENGINE
Inspection
and
Overhaul
VALVES
VALVE
GUIDES
VALVE
SEAT
INSERTS
CAMSHAFT
AND
CAMSHAFT
BEARINGS
Checking
CYliNDER
BLOCK
PtSTONS
AND
CONNECTING
RODS
INTRODUCTION
The
1400
1600
cc
and
1800
cc
engines
are
four
cylinder
in
line
units
with
a
single
overhead
camshaft
and
fully
balanced
five
bearing
crankshaft
The
valves
are
operated
through
rockers
which
are
directly
activated
by
the
earn
mechanism
The
crankshaft
is
a
special
steel
forging
with
the
centre
main
bearing
equipped
with
thrust
washers
to
take
up
the
end
thrust
of
the
crankshaft
The
special
aluminium
pistons
are
of
the
strut
construction
to
control
thermal
expansion
and
have
two
compression
rings
and
one
combined
oil
ring
The
gudgeon
pins
have
special
hollow
steel
shafts
and
are
a
fully
floating
fit
in
the
pistons
and
a
press
fit
in
the
connecting
rods
The
aluminium
alloy
cylinder
head
contains
wedge
type
combustion
chambers
and
is
fitted
with
aluminium
bronze
valve
seats
for
the
intake
valves
and
heat
resistant
steel
valve
seats
for
the
exhaust
valves
The
cast
iron
camshaft
is
driven
by
a
double
row
roller
chain
from
the
crankshaft
pulley
The
engine
is
pressure
lubricated
by
a
rotor
type
oil
pump
which
draws
oil
through
an
oil
strainer
into
the
pump
housing
and
then
forces
it
through
a
full
flow
oil
filter
into
the
main
oil
gallery
ENGINE
Removal
Place
alignment
marks
on
the
bonnet
and
hinges
remove
the
bonnet
from
the
vehicle
2
Drain
the
cooling
system
and
engine
and
transmission
lubricant
Remove
the
radiator
grille
3
Discon
ect
the
battery
cables
and
lift
out
the
battery
4
Detach
the
upper
and
lower
radiator
hoses
remove
the
radiator
mounting
bolts
and
lift
the
radiator
away
from
the
vehicle
The
torque
converter
c
jng
pipes
must
be
disconnected
from
the
radiator
on
vehicles
fitted
with
automatic
transmission
S
Remove
the
COOling
fan
and
pulley
disconnect
the
fuel
pipe
from
the
fuel
pump
and
the
heater
hoses
from
the
engine
attachments
6
Disconnect
the
accelerator
control
linkage
and
the
choke
CRANKSHAFT
AND
MAIN
BEARINGS
CAMSHAFT
AND
SPROCKET
FLYWHEEL
ENGINE
Assembling
VALVE
CLEARANCES
Adjusting
ENGINE
LUBRICATION
SYSTEM
OIL
PUMP
OIL
FILTER
CHANGING
THE
ENGINE
OIL
cable
from
the
carburettor
7
Disconnect
the
wirings
from
the
starter
alternator
ignition
coil
oil
pressure
switch
and
temperature
sender
unit
8
Remove
the
clutch
slave
cylinder
Fig
A
2
and
its
return
spring
9
Disconnect
the
speedometer
cable
and
withdraw
the
plug
connector
from
the
reversing
light
switch
10
Disconnect
the
shift
rods
and
seJector
rods
and
remove
the
cross
shaft
assembly
as
described
in
the
section
Gear
box
II
Disconnect
the
front
exhaust
pipe
from
the
exhaust
manifold
disconnect
the
centre
pipe
from
the
rear
pipe
and
remove
the
front
pipe
pre
muffler
and
centre
pipe
assembly
12
Disconnect
the
propeUer
shaft
flange
from
the
companion
flange
from
the
gear
carrier
13
Jack
up
the
gearbox
slightly
and
remove
the
rear
engine
mounting
bracket
bolts
remove
the
mounting
cross
member
and
handbrake
cable
c1amp
14
Remove
the
bolts
securing
the
front
engine
mounting
brackets
to
the
crossmember
15
Attach
lifting
cable
or
chains
to
the
hooks
installed
at
the
front
and
rear
of
the
cylinder
head
Lower
the
jack
under
the
gearbox
and
carefully
lift
and
tilt
the
engine
and
gearbox
unit
Withdraw
the
engine
and
gearbox
from
the
compartment
making
sure
that
it
is
guided
past
the
accessories
installed
on
the
body
ENGINE
Dismantling
Remove
the
engine
as
previously
described
and
carefully
clean
the
exterior
surfaces
Cbeck
for
signs
of
fuel
oil
or
water
leaks
past
the
cylinder
head
and
block
Remove
the
air
cleaner
alternator
distributor
and
starter
motor
Plug
the
carburettor
air
horn
and
distributor
hole
to
prevent
the
ingress
of
foreign
matter
Remove
the
gearbox
from
the
engine
drain
the
engine
oil
and
coolant
Mount
the
engine
in
a
suitable
stand
the
special
engine
attachment
ST05260001
and
engine
ST0501SOO0
should
be
used
if
available
Fig
A
3
5
Page 10 of 171

Remove
the
fan
and
pulley
the
right
hand
engine
mounting
and
oil
filter
Remove
the
oil
pressure
switch
Remove
the
following
items
oil
level
gauge
spark
plugs
thermostat
housing
rocker
cover
carburettor
and
inlet
and
exhaust
manifolds
Remove
the
clutch
assembly
as
described
in
the
section
CLUTCH
Remove
the
left
hand
engine
mounting
crankshaft
pulley
water
pump
fuel
pump
fuel
pump
drive
earn
and
cam
shaft
sprocket
See
Fig
A
4
Remove
the
cylinder
head
bolts
in
the
sequence
shown
in
Fig
A
5
and
lift
off
the
cylinder
head
Invert
the
engine
and
remove
the
oil
sump
and
oil
strainer
oil
pump
and
drive
spindle
assembly
front
cover
and
chain
tensioner
Remove
the
timing
chain
oil
thrower
crank
shaft
worm
gear
and
chain
drive
sprocket
See
Fig
A
6
andA
7
Remove
the
connecting
rod
caps
and
push
the
pistons
and
connecting
rods
through
the
top
of
the
bores
as
shown
in
Fig
A
B
Keep
the
connecting
rod
caps
with
their
respective
rods
to
ensure
that
they
are
assembled
in
their
original
positions
Remove
the
flywheel
retaining
bolts
and
withdraw
the
fly
wheel
Fig
A
9
Remove
the
main
bearing
caps
using
the
special
puller
ST
1651
SOOO
to
withdraw
the
centre
and
rear
main
bearing
caps
as
shown
in
Fig
A
l
O
Remove
the
rear
oil
seal
and
lift
out
the
crankshaft
remove
the
baffie
plate
and
cylinder
block
net
Fig
A
II
Remove
the
piston
rings
with
a
suitable
expander
and
press
out
the
gudgeon
pins
under
an
arbor
press
using
the
special
stand
STl300001
as
shown
in
Fig
A
12
Keep
the
dismantled
parts
in
order
so
that
they
can
be
reassembled
in
their
original
positions
Slacken
the
valve
rocker
pivot
lock
nut
and
remove
the
rocker
arms
by
pressing
down
the
valve
springs
Remove
the
camshaft
taking
care
not
to
damage
the
bearings
and
earn
lobes
Withdraw
the
valves
using
the
valve
lifter
STl2070000
as
shown
in
Fig
A
13
ENGINE
Inspection
and
Overhaul
Cylinder
Head
and
Valves
Clean
all
parts
thoroughly
and
remove
carbon
deposits
with
a
blunt
scraper
Remove
any
rust
which
has
accumulated
in
the
water
passages
and
blow
through
the
oil
holes
with
