ECO DATSUN PICK-UP 1977 Manual PDF
[x] Cancel search | Manufacturer: DATSUN, Model Year: 1977, Model line: PICK-UP, Model: DATSUN PICK-UP 1977Pages: 537, PDF Size: 35.48 MB
Page 270 of 537

space
from
the
throttle
pressure
16
to
the
drain
17
decreases
and
the
space
from
the
line
pressure
7
to
Ihe
throttle
pressure
16
increases
Consequently
the
throttle
pressure
16
increases
and
the
valve
is
bal
anced
Contrarily
when
the
engine
torque
lowers
and
the
negative
pr
sure
in
the
intake
line
lowers
tending
toward
vacuum
the
force
of
the
rod
depressing
the
valve
decreases
and
the
throttle
pressure
16
also
decreases
When
pressure
regulated
by
the
throt
tle
back
p
valve
described
in
the
subsequent
paragraph
is
led
to
circuit
17
a
high
pressure
is
applied
through
the
space
from
the
circuit
17
to
the
throttle
pressure
16
Consequently
the
VTV
is
unbalanced
the
throttle
pressure
16
becomes
equal
to
the
back
up
pressure
17
and
the
valve
is
locked
upward
I
16
III
AT100
Fig
AT
15
Vacuum
throttle
valIN
Throttle
back
up
valve
TBY
Usually
this
valve
is
depressed
downward
by
the
spring
force
and
circuit
17
is
drained
upward
As
soon
as
the
lever
is
shifted
either
to
2
or
I
range
line
pressure
is
led
from
circuit
4
the
line
pressure
is
applied
to
the
area
difference
of
the
valve
the
valve
is
forced
upward
the
space
from
circuit
4
to
circuit
17
is
closed
and
with
the
space
from
circuit
Automatic
Transmission
17
to
Ihe
upper
drain
about
to
open
the
back
up
pressure
17
which
is
lower
than
the
line
pressure
4
by
the
pressure
loss
due
to
the
space
from
circuit
4
to
circuit
17
is
balanced
with
the
spring
force
Further
when
gear
is
shifted
from
2nd
to
Low
at
the
range
I
line
pressure
is
led
from
circuit
12
and
the
line
pressure
is
applied
pward
to
the
bottom
of
the
valve
through
the
valve
hole
Consequently
the
valve
is
forced
upward
and
locked
As
a
result
the
space
from
the
line
pressure
4
to
the
back
up
pressure
17
is
closed
completely
and
the
back
up
pressure
17
is
drained
upward
AT101
Fig
AT
16
Throttle
back
up
lJ
Jlve
Solenoid
downshift
valve
SDY
This
valve
is
a
transfer
valve
which
leads
the
line
pressure
7
to
13
and
transmits
the
same
to
the
FSV
and
SSV
when
a
kickdown
signal
is
re
ceived
from
the
downshift
solenoid
Usually
the
solenoid
push
rod
and
valve
are
locked
upward
by
the
spring
in
the
lower
end
and
the
circuit
from
line
pressure
4
to
line
pressure
13
is
opened
When
kickdown
is
performed
the
push
rod
operates
Ihe
valve
is
de
pressed
downward
and
the
circuit
from
line
pressure
7
to
line
pressure
13
opens
Line
pressure
13
opposes
the
governor
pressure
15
at
Ihe
SSV
and
FSV
thus
accomplishing
the
downshift
operation
AT
10
r
AT102
Fig
AT
17
Solenoid
dow
hift
valve
Second
lock
valve
SLY
This
valve
is
a
transfer
valve
which
assists
the
shift
valve
in
determining
the
fixed
2nd
speed
at
the
2
range
In
the
D
range
the
sum
of
the
spring
force
and
line
pressure
3
APplied
upward
xce
ds
the
linepres
sure
2
which
is
applied
to
the
valve
area
difference
as
a
downward
force
As
a
result
the
valve
is
locked
upward
and
the
circuit
from
line
pressure
8
to
line
pressure
9
is
opened
Consequently
the
FSV
becomes
the
2nd
speed
condition
and
line
pressure
is
led
to
the
band
servo
engaging
circuit
9
only
when
line
pressure
1
is
released
to
line
pressure
8
In
the
2
range
the
upward
force
is
retained
only
on
the
spring
and
the
downward
line
pressure
2
exceeds
the
upward
force
As
a
result
Ihe
valve
is
locked
downward
line
pressure
2
is
released
to
9
regardless
of
the
operating
condition
of
the
FSV
and
the
band
servo
is
engaged
J
2
8
ATl03
3
Fig
AT
18
Second
lock
lJ
Jlve
Page 272 of 537