compres
sed
air
to
make
sure
that
they
are
clear
Measure
the
joint
face
of
the
cylinder
head
for
out
of
true
as
shown
in
Fig
A
14
The
surface
should
be
checked
at
various
positions
using
a
straight
edge
and
feeler
gauge
The
permissible
amount
of
distortion
is
0
05
mm
0
0020
in
or
less
If
the
surface
is
out
of
true
by
more
than
the
limit
of
0
1
mm
0
0039
in
it
will
be
necessary
to
regrind
the
head
Clean
each
valve
by
washing
in
petrol
and
carefully
examine
the
stems
and
heads
If
the
stem
is
worn
damaged
or
not
straight
the
valve
must
be
discarded
Check
the
diameter
of
the
stem
with
a
micro
meter
The
diameter
of
the
inlet
valves
should
be
7
965
7
980
mm
0
3136
0
3142
in
and
the
diameter
of
the
exhaust
valves
7
945
7
960
mm
0
3128
0
3134
in
If
the
seating
face
of
the
valve
is
excessively
burned
damaged
or
distorted
it
must
be
discarded
A
badly
pitted
seating
face
should
be
refaced
on
a
valve
grinding
machine
removing
only
the
minimum
amount
of
metal
Renew
the
valve
if
the
thickness
of
the
valve
head
has
been
reduced
by
0
5
mm
0
0197
in
see
Technical
Data
for
valve
dimensions
The
valve
stem
tip
may
be
refaced
if
necessary
the
maxi
mum
allowance
however
is
0
5
mm
0
0197
in
The
valves
can
be
ground
in
to
their
seats
when
completely
satisfactory
The
valve
seats
and
valve
guides
should
be
in
good
condition
and
must
be
checked
as
described
in
the
following
paragraphs
VALVE
GUIDES
Replacement
The
valve
stem
to
valve
guide
clearance
can
be
checked
by
inserting
a
new
valve
into
the
guide
The
stem
to
guide
clearance
should
be
0
020
0
053
mm
0
0008
0
0021
in
for
the
inlet
valves
and
0
040
0
073
mm
0
0016
0
0029
in
for
the
exhaust
valves
If
the
clearance
exceeds
0
1
mm
0
0039
in
for
the
inlet
valves
and
the
exhaust
valves
then
new
guides
should
be
fitted
The
valve
guides
are
held
in
position
with
an
interference
fit
of
0
027
0
049
mm
0
0011
0
0019
in
and
can
be
removed
by
means
of
a
press
and
drift
2
ton
pressure
This
operation
can
be
carried
out
at
room
temperature
but
will
be
more
effectively
performed
at
a
higher
temperature
Valve
guides
are
available
with
oversize
diameters
of
0
2
mm
0
0079
in
if
required
The
standard
valve
guide
requires
a
bore
in
the
cylinder
head
of
11
985
11
996
mm
dia
0
4719
0
4723
in
dia
and
the
oversize
valve
guide
a
bore
of
12
185
12
196
mm
dia
0
4797
0
4802
in
dial
The
cylinder
head
guide
bore
must
be
reamed
out
at
normal
room
temperature
Heat
the
cylinder
head
to
a
temperature
of
150
2000e
302
3920F
before
pressing
in
the
new
valve
guides
Ream
out
the
bore
of
the
guides
to
obtain
the
desired
fInish
and
clearance
Fig
A
IS
The
special
valve
guid
reamer
ST
1103
SOOO
should
be
used
if
available
Valve
guide
inner
diameters
are
specified
in
Technical
Data
at
the
end
of
this
section
The
valve
seat
surface
must
be
concentric
with
the
guide
bore
and
can
be
corrected
with
the
facing
tool
STll670000
Fig
A
16
using
the
new
valve
guide
as
the
axis
VALVE
SEAT
INSERTS
Replacing
The
valve
seat
inserts
should
be
replaced
if
they
show
signs
of
pitting
and
excessive
wear
The
inserts
can
be
removed
by
boring
out
to
a
depth
which
will
cause
them
to
collapse
although
care
must
be
taken
not
to
bore
beyond
the
bottom
face
of
the
recess
in
the
cylinder
head
Select
the
valve
seat
inserts
and
check
the
outer
diameters
Machine
the
recess
in
the
cylinder
head
to
the
following
dimensions
at
room
temperature
9
Page 12 of 171

CYUNDER
HEAD
RECESS
DIAMETER
Standard
inoerts
Engine
L14
Ll6
and
Ll8
Inlet
41
000
41
016
1
6142
1
6148
in
45
000
45
016
mm
1
77l7
1
77231n
Engine
Ll4
Ll6
and
Ll8
Exhaust
37
000
37
016mm
1
4567
1
4573
in
37
000
37
016mm
l
4567
1
4573
in
CYLINDER
HEAD
RECESS
DIAMETER
Oversize
inserts
Engine
Ll4
Ll6andLl8
Inlet
41
500
41
516mm
l
6339
1
6345in
45
S00
45
516mm
I
7913
1
7920in
Engine
L14
Ll6andLl8
Exhaust
37
500
37
516mm
1
4764
14770in
37
500
37
516mm
1
4764
l4770in
Dimensions
for
the
standard
valve
inserts
are
shown
in
Fig
A
17
Heat
the
cylinder
head
to
a
temperature
of
ISO
20DOC
302
3920F
and
drive
in
the
inserts
making
sure
that
they
bed
down
correctly
The
inserts
should
be
caulked
at
more
than
four
positions
and
then
cuf
or
ground
to
the
specified
dimensions
shown
in
Fig
A
IS
Place
a
small
amount
of
fine
grinding
compound
on
the
seating
face
of
the
valve
and
insert
the
valve
into
the
valve
guide
Lap
the
valve
against
its
seat
by
rotating
it
backwards
and
forwards
approximately
half
a
revolution
in
each
direction
until
a
continous
seating
has
been
obtained
Remove
the
valve
and
clean
all
traces
of
the
grinding
compound
from
valve
and
seat
VALVE
SPRINGS
The
valve
springs
can
be
checked
for
squareness
using
a
steel
square
and
surface
plate
If
the
spring
is
out
of
square
by
more
than
1
6mm
0
063
in
it
must
be
replaced
Check
the
free
length
and
the
load
required
to
deflect
the
spring
to
its
assembled
height
Compare
the
figures
obtained
with
those
given
in
Technical
Data
and
replace
the
spring
if
the
specified
limits
are
exceeded
CAMSHAFT
AND
CAMSHAFT
BEARINGS
Checking
Measure
the
clearance
between
the
inner
diameter
of
the
camshaft
bearing
and
the
outer
diameter
of
the
camshaft
journal
If
the
wear
limit
for
the
bearing
clearance
exceeds
O
lmm
0
0039
in
it
will
be
necessary
to
replace
the
cylinder
block
assembly
See
Technical
Data
for
all
diameters
Check
the
camshaft
and
camshaft
journals
for
signs
of
wear
or
damage
ace
the
camshaft
in
V
Blocks
as
shown
in
Fig
A
19
and
position
the
dial
gauge
to
the
journal
The
run
out
of
the
cam
shaft
must
not
exceed
0
05
mm
0
0020in
It
should
be
noted
that
the
actual
run
out
will
be
half
the
the
value
indicated
on
the
dial
gauge
When
the
camshaft
is
turned
one
full
revolution
with
the
dial
gauge
positioned
against
the
second
and
third
journals
CYLINDER
BLOCK
Inspection
and
Overhaul
Ensure
that
the
cylinder
block
is
thoroughly
clean
and
check
it
for
cracks
and
flaws
Check
the
joint
face
of
the
block
for
distortion
using
a
straight
edge
and
feeler
gauge
as
shown
in
Fig
A
20
The
surface
must
be
reground
if
the
maximum
tolerance
of
O
lmm
0
0039
in
is
exceeded
Examine
the
cylinder
bores
for
out
of
round
or
taper
using
a
bore
gauge
as
shown
in
Fig
A
21
The
readings
must
be
taken
at
the
Top
middle
and
bottom
positions
indicated
in
Fig
A
22
The
standard
bore
diameters
are
83
000
83
050
rom
3
2677
3
3697
in
for
the
1400
and
1600cc
engines
and
85
000
85
050
mm
3
3465
3
3484
in
for
the
1800
cc
engine
with
a
wear
limit
of
0
2mm
0
0079
in
Out
of
round
and
taper
must
not
exceed
0
15mm
0
0006
in
If
the
bores
are
within
the
specified
limits
remove
the
carbon
ridge
at
the
top
of
the
cylinder
bores
wring
a
suitable
ridge
reamer
If
any
of
the
bores
are
in
excess
of
the
specified
limits
then
all
the
bores
must
be
rebored
at
the
same
time
Pistons
are
available
in
five
oversizes
See
Technical
Data
and
can
be
selected
in
accordance
with
the
amount
of
wear
of
the
cylinder
When
the
oversize
of
the
pistons
has
been
decided
it
will
be
necessary
to
measure
the
piston
at
the
piston
skirt
Fig
A
23
and
add
to
this
dimension
the
specified
piston
to
cylinder
bore
clearance
to
determine
the
final
honed
measurement
of
the
cylinder
Machine
the
cylinder
bores
in
gradual
stages
taking
only
a
0
5mm
0
002
in
cut
each
time
The
bores
must
be
brought
to
the
final
size
by
honing
and
the
block
thoroughly
cleaned
to
remove
all
traces
of
metal
Measure
the
finished
bore
and
check
the
clearance
between
each
piston
and
its
cylinder
The
clearance
can
be
checked
as
shown
in
Fig
A
24
with
the
aid
of
a
feeler
gauge
and
spring
scale
The
standard
clearance
is
0
023
0
043
mm
0
0009
0
0017
in
NOTE
Cylinder
liners
can
be
fitted
if
the
cylinder
bores
are
worn
beyond
the
maximum
limit
The
liners
are
an
interference
fit
in
the
block
and
must
be
bored
to
the
correct
inner
diameter
after
fitting
Three
undersize
liners
are
available
in
the
following
sizes
11
Page 14 of 171

OUTER
DIAMETER
4
0mm
0
1575
in
Undersize
4
5mm
0
1772
in
Undersize
5
Omm
0
1969
in
Undersize
87
000
87
05mm
3
4252
3
4272
in
87
50
87
55mm
3
4449
3
4468
in
88
00
88
05mm
3
4646
3
4665
in
PISTONS
Checking
Check
each
piston
for
signs
of
seizure
and
wear
Renew
BIlY
piston
which
is
unsatisfactory
Remove
all
carbon
deposits
from
the
grooves
and
piston
rings
Measure
the
side
clearance
of
each
piston
ring
and
groove
with
a
feeler
gauge
as
shown
in
Fig
A
25
If
the
side
clearance
is
excessive
new
rings
should
be
fitted
The
clearance
required
for
new
pistons
a
piston
rings
can
be
found
in
Technical
Data
Check
the
piston
ring
gap
by
placing
the
ring
in
the
cylinder
bore
as
shown
in
Fig
A
26
The
ring
can
be
squared
in
the
bore
by
pushing
it
into
position
with
the
piston
Measure
the
ring
gaps
with
a
feeler
gauge
and
compare
the
dimensions
with
the
infor
mation
given
in
Technical
Data
NOTE
If
new
piston
rings
are
to
be
fitted
and
the
cylinder
has
not
been
rebafed
check
the
piston
ring
gap
with
the
ring
positioned
at
the
bottom
of
the
cylinder
This
being
the
position
with
the
least
amount
of
wear
O1eck
the
clearance
between
gudgeon
pin
and
piston
If
the
specified
limit
is
exceeded
it
will
be
necessary
to
replace
both
piston
and
pin
It
should
be
possible
to
press
the
gudgeon
pin
into
the
piston
by
hand
at
a
room
temperature
of
200C
680F
The
pin
should
be
a
tight
press
fit
in
the
connecting
rod
CONNECTING
RODS
O1ecking
Cleck
the
connecting
rods
for
bends
or
twists
using
a
guitable
connecting
rod
aligner
The
maximum
deviation
should
not
exceed
0
05
mm
0
0020
in
per
100
mm
3
94
in
length
of
rod
Straighten
or
replace
any
rod
which
does
not
comply
with
the
specified
limit
When
replacing
the
connecting
rod
it
is
essential
to
ensure
that
the
weight
difference
between
new
and
old
rods
is
within
5
gr
0
18
oz
for
the
1400
cc
engine
and
7
gr
0
25
oz
for
the
1600
and
1800
cc
engines
Install
the
connecting
rods
with
bearings
to
the
correspond
ing
crank
pins
and
measure
the
end
play
of
the
big
ends
s
e
Fig
A
27
The
end
play
should
be
between
0
2
0
3
mm
0
0079
0
0118
in
fthe
maximum
limit
of
0
6
mm
0
Ql18
in
is
exceeded
the
connecting
rod
must
be
replaced
CRANKSHAFT
Inspection
and
Overhaul
aean
the
crankshaft
thoroughly
before
checking
the
shaft
for
distortion
and
cracks
Measure
the
journals
and
crankpins
for
our
of
round
If
the
journals
and
pins
are
found
to
be
oval
or
if
the
wear
limit
exceeds
the
specified
fUnning
clearance
it
will
be
necessary
to
re
llrind
the
crankshaft
to
the
required
undersize
See
Technical
I
INNER
DIAMETER
82
45
82
60mm
3
24613
2520
in
82
4S
82
60mm
3
24613
2520
in
82
4S
82
60mm
3
24613
2520
in
Data
Place
the
crankshaft
in
V
blocks
as
shown
in
Fig
A
28
and
check
with
the
aid
of
a
dial
gauge
that
the
shaft
bending
limit
of
0
05
mm
0
002
in
is
not
exceeded
With
the
dial
gauge
positioned
against
the
centre
journal
the
crankshaft
should
be
rotated
by
one
turn
The
actual
bend
value
will
be
a
half
of
the
reading
obtained
on
the
gauge
If
the
specified
limit
is
exceeded
it
will
be
necessary
to
replace
the
crankshaft
Install
the
crankshaft
in
the
cylinder
block
and
check
the
crankshaft
end
float
which
should
be
be
J
Yieen
0
05
0
18
mm
0
0020
0
0071
in
Make
sure
that
the
main
drive
shaft
pilot
bushing
at
the
rear
of
the
crankshaft
is
not
worn
or
damaged
in
any
way
Replace
the
bushing
if
necessary
using
the
special
puller
STl
66
1000
I
Thoroughly
clean
the
bushing
hole
before
installing
and
press
in
the
new
bushing
without
oiling
so
that
its
height
above
the
flange
end
is
4
5
5
0
mm
0
18
0
20
in
Main
bearing
clearance
The
main
bearing
clearances
can
be
checked
using
a
strip
of
plastigage
Set
the
main
bearings
on
the
caps
Cut
the
plasti
gage
to
the
width
of
the
bearing
and
place
it
along
the
crankpin
making
sure
that
it
is
clear
of
the
oil
hole
Install
the
bearing
caps
and
tighten
the
bearing
cap
bolts
to
a
torque
reading
of
4
5
5
5
kgm
33
40
Ib
ft
DO
NOT
turn
the
crankshaft
when
the
plastigage
is
inserted
Remove
the
main
bearing
cap
and
take
out
the
plastigage
which
should
be
measured
at
its
widest
po
t
with
the
scale
printed
in
the
plastigage
envelope
The
standard
clearance
is
0
020
0
062
mm
0
0008
0
0024
in
with
a
wear