Automatic
Transmission
d
n
ern
I
lLU
I
J
A1
094
1
Pressure
regulating
valve
PRV
2
Manual
val
MNV
31st
2nd
shift
val
fSV
4
2nd
3rd
shift
val
SSV
5
Pressure
modifier
valve
PMV
6
Vacuum
throttle
valve
VfV
7
Throttle
back
up
valve
TBV
8
Solenoid
down
shift
valve
SDV
9
Second
lock
valve
SL
V
10
2
3
timing
val
TMV
Fig
AT
20
Controloolve
AT
12
Page 274 of 537

Automatic
Transmission
P
RANGE
PARK
The
operation
of
clutches
and
band
are
functionally
the
same
as
in
Neu
tral
In
parking
however
when
the
parking
pawl
meshes
in
a
gear
which
is
splined
to
the
output
shaft
the
output
shaft
is
mechanically
locked
from
rotating
Free
Lock
AT086
Fig
AT
24
Parlling
mechanum
The
oil
discharged
from
the
oil
Low
Band
ervo
On
pump
is
fed
to
each
part
in
a
similar
Gw
Clutch
Parkin
Range
atia
Il
Yer5e
r
pawl
manner
to
that
of
the
N
range
The
Fron
Rear
brakt
Operation
Release
clutch
oil
having
the
line
pressure
7
which
Park
on
has
been
introduced
into
the
manual
valve
Il
reaches
the
I
st
2nd
shift
Re
er
2
132
on
on
on
valve
CID
through
the
line
pressure
circuit
5
As
the
1st
2nd
shift
Neutral
valve
s
force
to
th
right
hand
ide
PI
L
w
2
3
on
by
the
spring
the
line
pressure
5
and
Drive
P2
Second
14S3
on
on
12
actuates
the
low
and
reverse
brake
through
the
groove
Also
Ihe
03
Top
1
000
on
on
parking
pawl
engages
with
the
outer
2
Second
1
458
teeth
of
the
oil
distributor
by
means
of
the
manual
lever
mechanically
12
Second
1458
on
on
locking
the
output
shaft
II
Low
2
453
on
AT
14
Page 276 of 537

R
RANGE
REVERSE
In
R
range
the
front
clutch
and
the
low
and
reverse
brake
are
applied
The
power
flow
is
through
the
input
shaft
front
clutch
and
connecting
shell
to
the
sun
gear
Clockwise
rota
tion
of
the
sun
gear
causes
counter
clockwise
rotation
of
the
rear
planeta
ry
gears
With
the
connecting
drum
held
stationary
by
the
low
and
reverse
brake
the
rear
planetary
gears
rotate
the
rear
internal
gear
and
drive
the
flange
counterclockwise
The
rear
drive
flange
splined
to
the
output
shaft
rotates
the
output
shaft
counterclock
wise
at
a
reduced
speed
with
an
increase
in
torque
for
reverse
gear
Automatic
Transmission
R
Fig
AT
26
Power
tranamis
ion
during
R
range
m
i
1
A
TOBS
Fig
A
T
21
Optrationof
each
mechanism
during
R
range
When
the
manual
valve
V
is
posi
Clutch
Low
Band
servo
One
tioned
at
R
range
the
oil
having
the
Gear
Partina
Ranae
re
ne
way
line
pressure
7
is
directed
to
line
ralio
Front
Rear
brake
Openlion
Relulie
clutch
plwl
pressure
circuits
5
and
6
The
pressure
in
the
circuit
5
actuates
the
Park
on
on
low
and
reverse
brake
after
being
Ruene
2
182
on
on
on
introduced
into
line
pressure
circuit
Neutral
12
through
the
I
st
2nd
shift
valve
ID
The
pressure
in
the
circuit
op
DI
Low
2
458
on
on
erates
the
release
side
of
the
band
servo
and
the
front
c1u
tch
after
being
Driowe
D2
Second
1
458
on
on
led
to
line
pressure
circuit
0
D3
Top
1
000
on
on
on
through
the
2nd
3rd
shift
valve
@
2
Second
1
458
The
throttle
pressure
I
6
and
the
line
on
on
pressure
6
which
vary
with
the
12
Second
S8
on
on
degree
of
accelerator
pedal
depression
II
Low
2
458
both
act
the
pressure
regulator
on
on
on
valve
CD
and
press
against
its
valve
CD
increasing
line
pressure
7
In
Rn
range
the
governor
pressure
is
absent
making
all
such
valves
as
the
1st
2nd
shift
valve
ID
lnd
3rd
shift
valvc
@
and
pressurc
modifier
valve
inoperative
AT16
Page 278 of 537