limit
of
0
1
mm
0
0039
in
If
the
specified
limit
is
exceeded
an
undersize
bearing
must
be
used
and
the
crankshaft
journal
ground
accordingly
See
Technical
Data
Bearings
are
available
in
four
undersize
of
0
25
0
50
0
75
and
1
00
mm
0
0098
0
0197
0
0295
and
0
0394
in
Connecting
rod
bearing
clearance
The
connecting
rod
bearing
clearances
should
be
checked
in
a
similar
manner
to
the
main
bearing
clearances
The
standard
clearance
is
0
025
0
055
mm
0
0010
0
0022
in
with
a
wear
limit
of
0
1
mm
0
0039
in
Undersize
bearings
must
be
fitted
and
the
crankpins
reground
if
the
specified
wear
limit
is
ex
ceeded
See
Technical
Data
Bearings
are
available
in
six
under
sizes
of
0
6
0
12
0
25
0
50
0
75
and
1
00
mm
0
0236
0
0047
0
0098
0
0197
0
0295
and
0
0394
in
Fitting
the
crankshaft
bearings
Cb
eck
the
fit
of
the
bearing
shells
in
the
following
manner
Install
the
shells
on
the
main
bearing
caps
and
cylinder
block
bearing
recess
and
tighten
the
cap
bolts
to
the
specified
torque
13
Page 16 of 171

reading
Slacken
one
of
the
cap
bolts
and
check
the
clearance
between
the
cap
and
cylinder
block
with
a
feeler
gauge
See
Fig
A
29
The
bearing
crush
nip
should
be
between
0
0
03mm
0
0
0012
in
if
this
is
not
the
case
then
the
bearing
must
be
replaced
beck
the
connecting
rod
bearings
in
a
similar
manner
after
tightening
the
caps
to
the
specified
torque
readings
The
bearing
clearance
should
be
between
0
15
0
045
mm
0
0006
0
0018
in
CAMSIIAFf
AND
SPROCKET
Inspect
the
camshaftjoumals
for
signs
of
wear
or
damage
and
check
the
camshaft
for
run
out
using
a
dial
gauge
in
a
similar
manner
to
that
previously
described
for
the
crankshaft
The
bending
limit
of
0
02
mm
0
0007
in
must
not
be
exceeded
Install
the
camshaft
sprocket
mount
the
assembly
in
V
blocks
as
shown
in
Fig
A
30
and
check
that
the
run
out
of
the
sprocket
does
not
exceed
0
1
mOl
0
04331
in
O1eck
the
timing
chain
and
sprocket
to
ensure
that
the
chain
is
not
stretched
or
damaged
or
the
teeth
of
the
sprocket
damaged
or
distorted
A
timing
chain
which
has
become
stretched
will
affect
the
valve
timing
and
be
noisy
in
operation
Check
the
chain
tensioner
and
chain
guides
for
wear
and
damage
replacing
the
parts
if
necessary
Replace
the
sprocket
if
the
run
out
is
exceeded
or
if
the
teeth
of
the
sprocket
are
worn
or
damaged
in
any
way
The
camshaft
end
play
should
be
within
0
08
0
38
mm
0
0031
O
oI50
in
If
the
clearance
limit
of
0
1
mm
0
0039
in
is
exceeded
it
will
be
necessary
to
replace
the
cam
shaft
locating
plate
See
Fig
A
3l
FLYWHEEL
Inspecting
Ensure
that
the
clutch
disc
contact
face
of
the
flywheel
is
not
worn
or
damaged
The
run
out
of
the
flywheel
contact
face
should
not
exceed
0
2
mOl
0
008
in
when
measured
with
a
dial
gauge
The
flywheel
ring
gear
can
be
replaced
if
the
teeth
are
damaged
or
worn
This
operation
will
entail
splitting
the
ring
gear
to
remove
it
A
hacksaw
should
be
used
to
cut
between
the
teeth
followed
by
splitting
with
a
cold
chisel
When
replacing
the
ring
gear
it
must
be
heated
to
a
temperature
of
approximately
1800
2000
F
before
fitting
and
then
allowed
to
cool
slowly
ENGINE
Assembling
Before
starting
to
assemble
the
engine
make
sure
that
all
components
are
perfectly
clean
It
is
always
advisable
to
pay
particular
attention
to
the
following
points
when
assembling
an
engine
Keep
the
work
bench
and
tools
clean
and
make
sure
that
the
tools
are
to
hand
Ensure
that
all
engine
oil
ways
are
clear
of
foreign
matter
fit
new
gaskets
and
oil
seals
throughout
All
sliding
parts
such
as
bearing
shells
must
be
smeared
with
engine
oil
before
installing
B
Ensure
that
the
specified
tightening
torque
readings
are
strictly
followed
A
mbling
the
cylinder
Head
To
install
the
valves
and
valve
springs
place
the
valve
spring
seats
into
position
and
fit
the
valve
guides
and
oil
lip
seals
Assemble
in
the
following
order
valve
springs
spring
retainers
valve
collets
and
valve
rocker
guides
Use
the
special
compressor
ST
12070000
as
shown
in
Fig
A
32
to
compress
the
valve
springs
Piston
and
connecting
rods
The
piston
piston
pins
and
connectiJ1
rods
must
be
assembled
in
accordance
with
the
cylinder
numbers
The
gudgeon
pin
is
press
fitted
to
the
connecting
rod
and
requires
a
fitting
force
from
0
5
to
1
5
tons
This
operation
will
require
the
use
of
the
special
tool
ST
1303000
as
shown
in
Fig
A
33
Apply
engine
oil
to
the
gudgeon
pin
and
connecting
rod
before
fitting
It
should
be
noted
that
the
oil
jet
of
the
connecting
rod
big
end
must
face
towards
the
right
hand
side
of
the
cylinder
block
See
Fig
A
34
Fit
the
piston
rings
the
oil
control
ring
in
the
bottom
groove
followed
by
the
centre
and
top
compression
rings
which
must
be
installed
with
the
marks
facing
upwards
Install
the
connecting
rod
bearings
and
caps
making
sure
that
the
markings
coincide
Ensure
that
the
backs
of
the
bearing
shells
are
perfectly
clean
otherwise
they
will
be
damaged
when
tightened
Assembling
the
engine
Fit
the
baffle
plate
and
cylinder
block
net
Install
the
crankcase
halves
of
the
main
bearing
shells
the
flanged
shell
is
fitted
to
the
centre
bearing
Smear
the
bearing
surfaces
with
engine
oil
and
carefully
lower
the
crankshaft
into
position
Install
the
main
bearing
caps
with
their
shells
making
sure
that
the
arrow
on
the
caps
faces
to
the
front
of
the
engine
Rotate
the
crankshaft
to
settle
the
caps
and
tighten
the
bearing
cap
bolts
gradually
in
two
or
three
separate
stages
Work
out
wards
from
the
centre
bearing
and
finally
tighten
to
the
specified
torque
reading
of
4
5
5
5
kgm
32
40
Ib
ft
in
the
sequence
shown
in
Fig
A
35
Ensure
that
the
crankshaft
rotates
freely
after
finally
tightening
the
cap
bolts
Check
the
crankshaft
end
float
which
should
be
between
0
05
0
18
mm
0
002
0
0071
in
see
Fig
A
36
Smear
the
side
oil
seals
with
sealant
and
fit
them
into
the
rear
main
bearing
cap
Install
the
rear
oil
seal
using
a
suitable
drift
and
grease
the
lip
of
the
seal
Place
the
flywheel
in
position
and
install
the
lock
washers
and
retaining
baits
Tighten
the
bolts
evenly
to
a
torque
reading
of
14
16
kgm
101
106Ib
ft
Rotate
the
engine
by
a
quarter
turn
and
install
the
piston
15
Page 18 of 171

h
W
and
connecting
rod
assemblies
Use
a
piston
ring
compressor
to
install
the
pistons
through
the
top
of
the
cylbder
bore
Make
sure
that
the
pistons
and
rings
and
the
cylinder
bores
are
lubricated
with
clean
engine
oil
The
pistons
should
be
arranged
so
that
the
F
mark
faces
to
the
front
and
with
the
piston
ring
gaps
positioned
at
1800
to
each
other
Each
piston
must
be
refitted
into
its
original
bore
NOTE
Single
inlet
valve
springs
are
used
on
the
1400
cc
engine
double
valve
springs
are
used
on
the
1600cc
and
1800
cc
engines
Screw
the
valve
rocker
pivots
with
the
locknuts
into
the
pivot
bushing
Set
the
camshaft
locating
plate
and
install
the
camshaft
in
the
cylinder
head
with
the
groove
in
the
locating
plate
directed
to
the
front
of
the
engine
Install
the
camshaft
sprocket
and
tighten
it
together
with
the
fuel
pump
earn
to
a
torque
reading
of
12
16
kgm
86
116
IbJt
a
eck
that
the
camshaft
end
play
is
within
the
specified
limits
Install
the
rocker
arms
using
a
screwdriver
to
press
down
the
valve
springs
and
fit
the
valve
rocker
springs
Gean
the
joint
faces
of
the
cylinder
block
and
head
thoroughly
before
installing
the
cylinder
head
Turn
the
crank
shaft
until
the
No
1
piston
is
at
T
D
C
on
its
compression
stroke
and
make
sure
that
the
camshaft
sprocket
notch
and
the
oblong
groove
in
the
locating
plate
are
correctly
positioned
Care
should
be
taken
to
ensure
that
the
valves
are
clear
from
the
heads
of
the
pistons
The
crankshaft
and
camshaft
must
not
be
rotated
separately
or
the
valves
will
strike
the
heads
of
the
pistons
Temporarily
tighten
the
two
cylinder
head
bolts
1
and
2
in
Fig
A
37
to
a
torque
reading
of
2
kgm
14
5
lb
ft
Fit
the
crankshaft
sprocket
and
distributor
drive
gear
and
install
the
oil
thrower
Ensure
that
the
mating
marks
on
the
crankshaft
sprocket
face
towards
the
front
Install
the
timing
chain
making
sure
that
the
crankshaft
and
camshaft
keys
are
XJinting
upwards
The
marks
on
the
timing
chain
must
be
aligned
with
the
marks
on
the
right
hand
side
of
the
crankshaft
and
camshaft
sprockets
It
should
be
noted
that
three
location
holes
are
provided
in
the
camshaft
sprocket
See
Fig
A
38
The
camshaft
sprocket
being
set
to
the
No
2
location
hole
by
the
manufacturers
A
stretched
chain
will
however
affect
the
valve
timing
and
if
this
occurs
it
will
be
necessary
to
set
the
camshaft
to
the
No
3
location
hole
in
the
camshaft
sprocket
The
chain
can
be
checked
by
turning
the
engine
until
the
No
1
piston
is
at
T
D
C
on
its
compression
stroke
In
this
position
adjustment
will
be
required
if
the
location
notch
on
the
camshaft
sprocket
is
to
the
left
of
the
groove
on
the
camshaft
locating
plate
as
shown
in
the
illustration
The
correction
is
made
by
setting
the
camshaft
on
the
No
3
location
hole
in
the
camshaft
sprocket
the
No
3
notch
should
then
be
to
the
right
of
the
groove
and
the
valve
timing
will
have
to
be
set
using
the
No
3
timing
mark
Install
the
chain
guide
and
chain
tensioner
when
the
chain
is
located
correctly
There
should
be
no
protrusion
of
the
chain
tensioner
spindle
See
Fig
A
39
A
new
tensioner
must
be
fitted
if
the
spindle
protrudes
Press
a
new
oil
seal
into
the
timing
cover
and
fit
the
cover
into
position
using
a
new
gasket
Apply
sealing
compound
to
the
front
of
the
cylinder
block
and
to
the
gasket
and
to
the
top
of
the
timing
cover
Ensure
that
the
difference
in
height
between
the
top
of
the
timing
cover
and
the
upper
face
of
the
cylinder
block
does
not
exceed
0
15
mm
0
006
in
Two
sizes
of
timing
cover
bolts
are
used
the
size
M8
0
315
in
must
be
tightened
to
a
torque
reading
of
1
0
1
6
kgm
7
2
17
Ib
ft
and
the
size
M6
0
236
in
to
a
torque
reading
of
0
4
0
8
kgm
2
9
81b
ft
Install
the
crankshaft
pulley
and
water
pump
tighten
the
pulley
nut
to
a
torque
reading
of
12
16
kgm
86
8
115
7Ib
ft
then
set
the
No
1
piston
at
T
D
C
on
its
compression
stroke
Finally
tighten
the
cylinder
head
bolts
to
the
specified
torque
reading
in
accordance
with
the
tightening
sequence
shown
in
Fig
A
3
The
bolts
should
be
tightened
in
three
stages
as
follows
First
stage
Second
stage
Third
stage
4
kgm
28
9
lbJt
6
kgm
43
4
IbJ
t
6
5
85
kgm
47
0
61
5lb
ft
The
cylinder
head
bolts
should
be
retightened
if
necessary
after
the
engine
has
been
run
for
several
minutes
Install
the
oil
pump
and
distributor
drive
spindle
into
the
front
cover
as
described
under
Engine
Lubrication
System
r
rf
i
Install
the
fuel
pump
water
inlet
elbow
and
front
engine
slinger
Fit
the
oil
strainer
into
position
coat
the
oil
sump
gasket
with
sealing
compound
and
fit
the
gasket
and
oil
sump
to
the
cylinder
block
Tighten
the
oil
sump
bolts
in
a
diagonal
pattern
to
a
torque
reading
of
0
6
0
9
kgm
4
3
6
5
IbJt
Adjust
the
valve
clearances
to
the
specified
cold
engine
ftgures
following
the
procedures
described
under
the
appropriate
heading
Final
adjustments
will
be
carried
out
after
the
engine
has
been
assembled
completely
and
warmed
up
to
its
nonnal
temperature
Install
the
rear
engine
slinger
exhaust
manifold
and
inlet
manifold
Refit
the
distributor
and
carburettor
assemblies
as
described
in
their
relevant
sections
Install
the
fuel
pipes
and
vacuum
hose
making
sure
that
they
are
securely
cl
ped
Refit
the
thermostat
housing
thermostat
and
water
outlet
together
with
the
gasket
Bond
the
rocker
cover
gasket
to
the
rocker
cover
using
sealant
and
fit
the
rocker
cover
to
the
cylinder
head
Install
the
spark
plugs
and
connect
the
high
tension
leads
Fit
the
left
hand
engine
mounting
bracket
and
install
the
clutch
assembly
using
the
alignment
tool
ST20600000
to
fit
the
clutch
to
the
flywheel
as
described
in
the
section
ClUfCR
Lift
the
engine
away
from
the
mounting
stand
and
into
the
engine
compartment
Install
the
alternator
bracket
adjusting
bar
alternator
fan
pulley
fan
and
fan
belt
in
the
order
given
Check
the
tension
of
the
fan
belt
by
depressing
the
belt
at
a
point
midw
y
between
the
pulleys
The
tension
is
correct
if
the
belt
is
deflected
by
8
12
mm
0
3