N
RANGE
NEUTRAL
In
N
range
none
of
the
clutches
and
band
are
applied
thus
no
power
is
transmitted
to
the
output
shaft
The
pressure
of
oil
discharged
from
the
oil
pump
is
regulated
by
the
pressure
regulator
valve
Dto
maintain
the
line
pressure
7
and
the
oil
is
led
to
the
manual
valve
@
vacuum
throt
tie
valve
@
and
solenoid
down
shift
valve
@
The
oil
is
further
introduced
into
the
torque
converter
at
its
op
erating
pressure
14
and
a
portion
of
this
oil
is
distributed
to
each
part
as
the
front
lubricant
The
oil
which
has
been
discharged
from
the
torque
con
verter
is
also
distributed
to
eacn
part
as
the
rear
lubricant
As
the
oil
pump
rotates
at
the
same
speed
as
the
engine
the
oil
pump
discharge
increases
with
engine
speed
But
the
surplus
oil
is
returned
to
the
oil
pan
by
the
pressure
regula
tor
valve
D
Automatic
Transmission
Geu
Clutch
Low
4
Band
crvo
One
Pultin
R
atio
WI
pawl
Front
Rear
brake
Operation
Release
clutch
Park
on
on
Reverse
2
182
on
on
on
Neutral
Dt
Low
2
458
on
on
Drive
D2
Second
1
458
on
on
m
Top
1
000
on
on
on
on
2
Second
1
458
on
on
12
Sec
ond
1
458
on
on
II
Low
2
458
on
on
AT
la
Page 279 of 537

Automatic
Transmission
P
range
Park
Front
Cluteh
1
1
Brllk
ar
Bond
Torqu
Con
u
o
ID
VK
Th
o
I
V
II
IftY
all
Coo
II
I
Front
Lubrk
It
n
Orltlc
Check
V
A
L
b
k
tlon
1
e
O
ln
I
ThrOttle
D
ln
V
21
j
r
tUI
lor
V
h
@
V
hI
N01
M
rked
X
r
D
ln
5
I
I
I
X
Line
pr
Go
nor
t
d
pr
L
J
Q
RO
p
c
J
Torq
co
p
f
Th
ottl
p
Iecond
y
Ocw
no
V
Gover
V
Fig
A
T
25
Oil
pressure
circuit
diagram
P
range
Park
AT
IS
Page 280 of 537