0
4
in
under
thumb
pressure
Fit
the
right
hand
engine
mounting
bracket
the
oil
filter
oil
pressure
switch
oil
level
gauge
and
water
drain
plug
Take
care
not
to
overtighten
the
oil
nIter
or
leakage
will
occur
Fill
the
engine
and
gearbox
to
the
correct
levels
with
recommended
lubricant
and
refill
the
cooling
system
Adjust
the
ignition
timing
and
carburettor
as
described
in
the
appro
priate
sections
17
Page 20 of 171

VALVE
CLEARANCES
Adjusting
Incorrect
valve
clearance
will
affect
the
performance
of
the
engine
and
may
damage
the
valves
and
valve
seats
Insuf
ficient
valve
clearance
will
result
in
loss
of
power
and
may
prevent
the
valve
from
seating
properly
Excessive
clearance
causes
the
valve
to
seat
and
reduces
the
amount
of
valve
lift
This
will
result
in
noisy
operation
with
damage
to
the
valves
and
seats
Adjustment
is
made
with
the
engine
switched
off
and
should
be
carried
out
initially
with
the
engine
cold
to
allow
the
engine
to
run
Final
adjustments
are
made
after
wanning
up
the
engine
to
its
Donnal
operating
temperature
The
engine
can
be
rotated
by
removing
the
sparking
plugs
to
release
the
cylinder
compressions
then
selecting
top
gear
and
pushing
the
vehicle
backwards
and
forwards
The
cold
valve
clearances
should
be
set
to
0
20
mm
0
0079
in
for
the
inlet
valves
and
0
25
mm
0
0098
in
for
the
exhaust
valves
Check
the
clearance
between
the
valve
and
rocker
using
a
feeler
gauge
as
shown
in
Fig
A
40
Slacken
the
locknut
and
turn
the
adjusting
screw
until
the
specified
clearance
is
obtained
then
tighten
the
locknut
and
recheck
the
clearance
The
feeler
gauge
should
just
be
free
to
move
between
the
rocker
and
valve
When
the
cold
valve
clearances
have
been
set
run
the
engine
until
it
reaches
its
normal
operating
temperature
then
switch
off
and
adjust
the
valve
clearances
with
the
engine
warm
to
0
25
mm
0
0098
in
for
the
inlet
valves
and
0
30
mm
0
0118
in
for
the
exhaust
valves
ENGINE
LUBRICATION
SYSTEM
Fig
A
41
OIL
PUMP
Removal
and
Dismantling
The
rotor
type
oil
pump
is
mounted
at
the
bottom
of
the
front
timing
cover
and
driven
by
the
distributor
drive
shaft
assembly
Overhaul
of
the
pump
will
require
careful
measurement
of
the
various
clearances
to
determine
the
amount
of
wear
which
has
taken
place
If
any
part
is
found
to
be
worn
it
may
be
neces
sary
to
replace
the
entire
oil
pump
assembly
To
remove
the
oil
pump
from
the
engine
proceed
as
follows
1
Remove
the
distributor
assembly
as
described
in
the
section
IGNITION
SYSTEM
Remove
the
oil
sump
drain
plug
and
drain
off
the
engine
oil
See
under
the
heading
CHANGING
THE
ENGINE
OIL
2
Remove
the
front
stabiliser
and
the
splash
shield
board
3
Withdraw
the
securing
bolts
and
detach
the
oil
pump
body
together
with
the
drive
gear
spindle
Take
out
the
bolts
securing
the
pump
cover
to
the
pump
body
and
withdraw
the
rotors
and
drive
shaft
See
Fig
A
42
The
pin
securing
the
driven
shaft
and
inner
rotor
must
not
00
taken
out
as
the
shaft
is
press
fitted
to
the
rotor
and
the
pin
is
caulked
Unscrew
the
threaded
plug
and
withdraw
the
regulator
valve
and
spring
Oean
each
part
thoroughly
and
examine
for
signs
of
damage
or
wear
Use
a
feeler
gauge
to
check
the
side
clearances
between
the
outer
and
inner
rotors
the
clearances
at
the
tips
of
the
rotors
and
the
clearance
between
the
outer
rotor
and
the
pump
body
See
Technical
Data
for
the
relevant
clearances
The
clearances
can
be
checked
using
a
straight
edge
as
shown
in
Fig
A
43
OIL
PUMP
Assembly
and
Installation
Assembly
is
a
reversal
of
the
dismantling
procedure
Before
installing
the
oil
pump
in
the
engine
it
will
be
necessary
to
rotate
the
engine
until
the
No
1
piston
is
at
T
D
C
on
its
compression
stroke
Fill
the
pump
housing
with
engine
oil
and
align
the
punch
mark
on
the
spindle
with
the
hole
in
the
oil
pump
as
shown
in
Fig
A
44
Install
the
pump
with
a
new
gasket
and
tighten
the
securing
bolts
to
a
torque
reading
of
1
1
1
5
kgm
8
1
Ilb
ft
Replace
the
splash
shield
board
and
the
front
stabiliser
refill
the
engine
with
the
specified
amount
of
engine
oil
OIL
FILTER
The
cartridge
type
oil
filter
can
be
removed
with
the
special
tool
ST
19320000
or
a
suitable
filter
remover
Interior
cleaning
is
not
necessary
but
the
ftIter
body
and
element
must
be
repiaced
every
10
000
km
6000
miles
Be
care
ul
not
to
overtighten
the
filter
when
replacing
or
oil
leakage
may
occur
CHANGING
THE
ENGINE
OIL
After
the
fIrst
oil
change
which
should
take
place
at
1000
km
600
miles
the
oil
should
be
changed
regularly
at
5000
km
3000
miles
intervals
Draining
is
more
easily
accomplished
after
a
lengthy
run
when
the
oil
being
thoroughly
warm
will
flow
quite
freely
Stand
the
vehicle
on
level
ground
and
place
a
suitable
container
under
the
drain
plug
Remove
the
drain
plug
carefully
as
the
hot
oil
may
spurt
out
with
considerable
force
When
refIlling
the
engine
make
sure
that
the
oil
is
to
the
H
mark
on
the
dipstick
19
Page 26 of 171

CoolIng
System
GENERAL
FAN
BELT
TENSION
FLUSHING
AND
DRAINING
THE
SYSTEM
THERMOSTAT
Testing
RADlA
TOR
Removal
GENERAL
The
cooling
system
is
pressurised
and
incorporates
a
water
pump
corrugated
fin
type
radiator
fan
and
a
pellet
type
thermostat
The
water
pump
is
of
the
centrifugal
type
and
has
an
aluminium
die
cast
body
The
volute
chamber
is
built
into
the
front
cover
assembly
and
a
high
pressure
sealing
mechanism
prevents
water
leakage
and
noise
The
fan
pulley
is
driven
by
the
V
belt
from
a
pulley
on
the
crankshaft
he
pellct
type
thermostat
enables
the
engine
to
warm
up
rapidlY
and
also
regulates
the
temperature
of
the
coolant
When
the
wax
pellet
in
the
thermostat
is
heated
it
expands
and
exerts
pressure
against
a
rubber
diaphragm
causing
the
valve
to
open
and
allow
the
coolant
to
flow
from
the
cylinder
head
back
to
the
radiator
As
the
pellet
is
cooled
itcontractsand
allows
the
spring
to
close
the
valve
thereby
preventing
coolant
from
leaving
the
cylinder
head
The
rad
ator
is
of
the
down
flow
type
with
an
expansion
tank
The
relIef
valve
in
the
radiator
filler
cap
controls
the
pressure
at
approximately
0
9
kg
sq
cm
l3Ib
sq
in
Always
try
to
avoid
removing
the
filler
cap
when
the
engine
is
hot
as
coolant
may
spray
out
and
cause
scalding
If
the
cap
must
be
removed
in
these
circumstances
use
a
lar
e
pic
c
of
cloth
to
hold
the
cap
and
turn
the
cap
sli
htlY
Walt
until
all
pressure
has
been
released
before
lifting
off
the
cap
F
AN
BELT
TENSION
The
fan
belt
drives
the
water
pump
and
alternator
as
well
as
the
fan
and
its
correct
adjustment
is
most
essential
A
loose
fan
belt
will
sl
ip
and
Y
e
r
and
most
probably
cause
overheating
alternatively
If
the
belt
IS
too
tight
the
pump
and
alternator
bearings
will
be
overloaded
The
belt
is
correctly
tensioned
if
it
can
be
depressed
by
approximately
10
mm
1
2
in
at
a
point
midway
between
the
fan
and
alternator
pulleys
See
Fig
R2
If
adjustment
is
neces
ary
slacken
the
alternator
mounting
and
adjustment
bolts
and
pivot
the
alternator
away
from
the
engine
to
tighten
the
belt
to
towards
the
engine
if
the
belt
is
to
be
slackened
NOTE
Always
apply
leverage
to
the
drive
end
housing
when
pivoting
the
alternator
and
never
to
the
diode
end
housing
or
the
alternator
will
be
damaged
Retighten
the
alternator
bolts
and
make
SUfe
that
the
belt
is
correctly
tensioned
FLUSHING
AND
DRAINING
THE
SYSTEM
The
radiator
and
water
passages
should
be
flushed
out
periodically
to
remove
the
accumulated
scale
or
sediment
Reverse
flushing
equipment
should
be
used
to
carry
out
a
completely
thorough
flushing
operation
but
the
owner
drivef
not
possessing
this
type
of
equipment
can
flush
out
the
system
in
the
following
manner
Drain
the
system
by
removing
the
radiator
filler
cap
and
opening
the
radiator
and
cylinder
block
drain
taps
Close
the
taps
again
and
refill
the
radiator
Run
the
engine
for
a
ShOft
period
and
then
rc
open
the
drain
taps
Continue
this
sequence
until
the
water
flowing
from
the
taps
is
clean
then
close
the
taps
and
refill
the
radiator
An
anti
freeze
mixture
should
always
be
used
in
Winter
time
The
Niss3n
long
life
coolant
L
L
c
is
an
ethylene
glycol
solution
containing
a
corrosion
preventative
which
can
remain
in
the
vehicle
throughout
the
year
but
must
not
be
mixed
with
other
products
It
is
advisable
to
check
the
radiator
and
heater
hoses
when
filling
with
anti
freeze
and
renew
them
if
signs
of
deterioration
are
apparent
WATER
PUMP
Replacement
The
water
pump
must
not
be
dismantled
and
should
be
renewed
if
it
becomes
faulty
The
pump
can
be
removed
in
the
following
manner
Drain
the
cooling
system
2
Take
the
fan
belt
off
the
pulley
3
Remove
the
fan
and
pulley
4
Remove
the
retaining
nuts
and
withdraw
the
water
pump
See
Fig
B
3
lnstallation
of
the
pump
is
a
reversal
of
the
removal
procedures
rERMOST
ATTesting
The
thermostat
is
located
in
the
water
outlet
passage
See
Fig
B
4
To
remove
the
unit
drain
the
cooling
system
remove
the
radiator
hose
and
the
water
outlet
elbow
Take
out
the
thermostat
25
Page 30 of 171

IgnItIon
System
DESCRII
TION
IGNITION
TIMING
IGNITION
DISTRIBUTOR
Maintenance
ADJUSTING
THE
CONTACT
BREAKER
GAP
CENTRIFUGAL
ADVANCE
MECHANISM
VACUUM
ADVANCE
MECHANISM
IGNITION
DISTRIBUTOR
Removal
and
Dismantling
IGNITION
DISTRIBUTOR
Assembling
and
Installation
SPARKING
PLUGS
DESCRII
TION
The
ignition
circuit
comprises
the
distributor
ignition
coil
ignition
switch
spark
plugs
high
tension
lead
and
the
battery
See
Fig
C
1
The
Hitachi
distributor
is
shown
in
exploded
form
in
Fig
C
2
19niton
timing
is
automatically
regulated
by
the
distributor
centrifugal
advance
mechanism
or
vacuum
advance
mechanism
depending
upon
the
demand
made
on
the
engine
The
vacuum
advance
mechanism
operates
under
part
throttle
only
and
uses
intake
manifold
depression
to
advance
the
ignition
timing
When
the
engine
speed
is
increased
the
vacuum
is
inoperative
and
ignition
timing
is
regulated
by
the
centrifugal
advance
mechanism
The
centrifugal
advance
mechanism
uses
a
system
of
governor
weights
and
springs
which
turn
the
carn
assembly
in
on
anti
clockwise
direction
to
advance
the
ignition
timing
As
the
engine
speed
is
decreased
the
weights
move
back
and
allow
the
cam
to
return
thereby
retarding
the
ignition
timing
The
ignition
coil
is
an
oil
filled
unit
comprising
a
coil
around
which
is
wound
the
secondary
and
primary
windings
The
number
of
turns
in
the
primary
winding
provide
a
high
secondary
voltage
throughout
the
speed
range
The
resistor
is
automatically
by
passed
at
the
moment
of
starting
and
allows
the
ignition
coil
to
be
directly
connected
to
the
battery
This
applies
the
full
battery
voltage
to
the
coil
to
give
the
necessary
staTting
boost
When
the
starter
switch
is
released
the
current
flows
through
the
resistor
and
the
voltage
through
the
coil
is
dropped
for
normal
running
purposes
IGNITION
TIMING
The
ignition
timing
can
be
accurately
checked
using
a
stroboscopic
timing
light
which
should
be
connected
in
accor
dance
with
the
manufacturers
instructions
Make
sure
that
the
timing
marks
on
the
crankshaft
pulley
are
visible
if
they
are
not
visible
mark
them
with
chalk
or
white
paint
Each
mark
represents
a
50
division
of
the
crank
angle
Disconnect
the
distributor
vacuum
line
start
the
engine
and
allow
it
to
run
at
normal
idling
speed
or
slightly
below
Point
the
timing
light
at
the
timing
pointer
on
the
front
cover
Fig
C
3
The
crankshaft
pulley
groove
should
appear
to
be
stationery
and
aligned
with
the
pointer
on
the
front
cover
The
top
dead
centre
mark
is
located
at
the
extreme
right
as
shown
in
the
illustration
If
the
setting
requires
adjustment
the
distributor
flange
bolts
must
be
slackened
and
the
distributor
body
turned
clockwise
to
advance
or
anti
clockwise
to
retard
the
timing
See
Technical
Data
for
timing
settings
After
adjusting
the
timing
tighten
the
distributor
flange
bolts
and
recheck
the
timing
IGNITION
DISTRIBUTOR
Maintenance
Remove
the
distributor
cap
by
easing
away
the
two
clamps
and
examine
the
points
for
signs
of
burning
or
pitting
The
points
can
be
cleaned
if
necessary
using
a
fine
grade
of
oilstone
or
file
The
faces
of
the
points
must
be
completely
flat
and
parallel