Automatic
Transmission
R
RANGE
REVERSE
R
In
R
range
the
front
dutch
and
the
low
and
reverse
brake
are
applied
The
power
flow
is
through
the
input
shaft
front
clutch
and
connecting
shell
to
the
sun
gear
Clockwise
rota
tion
of
the
sun
gear
causes
counter
clockwise
rotation
of
the
rear
planeta
ry
gears
With
the
connecting
drum
held
Slationary
by
the
low
and
reverse
brake
the
rear
planetary
gears
rotate
the
rear
internal
gear
and
drive
the
flange
counterclockwise
The
rear
drive
flange
splined
to
the
output
shaft
rotates
the
output
shaft
counterclock
wise
at
a
reduced
speed
with
an
increase
in
torque
for
reverse
gear
f
When
Ihe
manual
valve
CV
is
posi
tioned
at
R
range
Ihe
oil
having
Ihe
line
pressure
7
is
directed
to
line
pressure
circuits
5
and
6
The
pressure
in
the
circuit
5
actuates
the
low
and
reverse
brake
after
being
introduced
into
line
pressure
circuit
12
through
the
I
st
2nd
shift
valve
@
The
pressure
in
Ihe
circuit
op
erates
the
release
side
of
the
band
servo
and
the
front
clutch
after
being
led
to
line
pressure
circuit
10
through
the
2nd
3rd
shift
valve
@
The
throtlle
pressure
16
and
the
line
pressure
6
which
vary
with
the
degree
of
acceJerator
pedal
depression
both
act
on
the
prcssure
regulator
valve
CD
and
press
against
its
valve
CD
increasing
line
pressure
7
In
R
range
the
governor
pressure
is
absent
making
all
slldl
valves
as
the
J
SI
2nd
shift
valve
@
2nd
3rd
shift
valvc
@
and
pressure
modifier
valve
j
inoperative
C
Fig
AT
26
Power
transmi
ion
during
R
range
A
TOS5
Fig
AT
27
Operation
attach
mechanism
during
R
range
G
Clutch
Low
A
Band
servo
One
Parkin
Ran
no
wa
plwl
ratio
Front
Rear
brake
Operllioo
Rdr
ue
clutch
k
on
on
Revctte
1
181
on
on
on
Neutnl
DI
Low
1
418
on
on
Driw
D2
Second
1
458
on
on
DJ
Top
1
000
on
on
on
on
2
Second
1
458
on
on
12
Second
1
458
on
on
I
II
Low
2
458
on
on
AT
16
Page 281 of 537

R
range
Reverse
Automatic
Transmission
TOl
QuaConverter
o
IIi
0
ou
14
Q
FI
Lu
IUt
O
Front
Lub
lc
O
lnV
ly
R
MO
V
l
Front
Clutdt
LowaoA
B
k
e
k
B
Clutch
ID
VK
n
V
lv
@
ftV
1
I
j
Throttle
O
in
V
Otlflce
Check
V
III
@lnd
3rdShih
V
zz
@
2nd
rd
TIm
If
V
Iy
Second
Lock
V
3
I
Zl
Not
M
k
d
X
er
0
1
LI
p
O
nOf
f
P
G
preau
I
J
Torqu
0
0
pr
Throttl
p
1
s
co
O
V
0
O
V
Fig
A
T
28
AT
17
Oil
pressure
circuit
diagram
n
II
range
Reverse
Page 282 of 537

N
RANGE
NEUTRAL
Automatic
Transmission
In
N
range
none
of
the
clutches
and
band
are
applied
thus
no
power
is
transmitted
to
the
output
shaft
The
pressure
of
oil
discharged
from
the
oil
pump
is
regulated
by
the
pressure
regulator
valve
CD
to
maintain
the
line
pressure
7
and
the
oil
is
led
to
the
manual
valve
V
vacuum
throt
tle
valve
@
and
solenoid
down
shift
valve
@
The
oil
is
further
introduced
into
the
torque
converter
at
its
op
erating
pressure
14
and
a
portion
of
this
oil
is
distributed
to
each
part
as
the
front
lubricant
The
oil
which
has
been
discharged
from
the
torque
con
verter
is
also
distributed
to
eacn
part
as
the
rear
lubricant
As
the
oil
pump
rotates
at
the
same
speed
as
the
engine
the
oil
pump
discharge
increases
with
engine
speed
But
the
surplus
oil
is
returned
to
the
oil
pan
by
the
pressure
regulator
valve
CD
G
Clutch
Low
Band
servo
One
Pukiq
R
w
pawl
ntlo
Front
Rur
br
ke
Optruion
Release
clutch
PIlIi
on
on
Reverse
2
182
on
on
on
Neut
1
01
Low
2
458
on
on
Drive
02
Second
t
458
on
on
03
Top
1
000
on
on
on
on
2
Setond
1
458
on
on
12
Second
1
4
58
on
on
1
II
Low
2
458
on
on
AT
18
Page 284 of 537

D
RANGE
LOW
GEAR
Automatic
Transmission
The
low
gear
in
D
range
is
somewhat
different
from
that
in
I
range
The
rear
c1utdl
is
applied
as
III
I
range
but
the
one
way
clutch
holds
the
connecting
drum
The
power
now
is
the
same
as
in
1
J
range
That
is
the
power
now
takes
place
through
Ihe
input
shaft
and
into
the
rear
clutch
The
input
shaft
is
splined
to
the
rear
clutch
drum
and
drives
it
Rotation
of
Ihe
rear
clutch
drives
the
rear
clutch
hub
and
front
internal
gear
The
front
internal
gear
rotales
the
front
planetary
gears
clockwise
to
cause
the
sun
gear
to
rotate
counter
clockwise
Counterclockwise
rotation
of
the
sun
gear
turns
the
rear
planetary
gears
clockwise
With
the
rear
plane
tary
carrier
held
stationary
by
the
one
way
clutch
the
clockwise
rotation
of
the
rear
planetary
gears
rotates
the
rear
internal
gear
and
drives
the
flange
clockwise
The
internal
drive
flange
is
splined
to
the
outpul
shaft
and
rotates
the
output
shaft
clockwise
When
the
manual
valve
is
posi
tioned
at
D
the
line
pressure
7
introduced
into
the
manual
valve
is
led
to
the
line
pressure
circuits
l
2
and
3
The
pressure
in
the
circuit
I
acluates
the
rear
clutch
and
the
gover
nor
and
al
the
same
time
operates
the
1st
2nd
shift
valve
CID
to
change
the
speed
The
circuit
2
leads
to
the
second
lock
valve
@
The
circuit
3
actuates
the
2nd
3rd
shift
valve
@
for
the
2nd
3rd
speed
change
and
at
the
same
lime
locks
the
second
lock
valve
@
The
throttle
pressure
16
which
changes
with
the
degree
of
accelerator
pedal
depression
presses
Ihe
pressure
regulator
valve
CD
and
increases
the
line
pressure
7
When
Ihe
speed
of
the
vehicle
has
increased
the
governor
pressure
15
introduced
from
the
line
pressure
circuit
I
actuates
the
I
SI
2nd
shift
valve
CID
2nd
3rd
shift
valve
@
and
pressure
modifier
valve
ID
When
the
governor
pressure
is
high
the
pressure
modifier
valve
ID
acls
in
such
a
direction
as
to
compress
the
spring
and
the
throttle
pressure
is
led
to
the
throttle
pressure
18
This
ATOSO
Fig
AT
30
Power
transmission
during
D
J
range
liIIl
I
IW
L
AT08l
Fig
AT
31
Operation
of
each
mechanism
during
VJ
range
Clutch
low
Band
servo
On
Parking
Cur
Ran
Rllelle
way
pawl
ratio
Front
Rur
brake
Operation
Rekase
ch
lch
Park
on
on
RellerK
2
t82
on
on
on
Neutral
01
low
2
S8
on
on
Orivt
02
Second
1
458
on
on
OJ
Top
1000
on
on
on
on
2
Second
1
458
on
00
t2
Second
1
458
on
on
t
tt
low
2
458
on
on
pressure
acts
against
the
force
of
the
spring
of
the
pressure
regulator
valve
CD
and
also
against
the
throttle
pres
sure
16
thus
lowering
the
line
pres
sure
7
The
governor
pressure
also
increases
with
the
speed
of
Ihe
vehicle
exerting
a
pressure
on
one
side
of
the
lst
2nd
shift
valve
and
counter
acts
the
Ihrottle
pressure
19
line
pressure
AT
20
l
and
the
spring
which
are
exerting
against
t
1e
governor
pressure
There
fore
when
the
governor
pressure
ex
ceeds
Ihis
pressure
the
speed
is
shifted
from
the
I
st
gear
to
the
2nd
gear
The
further
the
accelerator
pedal
is
depressed
the
higher
becomes
the
throttle
pressure
19
increasing
the
governor
pressure
and
shifting
the
speed
change
point
to
the
higher
side