and
all
abrasive
dust
removed
with
compressed
air
If
the
points
are
excessively
pitted
they
must
be
renewed
and
grease
applied
to
the
moving
contact
pivot
and
the
surface
of
the
cam
Ensure
that
the
distributor
cap
is
thoroughly
clean
both
inside
and
outside
A
contaminated
cap
will
promote
tracking
indicated
by
black
lines
and
caused
by
electrical
leakage
between
the
segments
on
the
inside
of
the
cap
Make
sure
that
the
carbon
button
is
not
worn
Both
the
distributor
cap
and
rotor
must
be
renewed
if
they
are
cracked
or
damaged
IGNITION
DISTRIBUTOR
Adjusting
the
contact
breaker
gap
To
adjust
the
contact
breaker
points
remove
the
distributor
cap
and
pull
the
rotor
off
the
cam
spindle
Turn
the
engine
until
the
heel
of
the
contact
breaker
arm
is
positioned
on
the
cam
lobe
the
contact
breaker
gap
is
set
to
the
maximum
in
this
position
Slacken
the
adjusting
screw
Fig
CA
insert
a
feeler
gauge
between
the
points
and
adjust
the
breaker
plate
until
the
re
quired
gap
of
0
45
0
55
mm
0
0177
0
0217
in
is
obtained
Tighten
the
adjusting
screw
and
recheck
the
setting
After
the
contact
breaker
gap
has
been
adjusted
check
the
ignition
timing
as
previously
described
The
tension
of
the
contact
breaker
should
be
0
5
0
65
kg
I
I
I
4
lb
Measure
the
tension
with
a
gauge
and
at
900
to
the
contact
breaker
arm
29
Page 32 of 171

CENTRIFUGAL
ADVANCE
MECHANISM
Special
equipment
is
required
to
check
the
advance
characteristics
It
is
possible
however
to
carry
out
an
exam
ination
of
the
caffi
assembly
and
the
weights
and
springs
to
ensure
that
the
earn
is
not
seizing
Lift
off
the
distributor
cap
and
turn
the
rotor
anti
clock
wise
When
the
rotor
is
released
is
should
return
to
the
fully
retarded
position
without
sticking
If
it
does
not
return
to
the
fully
retarded
position
it
will
be
necessary
to
check
for
dirt
and
weak
springs
It
should
be
noted
that
any
wear
in
the
mechanism
or
lose
of
spring
tension
will
upset
the
advance
characteristics
and
cause
unsatisfactory
engine
running
performance
over
the
speed
range
VACUUM
ADVANCE
MECHANISM
The
diaphragm
of
the
vacuum
advance
mechanism
is
mechanically
connected
to
the
contact
breaker
plate
The
rise
and
fall
of
inlet
manifold
depression
causes
the
diaphragm
to
move
the
contact
breaker
plate
to
advance
or
retard
the
ignition
If
the
vacuum
control
unit
fails
to
function
correctly
a
check
can
be
carried
out
to
ensure
that
the
contact
breaker
plate
is
moving
freely
and
that
the
three
steel
balls
at
the
top
and
oottom
of
the
plate
are
adequately
lubricated
Also
make
sure
that
the
vacuum
inlet
pipe
is
not
blocked
or
leaking
and
is
securely
tightened
Leakage
may
be
due
to
a
defective
diaphragm
which
should
be
renewed
along
with
any
other
faulty
part
of
the
mechanism
IGNITION
DlSTRffiUTOR
Removal
and
Dismantling
Disconnect
the
battery
leads
2
Disconnect
the
high
tension
lead
at
the
coil
3
Withdraw
the
high
tension
leads
from
the
distributor
cap
4
Detach
the
suction
pipe
from
the
vacuum
control
unit
5
Mark
the
position
of
the
distributor
and
rotor
remove
the
flange
mounting
bolts
and
withdraw
the
distributor
To
dismantle
the
distributor
proceed
as
follows
Take
off
the
distributor
cap
and
remove
the
rotor
Slacken
the
two
set
screws
holding
the
contact
breaker
upper
plate
Remove
the
primary
cable
terminals
and
withdraw
the
contact
set
from
the
distributor
Fig
C
S
Remove
the
vacuum
control
unit
c
Remove
the
two
screws
and
lift
out
the
contact
breaker
plate
detach
the
clamp
the
terminal
and
the
lead
To
remove
the
cam
take
out
the
centre
screw
as
shown
in
Fig
e
6
Drive
out
the
drive
pinion
retaining
pin
with
a
drift
and
hammer
Fig
e
and
remove
the
pinion
and
washer
Take
care
not
to
stretch
or
deform
the
governor
springs
when
detaching
them
from
the
weights
IGNITION
DISTRIBUTOR
Assembling
and
Installing
Assembly
is
a
reversal
of
the
dismantling
procedure
Lubricate
the
moving
contact
pivot
and
smear
the
lobes
of
the
cam
with
multi
purpose
grease
If
the
centrifugal
advance
mechanism
has
been
dismantled
the
governor
springs
and
cams
must
be
refitted
as
shown
in
Fig
e
8
The
governor
weight
pin
6
should
be
fitted
into
the
longer
of
the
two
slots
leaving
a
certain
amount
of
clearance
for
the
start
and
end
of
the
centrifugal
advance
movement
When
installing
the
distributor
take
care
to
align
the
body
and
rotor
with
the
marks
made
during
removal
The
rotor
must
be
positioned
in
its
original
location
it
will
turn
slightly
when
the
distributor
is
inserted
and
the
gear
teeth
mesh
Remove
and
replace
the
distributor
if
the
rotor
does
not
point
to
the
align
ment
mark
until
both
distributor
body
and
rotor
are
correctly
aligned
SPARKING
PLUGS
The
sparking
plugs
should
be
inspected
and
cleaned
at
regular
intervals
not
exceeding
every
10
000
km
6000
miles
New
sparking
plugs
should
be
fitted
at
approximately
20
000
km
12
000
miles
Remove
the
plugs
and
check
the
amount
of
electrode
wear
and
type
of
deposits
Brown
to
greyish
tan
deposits
with
slight
electrode
wear
indicate
that
the
plugs
are
satisfactory
and
working
in
the
correct
heat
range
Dry
fluffy
carbon
deposits
are
caused
by
too
rich
a
mixture
dirty
air
cleaner
excessive
idling
or
faulty
ignition
In
this
case
it
is
advisable
to
replace
the
plugs
with
plugs
having
a
higher
heat
range
Oily
wet
black
deposits
are
an
indication
of
oil
in
the
combustion
chambers
through
worn
pistons
and
rings
or
excessive
clearance
between
valve
guides
and
stems
The
engine
should
be
overhauled
and
hotter
plugs
installed
A
white
or
light
grey
centre
electrode
and
bluish
burned
side
electrode
indicates
engine
overheating
incorrect
ignition
timing
loose
plugs
low
fuel
pump
pressure
or
incorrect
grade
of
fuel
Colder
sparking
plugs
should
be
fitted
The
plugs
should
be
cleaned
on
a
blasting
machine
and
tested
Dress
the
electrodes
with
a
small
file
so
that
the
surfaces
of
both
electrodes
are
flat
and
parallel
Adjust
the
spark
plug
gap
to
0
8
0
9
mm
0
031
0
035
in
by
bending
the
earth
electrode
Refit
the
plugs
and
tighten
them
to
a
torque
reading
of
1
5
2
5
kgm
II
15Ib
ft
31